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Motivated by the failure of current methods to control dengue
fever, we formulate a mathematical model to assess the impact on
the spread of a mosquito-borne viral disease of a strategy that
releases adult male insects homozygous for a dominant, repress-
ible, lethal genetic trait. A dynamic model for the female adult
mosquito population, which incorporates the competition for fe-
male mating between released mosquitoes and wild mosquitoes,
density-dependent competition during the larval stage, and real-
ization of the lethal trait either before or after the larval stage, is
embedded into a susceptible–exposed–infectious–susceptible hu-
man-vector epidemic model for the spread of the disease. For the
special case in which the number of released mosquitoes is main-
tained in a fixed proportion to the number of adult female
mosquitoes at each point in time, we derive mathematical formulas
for the disease eradication condition and the approximate number
of released mosquitoes necessary for eradication. Numerical re-
sults using data for dengue fever suggest that the proportional
policy outperforms a release policy in which the released mosquito
population is held constant, and that eradication in �1 year is
feasible for affected human populations on the order of 105 to 106,
although the logistical considerations are daunting. We also con-
struct a policy that achieves an exponential decay in the female
mosquito population; this policy releases approximately the same
number of mosquitoes as the proportional policy but achieves
eradication nearly twice as fast.

dengue fever � genetically modified mosquitoes �
mathematical epidemiology

Worldwide morbidity and mortality from mosquito-borne
viral diseases are substantial and on the rise (1). No

licensed vaccine exists for the most important of these viruses,
the dengue virus, which each year causes 50–100 million cases of
dengue fever and 250,000–500,000 cases of the potentially fatal
dengue hemorrhagic fever (2). The Aedes aegypti mosquito (also
known as Stegomyia aegypti), which is the main vector for dengue
fever and yellow fever, is endemic in the southeastern U.S., and
the West Nile virus spread easily through the U.S. in recent
years, suggesting the U.S. could be vulnerable in coming years to
both natural and deliberate outbreaks of mosquito-borne viral
diseases. Given the failure of current methods to control the
spread of these diseases, considerable effort has gone into novel
population-suppression strategies. The sterile insect technique
(SIT), which releases sterile (irradiated) male insects that mate
with wild females, resulting in no progeny, has been used
successfully for �50 years for control and eradication of several
pests and disease vectors (3, 4). However, irradiated mosquitoes
have difficulty competing with wild males for wild females (5–7)
and there are no large-scale SIT mosquito programs currently in
operation. A proposed alternative approach that is also envi-
ronmentally benign is the release of insects carrying a dominant
lethal (RIDL) strategy. In this approach, which would opera-
tionally resemble SIT, the released male mosquitoes would be
homozygous for a repressible dominant lethal gene or genetic
system. The repressor would be something that could be pro-

vided during mass-rearing but is not found in the wild, for
example, a chemical dietary additive. These RIDL male mos-
quitoes would mate with wild females and produce heterozygous
progeny that die under predetermined conditions (8, 9).

We develop a mathematical model for a RIDL strategy and
derive analytical expressions for disease eradication conditions
and the approximate number of released mosquitoes necessary
for eradication. We illustrate this using data for dengue fever,
which appears to be a particularly suitable target for RIDL,
because it is specific to humans (i.e., it has no significant animal
reservoirs) and (unlike malaria) has a single dominant vector,
and area-wide programs have previously proven to be effective
in controlling this disease (10).

Results
The Model. The dengue virus has four major serotypes, and a
person who recovers from an infection and is immune to one
serotype may become secondarily infected (and appears to be
more susceptible to dengue hemorrhagic fever) with a virus from
a different serotype (11). For simplicity, we consider a single-
serotype model and, to be conservative (i.e., overestimating the
number of infections), we consider a susceptible–exposed–
infectious–susceptible model in which all recovered people are
susceptible to another infection. Let the subscripts H and V
represent human and (adult female) vectors, respectively. For i �
{H, V}, let Ii(t) be the number of infecteds at time t, Ei(t) be the
number of exposed (but not infectious), and Ni(t) be the total
population size at time t, so that the total number of susceptibles
at time t is Ni(t)�Ii(t)�Ei(t). We assume that the human
population is constant at NH and define a model for the adult
female vector population NV(t) after describing the susceptible–
exposed–infectious–susceptible human-vector epidemic model.

Following traditional notation, let a be the biting rate (number
of bites per unit time), b be the probability that a bite from an
infected mosquito will infect a susceptible human, c be the
probability that a susceptible mosquito is infected from biting an
infected human, � be the human recovery rate, and for i � {H,
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V}, let �i be the death rate and �i be the deterministic incubation
(or latency) period. Then our epidemic model, which is similar
to that in section 14.4.1 of ref. 12, is given by

ĖH�t� �
ab
NH

NV�t��NH � EH�t� � IH�t��
IV�t�
NV�t�

� e��H�H
ab
NH

NV�t � �H�

� �NH � EH�t � �H� � IH�t � �H��
IV�t � �H�

NV�t � �H�

� �HEH�t�, [1]

İH�t� � e��H�H
ab
NH

NV�t��H�

��NH�EH�t��H��IH�t��H��
IV�t��H�

NV�t��H�
���	�H�IH�t�,

[2]

ĖV�t� � ac�NV�t� � EV�t� � IV�t��
IH�t�
NH

� e��V�Vac�NV�t � �V�

� EV�t � �V� � IV�t � �V��
IH�t � �V�

NH
� �VEV�t�, [3]

İV�t� � e��V�Vac�NV�t � �V� � EV�t � �V�

� IV�t � �V��
IH�t � �V�

NH
� �VIV�t�. [4]

The temporal behavior of NV(t) is dictated by growth, density
dependence, RIDL control, and death. A. aegypti reproduce
continuously (13), and we assume each adult female mosquito
has � progeny, half female and half male, that survive to
adulthood if there is no density-dependent mortality. The
dengue infection does not affect the life expectancy of adult
female mosquitoes, and so adult females die at rate �V. We
assume the exponential adult female mosquito ‘‘birth’’ rate
(i.e., the rate of emergence as adults) in the absence of density
dependence is r � (��V)/2. If there were no density-dependent
mortality, we would have ṄV(t) � rNV(t��e)��VNV(t), where
�e is the deterministic time lag between reproduction and
adulthood. In our model, density-dependent mortality occurs
in the larval stage and thus affects only the birth term, yielding
ṄV(t) � rNV(t��e)D(t)��VNV(t), where D(t) is the density-
dependent factor. Because larval competition occurs over
several days (14), the simplest form of our density-dependent
factor is

D�t� �

K̃ � 

�l

b

�l
e

L�t � ��d�

K̃
,

where L(t) is the larval female population at time t, K̃ is the
carrying capacity of the larvae population (15), �1

b is the time lag
between the beginning of larval competition and adulthood, and
�1

e is the delay between the end of larval competition and
adulthood. For simplicity, we approximate

�
�l

b

�l
e

L�t � ��d�

by L(t � �1
b)(�1

b � �1
e), and for further analytic tractability,

we assume that L(t � �1
b) is proportional to NV(t � �e), i.e.,

L(t � �1
b) � �NV(t � �e), which is natural in light of the definitions

of �1
b and �e. Thus we set our density-dependent factor to D(t) �

[K̃ � �(�l
b � �l

e)NV(t � �e)]/K̋ � [K � NV(t � �e)]/K, where K
� K̃/�(�l

b � �l
e), and hence K is a population parameter related

to the carrying capacity of the larval population. The number of
adult female mosquitoes at time t in the absence of control is

ṄV�t� � rNV�t � �e�
K � NV�t � �e�

K
� �VNV�t�.

The released adult male mosquitoes with the dominant lethal,
which we refer to as the RIDL mosquitoes, can be engineered to
have offspring that die either before or after the larval stage,
which is where density-dependent competition occurs (e.g., for
nutrients, space, or other limited resources). We refer to these
two approaches as early- and late-lethal, respectively. In the
absence of control, we assume there are equal numbers of
wild-type adult male and female mosquitoes (14, 16). The
control is modeled by R(t), which is the number of RIDL adult
male mosquitoes present at time t. In our analysis below, we
consider six control strategies in total, which are early- and
late-lethal versions of three classes of control strategies referred
to as the proportional, constant, and trajectory policies. We
assume RIDL male mosquitoes compete just as well as wild-type
males for the adult females [because the dominant lethal trait,
unlike irradiation, need not significantly reduce fitness (17, 18)],
the fraction of progeny born at time t that have a wild-type father
is

NV�t�
NV�t� � R�t�

.

Taken together, our model for the number of adult female
mosquitoes is

ṄV�t�

� �
rNV�t � �e� � NV�t � �e�

NV�t � �e� � R�t � �e�
�

�K � NV�t � �e�

K � � �VNV�t�

for late-lethal;

rNV� t � �e� � NV� t � �e�

NV� t � �e� � R� t � �e�
�

� K �
NV� t � �e�

NV� t � �e� � R� t � �e�
NV� t � �e�

K
	

� �VNV� t�
for early-lethal

,

[5]

and our entire model consists of Eqs. 1–5.

The Proportional Policy. Our main analytical result is the necessary
condition for disease eradication [i.e., IH(�) � IV(�) � 0, and
hence the virus, not the vector, is being eradicated] for the
proportional policy, where the RIDL mosquito population is
maintained in a fixed proportion to the adult female mosquito
population, i.e.,

R�t� � 	NV�t�. [6]

The proof of Proposition 1 is in supporting information (SI)
Appendix, Section 1.
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Proposition 1. If �V � r, then eradication occurs in the absence
of RIDL control. If �V � r, eradication in the absence of
RIDL control occurs only if �V �

a2bcK�r � �V�e��H�H��V�V

�� � �H�rNH
.

If �V 
 min
r,
a2bcK�r � �V�e��H�H��V�V

��	�H�rNH
�,

then the proportional RIDL strategy in Eq. 6 achieves eradication
only if 	 � 	*, where

	* � �
�1 �

��H � ��NH�Ve�H�H	�V�V

a2bcK � r
�V

� 1

for late-lethal;

� 1 � �1 �
4�V

2 NH�� � �
H

�e�H�H	�V�V

a2bcKr
2

	 r
�V

� 1

for early-lethal.

[7]

The right side of Eq. 7 is smaller for late-lethal, and hence late-lethal
dominates early-lethal in the sense that it requires a smaller
proportion of RIDL mosquitoes to wild-type female mosquitoes
than early-lethal to achieve eradication.

Throughout this study, we use numerical values representative
of dengue fever (Table 1) for a small urban population of 10,000
humans, which should not egregiously violate our homogeneous-
mixing nonspatial model (14). We also set the adult female
mosquito population at time 0 to K[1��V/r], which is its
steady-state value in Eq. 5 in the absence of treatment, and vary
K to obtain different values of the mosquito-to-human popula-
tion ratio, NV(0)/NH. For the parameter values in Table 1,
eradication in the absence of control occurs only if NV(0)/NH �
0.32, whereas NV(0)/NH. values for dengue fever range from 2
upward (20, 26), although there will be considerable variation in
this value depending on the specific setting.

For the parameter values in Table 1, necessary condition [7]
is also a sufficient condition for eradication for early but not for
late-lethal. This is because, for small values of 	, the system is
unstable, and 	* is sufficiently bounded away from zero for early
but not late-lethal (see SI Appendix, Section 1, and Fig. 1).
However, for the examples analyzed in this paper, the instability

is not an issue, because 	* in these cases is much greater than the
value required for stability (the system stabilizes for 	 � 0.55).
The mosquito population in the absence of control (i.e., 	 � 0)
is unstable. This is not inconsistent with a mosquito population
model with one density-dependent factor (which is what our
model has) in ref. 14 that can have stability issues depending on
the parameter values. Our focus, however, is on the controlled
system, and we analyze only the uncontrolled population to
determine the initial conditions.

The two eradication thresholds in Eq. 7 are increasing and
convex in the mosquito-to-human population ratio (Fig. 1) and
converge to the asymptotic limit,

lim NV�0�

NH
3 �

	* �
r

�V
� 1 � 4.30,

which is the threshold where NV(�) switches from positive to
zero. The late-lethal threshold converges more slowly than the
early-lethal threshold and hence there is a significant difference
between the two thresholds for moderate (i.e., � 5) population
ratios.

Table 1. Base-case parameter values

Parameter Description Value Ref.

NH Human population 10,000
NV(0) No. of adult female mosquitoes at time 0 [� K (1 � �V /r)] 0.811K —
a Biting rate (number of bites per day) 0.7 per day 19–21
b Probability that a bite infects a susceptible human 0.75 20, 22
c Probability that a bite infects a susceptible mosquito 0.75 20, 22
� Human recovery rate 0.25 per day 23
�H Human death rate 1

60
per year

�V Adult female mosquito death rate 0.12 per day 14, 16
� Number of progeny per adult female mosquito 10.6 13, 14
r Female mosquito birth rate (� ��V�2) 0.636 per day 13, 14
K Population parameter Varies
�H Human incubation period 7 days 12, 24, 25
�V Mosquito incubation period 9 days 20, 24, 25
�e Delay between reproduction and adulthood 18.84 days 14

The initial vector population NV(0) equals the nontrivial pretreatment steady-state solution in Eq. 5, and we
vary K to achieve different NV(0)/NH ratios in Figs. 1 and 2.
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Fig. 1. The RIDL eradication threshold (	*) for the proportional policy vs. the
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From a practical point of view, it is also important to under-
stand how many RIDL mosquitoes are required for eradication,
and how long it takes to eradicate the virus. In the case where
	 � 	*, we consider eradication to be achieved when IV(t) � 0.1,
and let t* denote the eradication time; i.e., t* is the minimum t
such that IV(t) � 0.1. The number of RIDL mosquitoes required
for eradication is (see SI Appendix, Section 2, for a derivation)

M � R�t*� � �V�
0

t*

R�t� dt. [8]

For each of the three policies, Fig. 2 displays the tradeoff
between these two performance measures, and SI Figs. 3 and 4
show how these two measures vary with the parameters of the
three policies; although we refer to the curves in Fig. 2 as tradeoff
curves, both performance measures simultaneously increase as
the free policy parameter (e.g., 	 for the proportional policy) is
reduced to near its eradication threshold value. Fig. 2 reveals that

late-lethal offers a 44% reduction in the number of RIDL
mosquitoes required for eradication relative to early-lethal. For
the four cases in Fig. 2 (Nv(0)/NH � 4, 8, 12, 16), �106 RIDL
mosquitoes are required to eradicate the virus. The value of 	
that minimizes M in Fig. 2 is 6.0 for late-and 8.3 for early-lethal.
Eradication can take several years for 	 values close to the critical
	*, but for values closer to the M-minimizing 	 eradication takes
between 10 and 15 months (Fig. 2). Given the nature of the
curves in Fig. 2, the inherent uncertainty in some of the
parameter values, and the difficulty of achieving uniform spatial
dispersion of mosquitoes, it would be prudent in practice to
choose a somewhat larger value of 	 than the M-minimizing
value.

The Constant Policy. The constant policy, R(t) � C, maintains a
constant number of RIDL mosquitoes in circulation. Compared
with the proportional policy in Eq. 6, the constant policy requires
�1.5-fold more mosquitoes to achieve eradication for late-and
2.2-fold more for early-lethal (Fig. 2). Moreover, the number of
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Fig. 2. The number of RIDL mosquitoes required for eradication in Eq. 8 vs. the number of days until eradication t* [i.e., IV(t*) � 0.1] for both late-lethal (—)
and early-lethal (- -) for all three policies: the proportional policy (red), the constant policy (green), and the trajectory policy (black). These curves are generated
by varying the free parameter (	, C, and 
, respectively) in the three policies (the curves are in the upper-left portion of the graphs for larger values of the free
parameters) and numerically computing Eqs. 1–5 with the initial state variables set at their nontrivial pretreatment steady-state values (see SI Appendix, Section
1). We consider four values of NV�0�/NH. (a) 4, (b) 8, (c) 12, and (d) 16.
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mosquitoes required for eradication by the constant policy is
very sensitive to the value of C (SI Fig. 3), which makes it a less
robust policy than the proportional policy. Although the M-
minimizing constant policy requires significantly more mosqui-
toes to achieve eradication than the M-minimizing proportional
policy, it does achieve eradication in less time (Fig. 2).

The Trajectory Policy. Our final policy is reverse-engineered in an
attempt to maintain an exponential decline in the total number
of infected female mosquitoes [IV(t)]. Analytically, we construct
the trajectory policy so it achieves an exponential decay in the
total number of female mosquitoes [NV(t)] in the late-lethal
version of Eq. 5 in the absence of time lags (i.e., setting �e � 0).
This calculation (see SI Appendix, Section 2) yields the trajectory
policy,

R�t� � 

NV�t��K � NV�t��

K
� NV�t�, [9]

where 	 is a free parameter that dictates the rate of exponential
decay. Under this policy, the RIDL-to-female ratio is

R�t�
NV�t�

� �
 � 1� �

NV�t�

K
,

which equals (
�V)/r � 1 at time 0 and (for practical values of
	) steadily increases (SI Fig. 5, which provides a detailed
comparison of the dynamics of all three policies) as the female
mosquito population decreases, eventually approaching 	 �1 as
eradication nears. This behavior suggests that the trajectory
policy can be viewed in more general terms as a variable
proportional policy, where the proportion of RIDL mosquitoes
increases as the female mosquito population decreases. Under
late-lethal (which is what the trajectory policy was constructed
for), at the M-minimizing value of 	, the trajectory policy
requires slightly fewer mosquitoes for eradication than the
M-minimizing proportional policy. However, when the two
policies both release the minimum number of mosquitoes re-
quired under the proportional policy, eradication occurs nearly
twice as fast for the trajectory policy (Fig. 2).

Overall, late-dominates early-lethal for all three policies, and
the trajectory policy outperforms the other two policies. The
trajectory policy slightly dominates the proportional policy if the
main performance measure is the total number of RIDL mos-
quitoes required for eradication and significantly dominates the
proportional policy if the primary measure is the time until
eradication. The proportional policy significantly outperforms
the constant policy if the main performance measure is the
number of mosquitoes required for eradication. A third perfor-
mance measure not shown in Fig. 2 is the peak release quantity,
which in general is the initial deployment when R(0) RIDL
mosquitoes are released into the system (the only situation where
the peak release is not at t � 0 is the trajectory policy for
R(0)/NV(0) � 0.2). This value is higher for the proportional
policy than the other two policies (SI Fig. 3). However, if
production capacity is limited, factories could stockpile male
mosquitoes before the start of a program, when the peak release
occurs.

Analytical Approximations for M. In SI Appendix, Section 4, we
derive the following approximation for the number of released
mosquitoes in 8 under the proportional policy, denoted by M̃,
assuming the adult female mosquito population is in its pre-
treatment steady-state at time 0:

M̃ � �
�V �e	NV�0� � �1 � 	�

�V	

r
K ln� 1 �

r � �V

�V	
�

for late-lethal;

�V �e	NV�0� � �1 � 	�2
�V	

r

K ln� 1 �
r � �V

	��V�1 � 	� � �r � �V��
�

for early-lethal.

[10]

This approximation is valid only if 	 � (r/�V) � 1, because this
is a necessary and sufficient condition for NV(�) � 0 (see SI
Appendix, Section 1). Although it is possible to eradicate the
virus for 	 � (r/�V) � 1, the quantity M in Eq. 8 is a convex
function of 	 and achieves a unique minimum in the region 	 �
(r/�V) � 1, where approximation 10 is valid (SI Fig. 3). The
expression ˜M in Eq. 10 is sufficiently accurate to provide a
useful ballpark approximation for the number of mosquitoes
required for eradication (SI Fig. 6). The values of 	 that minimize
˜M in Eq. 10 are 5.2 for late- and 6.4 for early-lethal, which are
smaller than the values 6.0 and 8.3 that minimize M in SI Fig. 3.
Finally, in SI Appendix, Section 5 and SI Fig. 7, we derive and
assess somewhat cruder (i.e., less accurate than Eq. 10) approx-
imations for M that act as lower bounds for the total number of
mosquitoes required for eradication for all three release policies.

Discussion
Although Eq. 5 captures the important features of the RIDL
policy, the epidemic model in Eqs. 1–4 lacks the fidelity to
accurately predict the outcome of an epidemic. In the case of
dengue fever, the inclusion of four serotypes with serotype-
specific immunity rates (27), age-dependent susceptibility and
disease severity, seasonality (28), and spatial aspects would be
required. In addition, the model does not allow for the immi-
gration of infected humans or vectors, which could lead to some
secondary infections even if eradication is ultimately achieved.
Nonetheless, the susceptible–exposed–infectious–susceptible
human-vector epidemic model and its variants (in the absence of
RIDL intervention) have a long history of capturing the salient
characteristics of a variety of mosquito-based disease outbreaks
(ref. 12, chapter 14), including dengue fever (20, 26, 28).
Similarly, the density dependence modeled in Eq. 5 is consistent
with data for a variety of insects, including the A. aegypti
mosquito (13). Consequently, our model should suffice for an
order-of-magnitude assessment of the effectiveness and practi-
cality of the RIDL strategy, as well as providing a relative
comparison of six reasonable and applicable control strategies.

Proposition 1 and the identity r���V/2 suggest that eradica-
tion of the virus requires the RIDL population to be maintained
at a population �(�/2)�1 times larger than the adult female
mosquito population in the proportional policy, where � is the
number of progeny per adult female mosquito. For A. aegypti in
our dengue fever example, this value is 4.3. Although eradication
can be achieved at some smaller values (Fig. 1), to minimize the
number of RIDL mosquitoes required for eradication, it is
optimal to maintain a somewhat higher ratio (�6); at the optimal
ratio, eradication takes �13 months. Under the proportional
policy, the total number of mosquitoes required for eradication
is �45% less for late-than for early-lethal, because of the strong
density-dependent competition during the larval stage. Hence,
late-lethal RIDL offers another benefit, beyond improved fit-
ness, relative to SIT, which kills before the larval stage. By Eq.
10 and r � ��V/2, the total number of mosquitoes required for
eradication in the late-lethal case of the proportional policy can
be approximated by
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��V�e	 �
�1 � 	�

�
ln�1 � ��� NV�0� ,

where the megaparameter

� �
1
	
��

2
� 1�.

In particular, this equation shows that the number of RIDL
mosquitoes required for eradication is approximately linear in
the initial number of adult female mosquitoes, NV(0) (see also
Fig. 2) and is �25.9NV(0) for A. aegypti when using the M-
minimizing 	. Although our main analytical results are for the
proportional policy, the trajectory policy is the best policy under
late-lethal RIDL; the M-minimizing trajectory policy requires
roughly the same number of RIDL mosquitoes for eradication
as the M-minimizing proportional policy, but by being more
aggressive when the infected female mosquito population gets
small (SI Fig. 5), it is able to achieve faster eradication than the
proportional policy.

Given that eggs can be stored for up to 2 years and that A.
aegypti mosquitoes are easy to breed, 108-109 could be stockpiled
for a given project [Culex quinquefasciatus mosquitoes have been
released at 3 
 105 per day (29, 30), and Anopheles albimanus
mosquitoes have been released at 106 per day (30, 31)], and given
the female mosquito-to-human population ratio in endemic
areas is �10 (20, 26), it would appear that the RIDL strategy is
capable of eradicating dengue fever for millions of people
worldwide. The worldwide population in areas where dengue
fever is endemic is �109 (32), suggesting that the number of adult

female mosquitoes in these regions is �1010, and the total
number of RIDL mosquitoes required for worldwide eradication
is �1011. Given that production facilities for Mediterranean fruit
f lies exist with a capacity in excess of 5 
 108 per day (4), rearing
insects on this scale is not infeasible (i.e., 200 days of production
at 5 
 108 per day is 1011 insects). The biggest logistical challenge
is not breeding but distribution; A. aegypti mosquitoes disperse
only up to one-half mile (33, 34), although there is some
uncertainty in this value, and hence distribution would likely
need to be performed on a household basis, at least in rural
areas.

We do not believe that our model is sufficiently detailed to
solely and reliably determine a release schedule that would result
in disease eradication. Rather, for implementation purposes and
using the proportional policy as an example, we envision starting
with a conservative estimate of 	 (i.e., a value somewhat higher
than derived by our analysis) and then to sample over time to
obtain estimates of the number of RIDL mosquitoes [R̂(t)], the
number of adult female mosquitoes [N̂V(t)], and the number of
infected adult female mosquitoes [ÎV(t)]. If the sampled fraction
infected {[ÎV(t)]/N̂V(t)} is greater than the value of [IV(t)]/NV(t)
predicted by our model, then we increase 	 to some value 	̂ (and
perhaps decrease 	 if [ÎV(t)]/N̂V(t) is less than predicted by our
model). Our release schedule would be altered so that Eq. 5 is
satisfied with our new values [i.e., R(t) � 	̂N̂V(t)].
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This research was supported by an Abbott Laboratories Stanford Grad-
uate Fellowship (to M.P.A.), the U.K. Biotechnology and Biological
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Appendix
1. Proof of Proposition 1

In this proof, we analyze the stability properties necessary to eradicate the virus for the pro-

portional control policy. To determine the steady-state solutions of this system, which is given

by equations (1)-(5) of the main text, we set these equationsto zero and ignore the time lags.

Because equation (5) decouples, we can solve for the steady-state solutions of equations (1)-

(4) separately from equation (5). The possible steady-state solutions of equations (1)-(4) are

(EH , IH , EV , IV ) = (0, 0, 0, 0) and

IV =
acµHe−µV τV

acµH + ((µH + γ)eµHτH − γ)µV

(NV −
(µH + γ)µV NHeµHτH+µV τV

a2bc
), (A.1)

IH =
µV IV

ac
NH

e−µV τV [NV − IV eµV τV ]
, (A.2)

EH =
(µH + γ)(eµHτH − 1)

µH

IH , (A.3)

EV =(eµV τV − 1)IV , (A.4)

and the possible steady-state solutions of equation (5) areNV = 0 and

NV =







K(1 − (1+θ)µV

r
) for late − lethal;

(1 + θ)K(1 − (1+θ)µV

r
) for early − lethal.

(A.5)

Although there are four possible steady-state solutions, we are only interested in the two solutions

that achieve eradication of the virus (i.e.,IV = IH = 0):

(EH , IH , EV , IV , NV ) =(0, 0, 0, 0, 0), (A.6)

(EH , IH , EV , IV , NV ) =











(

0, 0, 0, 0, K
(

1 − (1+θ)µV

r

))

for late − lethal;
(

0, 0, 0, 0, (1 + θ)K
(

1 − (1+θ)µV

r

))

for early − lethal.
(A.7)

In the remainder of this section, we analyze the stability properties of solutions (A.6)-(A.7).

These solutions are stable if all of the roots of the characteristic equations have negative real part.

1



Because we are dealing with a system of delay differential equations, the characteristic equation

has an infinite number of roots and is given by [1]

det(J + e−ητHJτH
+ e−ητV JτV

+ e−ητeJτe
− ηI) = 0,

whereI is the identity matrix and the matricesJ, JτH
, JτV

, andJτe
have entries that are the partial

derivatives of the right sides of (1)-(5) in the main text with respect to, respectively,

(EH(t), IH(t), EV (t), IV (t), NV (t)), (EH(t−τH), IH(t−τH), EV (t−τH), IV (t−τH), NV (t−τH)),

(EH(t−τV ), IH(t−τV ), EV (t−τV ), IV (t−τV ), NV (t−τV )), and(EH(t−τe), IH(t−τe), EV (t−

τe), IV (t − τe), NV (t − τe)). These matrices are given by

J =















− ab
NH

IV − µH − ab
NH

IV 0 ab
NH

[NH − EH − IH ] 0

0 −(µH + γ) 0 0 0

0 ac
NH

[NV − EV − IV ] − ac
NH

IH − µV − ac
NH

IH
ac

NH
IH

0 0 0 −µV 0

0 0 0 0 −µV















, (A.8)

JτH
=















e−µHτH ab
NH

IV e−µHτH ab
NH

IV 0 −e−µHτH ab
NH

[NH − EH − IH ] 0

−e−µHτH ab
NH

IV −e−µHτH ab
NH

IV 0 e−µHτH ab
NH

[NH − EH − IH ] 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















, (A.9)

JτV
=















0 0 0 0 0

0 0 0 0 0

0 −e−µV τV ac
NH

[NV − EV − IV ] e−µV τV ac
NH

IH e−µV τV ac
NH

IH −e−µV τV ac
NH

IH

0 e−µV τV ac
NH

[NV − EV − IV ] −e−µV τV ac
NH

IH −e−µV τV ac
NH

IH e−µV τV ac
NH

IH

0 0 0 0 0















, (A.10)

Jτe
=















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 ∂ṄV (t)
∂NV (t−τe)















. (A.11)

The matricesJ, JτV
, andJτe

depend on whether the late-lethal or early-lethal policy isused.

Beginning with solution (A.6), we find that the characteristic equation is the same for both
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late-lethal and early-lethal, and reduces to

det















−µH − η 0 0 ab(1 − e−µHτH e−ητH ) 0

0 −(µH + γ) − η 0 abe−µHτH e−ητH 0

0 0 −µV − η 0 0

0 0 0 −µV − η 0

0 0 0 0 r
1+θ

e−ητe − µV − η















= 0. (A.12)

Therefore, we need to analyze the roots of

r

1 + θ
e−ητe − µV − η = 0. (A.13)

The left side of (A.13) is a decreasing function ofη, and so we need to ensure that the function is

less than zero atη = 0. Thus, we have the necessary requirement

r

1 + θ
< µV . (A.14)

We now need to check that (A.14) is a sufficient condition for all complex roots of (A.13) to

have a negative real part. Settingη = κ + iω in (A.13) gives us two equations, corresponding to

the real and imaginary components

e−κτe cos ωτe =
1 + θ

r
(µV + κ), (A.15)

e−κτe sin ωτe = −
1 + θ

r
ω.

We want to show that all solutions are such thatκ < 0. If we assume that there exists a solution

such thatκ ≥ 0, then equation (A.15) implies that

κ ≤
r

1 + θ
− µV . (A.16)

However, expressions (A.14) and (A.16) imply thatκ < 0, and thus we have arrived at a con-

tradiction. Therefore, the steady-state solution (0,0,0,0,0) is stable for both the early-lethal and

late-lethal policies if and only ifµV > r
1+θ

.
Turning to solution (A.7),(EH , IH , EV , IV , NV ) = (0, 0, 0, 0, NV ), with NV > 0 given by

equation (A.5), we derive the characteristic equation (this depends on the policy sinceNV is a
parameter)

det

















−µH − η 0 0 ab(1 − e−µH τH e−ητH ) 0

0 −(µH + γ) − η 0 abe−µH τH e−ητH 0

0 ac
NH

NV (1 − e−µV τV e−ητV ) −µV − η 0 0

0 ac
NH

NV e−µV τV e−ητV 0 −µV − η 0

0 0 0 0 −µV + (2µV −
r

1+θ
)e−ητe

− η

















= 0, (A.17)
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which reduces to
(

−µV + (2µV −
r

1 + θ
)e−ητe − η

)

×

(

(µV + η)2(µH + η)(µH + γ + η) −
ac

NH

NV e−µV τV e−ητV (µV + η)(µH + η)abe−µHτH e−ητH

)

= 0.

(A.18)

At least one of the two terms in (A.18) needs to be zero in orderfor this equation to be satisfied.

Simplifying the second term (noting that two roots,−µV and−µH , are always negative and real),

we write the two factors of interest as

− µV + (2µV −
r

1 + θ
)e−ητe − η, (A.19)

(µV + η)(µH + γ + η) −
a2bc

NH

NV e−µHτH−µV τV e−η(τV +τH). (A.20)

Expression (A.19) tends to−∞ asη → ∞. Thus, requiring expression (A.19) to be less

than zero atη = 0 yields the necessary condition

µV <
r

1 + θ
. (A.21)

Expression (A.20) tends to∞ asη → ∞, and consequently expression (A.20) must be greater than

zero atη = 0. Substituting the value ofNV from (A.5) into expression (A.20) gives the necessary

condition

µV >
a2bcK(r−(1+θ)µV )

(µH+γ)NHr
e−µHτH−µV τV for late − lethal;

µV >
a2bcK(r−(1+θ)µV )(1+θ)

(µH+γ)NHr
e−µHτH−µV τV for early − lethal.

(A.22)

Taken together, inequalities (A.21) and (A.22) give us a necessary condition onθ for the roots of

equation (A.18) to have negative real part:
(

1 − (µH+γ)NHµV eµHτH+µV τV

a2bcK

)

r
µV

− 1 < θ < r
µV

− 1 for late − lethal;




1+

√

1−
4µ2

V
NH (γ+µH )eµHτH+µV τV

a2bcKr

2





r
µV

− 1 < θ < r
µV

− 1 for early − lethal.
(A.23)

Now we investigate whether condition (A.23) is also sufficient for the roots of equation (A.18)

to have negative real part. First, we assume all roots of bothexpressions (A.19) and (A.20) are real,

4



then we can show that condition (A.23) is sufficient for theseroots to be negative. If2µV > r
1+θ

then expression (A.19) is decreasing inη for η > 0, and if 2µV ≤ r
1+θ

then expression (A.19) is

less than zero forη > 0; in either case, condition (A.21) prevents any roots of (A.19) from being

positive. Condition (A.23) is also sufficient for the roots of (A.20) to be negative, because then

expression (A.20) is increasing forη > 0.

We now drop the assumption that the roots of (A.19)-(A.20) are real, and explore whether

condition (A.23) is sufficient for all complex roots of expressions (A.19)-(A.20) to have negative

real parts, starting with (A.20). Introducing the positiveconstantsA, B, D, andτ we express

equation (A.20) as

(A + η)(B + η) − De−ητ = 0. (A.24)

Substitutingη = κ + iω into (A.24) gives us equations for the real and imaginary components,

De−κτ cos ωτ = κ2 − ω2 + (A + B)κ + AB,

De−κτ sin ωτ = −2κω − (A + B)ω. (A.25)

If (κ, ω) is a solution to these two equations then so is(κ,−ω) and thus we can assumeω > 0. We

want to show thatκ < 0. If we assumeκ ≥ 0 then the right side of equation (A.25) is negative,

and henceωτ mod 2π ∈ (π, 2π). Therefore, equation (A.25) gives two conditions,

ω >
π

τ
=

π

τH + τV

, (A.26)

ω <
D

2a + A + B
≤

D

A + B
. (A.27)

Substituting forA, B, andD into (A.27) gives

ω ≤
D

A + B
=

a2bcNV

NH

e−µHτH−µV τV
1

µV + µH + γ
. (A.28)

But by condition (A.22), inequality (A.28) simplifies to

ω ≤
(µH + γ)µV

µV + µH + γ
< µV . (A.29)

5



If µV (τH + τV ) < π, as it is using the parameter values in Table 1 of the main text, then condi-

tions (A.26) and (A.29) lead to a contradiction, implying thatκ 6≥ 0. Therefore, ifµV (τH+τV ) < π

then condition (A.23) is sufficient for the roots of expression (A.20) to have negative real compo-

nents.

Unfortunately, condition (A.23) for late-lethal is not sufficient for the roots of (A.19) to have

negative real parts, and thus it is possible to have instabilities in the system. Expression (A.19) can

be analyzed in terms of the Lambert W function [2],W (x) = {w : x = wew}. Rearranging (A.19)

yields

η =
W
(

τee
µV τe(2µV − r

1+θ
)
)

τe

− µV . (A.30)

For the parameter values in Table 1 of the main text, theη given by equation (A.30) can

have a positive real component forθ ≤ 0.55 and thus the system only stabilizes forθ > 0.55. For

all examples in the main text,θ∗ is much greater than0.55 and thus stability is not an issue. It

should be noted thatθ = 0 corresponds to the system in the absence of control and thus the natural

mosquito population is unstable in our model. Other mosquito population models can also exhibit

instabilities [3]. However we are studying the effects of the RIDL program and thus only need the

natural population to set the initial conditions of the the controlled system.

However, condition (A.23) for early-lethal is sufficient for the roots of (A.19) to have neg-

ative real component because the early-lethal lower bound in (A.23) sufficiently boundsθ away

from 0, and thus prevents the instability that occurs for small values ofθ in the late-lethal case.

Substitutingη = κ + iω into expression (A.19) gives two equations for the real and imaginary

component,

e−κτe cos ωτe =
1 + θ

2µV (1 + θ) − r
(µV + κ), (A.31)

e−κτe sin ωτe = −
1 + θ

2µV (1 + θ) − r
ω.

Condition (A.23) for early-lethal implies2µV (1 + θ)− r > 0, which is not the case for late-lethal.

6



Using this inequality, equation (A.31), and assumingκ ≥ 0 implies that

κ ≤ µV −
r

1 + θ
. (A.32)

However, expressions (A.21) and (A.32) imply thatκ < 0 and hence a contradiction. Therefore,

the steady-state solution(0, 0, 0, 0, NV ), NV > 0, is stable for early-lethal if and only if condition

(A.23) holds. However for late-lethal we can only claim equation (A.23) is a necessary condition

for stability.

Finally, it can be shown that the two non-eradicating steady-state solutions (i.e., using equa-

tions (A.1)-(A.4)) are not stable in the range ofθ we are interested in (i.e., equations (A.14)

and (A.23)). Therefore, conditions (A.14) and (A.23) are necessary for eradication.

2. Derivation of the Trajectory Policy

Our goal is to find a functionR(t) that leads to an exponential decay ofNV (t) in the late-

lethal policy if we ignore the time lag (i.e., setτe = 0 in equation (5) of the main text). Substituting

R(t) = φ
NV (t)(K−NV (t))

K
− NV (t) into the late-lethal version of equation (5) of the main textgives

ṄV (t) = rNV (t − τe)

(

NV (t − τe)

NV (t − τe) + φ
NV (t−τe)(K−NV (t−τe))

K
− NV (t − τe)

)

(

K − NV (t − τe)

K

)

− µV NV (t),

(A.33)

=
r

φ
NV (t − τe) − µV NV (t). (A.34)

Settingτe = 0 in (A.34) and solving givesNV (t) = NV (0)e( r
φ
−µV )t, as desired.

3. Derivation of M in Equation (8)

Before deriving equation (8) in the main text, we note that a practical control policy must

satisfy two constraints on the functionR(t), which areR(t) ≥ 0 and

R′(t) + µV R(t) ≥ 0. (A.35)
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Condition (A.35) follows because RIDL mosquitoes can only be added, and not removed, from the

system, and because the RIDL population evolves according to R′(t) = −µV R(t) in the absence

of new releases.

The constant control policy,R(t) = C, satisfies condition (A.35). By equation (5) in the

main text, the proportional policy,R(t) = θNV (t), leads to

R′(t) + µV R(t) =











θrNV (t − τe)
(

1
1+θ

)(

K−NV (t−τe)
K

)

for late − lethal;

θrNV (t − τe)
(

1
1+θ

)(

K−
1

1+θ
NV (t−τe)

K

)

for early − lethal,
(A.36)

and hence to satisfy (A.35) we require

K ≥ NV (t) for late − lethal;

(1 + θ)K ≥ NV (t) for early − lethal.
(A.37)

Both the initial conditionNV (0) = K(1 − µV

r
) and the final steady state (either 0 or equation

(A.5)) satisfy condition (A.37). For the range ofθ we investigate,NV (t) evolves over time from

the initial state to its steady state in a monotone or slightly oscillatory manner, and thus condition

(A.37) is satisfied. However for small values ofθ where the system can destabilize, it is possible

for condition (A.37) and hence (A.36) to fail. There is no straightforward analytical condition to

verify (A.35) for the trajectory policy, however numericaland analytic investigations reveal that

for φ in the range of interest in this paper, condition (A.35) is satisfied.

To derive equation (8) in the main text, we sum the initial release,R(0), and the number

of mosquitoes we must add to the system to maintain the RIDL population atR(t). The number

of mosquitoes released in the small time interval[t, t + ∆t) is R(t + ∆t) − R(t)e−µV ∆t; con-

dition (A.35) ensures that this quantity is nonnegative. Letting ∆t → 0, noting thate−µV ∆t →

1 − µV ∆t, and integrating from time 0 tot yields the total number of RIDL mosquitoes released

into the system up to timet,

M(t) = R(t) + µV

∫ t

0

R(s) ds. (A.38)

Settingt = t∗ in (A.38) and definingM = M(t∗) yields equation (8) in the main text.
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For any control policy that depends only upon the value ofNV (t) (such as the proportional

and trajectory policies), the lag between birth and adulthood (see equation (5) in the main text)

implies thatR(t) = R(0) for all t ≤ τe. In this case, we can write equation (8) in the main text as

M =R(t∗) + µV τeR(0) + µV

∫ t∗

τe

R(t)dt. (A.39)

4. Derivation of M̃ in Equation (10)

By equations (A.39) and (6) and (8) in the main text, the totalnumber of RIDL mosquitoes

required for eradication using the proportional control policy is

M = θNV (t∗) + µV τeθNV (0) + µV θ

∫ t∗

τe

NV (t)dt. (A.40)

We have been unable to find a closed-form solution to equation(5) in the main text forR(t) =

θNV (t). In an attempt to derive a closed-form expression that approximatesM in equation (A.40),

we ignore the time lags in equation (5) in the main text, so that NV (t) satisfies

ṄV (t) =











rNV (t)
(

1
1+θ

)(

K−NV (t)
K

)

− µV NV (t) for late − lethal;

rNV (t)
(

1
1+θ

)(

K−

(

1
1+θ

)

NV (t)

K

)

− µV NV (t) for early − lethal,

(A.41)

Equation (A.41) can be solved using straightforward ODE techniques. Denoting the solution to

equation (A.41) byÑV (t), we have (our initial time beingτe andNV (τe) = NV (0))

ÑV (t) =























[r−µV (1+θ)]KNV (0)

[r−µV (1+θ)]K−rNV (0)

e
−( r

1+θ
−µV )(t−τe)

+
rNV (0)

[r−µV (1+θ)]K−rNV (0)

for late − lethal;

[r−µV (1+θ)](1+θ)KNV (0)

[r−µV (1+θ)](1+θ)K−rNV (0)

e
−( r

1+θ
−µV )(t−τe)

+
rNV (0)

[r−µV (1+θ)](1+θ)K−rNV (0)

for early − lethal.

(A.42)

Modifying equation (A.40) gives an estimate,M̃ , for M :

M̃ = θÑV (t∗) + µV τeθNV (0) + µV θ

∫ t∗

τe

ÑV (t)dt. (A.43)
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Substituting (A.42) into (A.43) and recalling thatNV (t) starts in it pre-treatment steady state (i.e.,

NV (0) = K
(

1 − µV

r

)

) yields

M̃ =



















θÑV (t∗) + µV τeθNV (0) + (1+θ)
r

µV θK ln(µV θ−(r−µV )e
( r
1+θ

−µV )(t∗−τe)

µV θ−(r−µV )
) for late − lethal;

θÑV (t∗) + µV τeθNV (0) + (1 + θ)2 µV θ

r
K ln(

1−
(r−µV )

θ(µV (1+θ)−(r−µV ))
e
( r
1+θ

−µV )(t∗−τe)

1−
(r−µV )

θ(µV (1+θ)−(r−µV ))

) for early − lethal.

(A.44)

Equation (A.44) still requires an estimate of the eradication timet∗ to complete the approximation.

The simplest approach is to lett∗ → ∞. However, from equation (A.44), this is only valid for

r
µV

− 1 < θ, which also implies thatNV (t) → 0 by (A.14). Assuming r
µV

− 1 < θ and letting

t∗ → ∞ simplifies expression (A.44) to

M̃ =











µV τeθNV (0) − (1+θ)
r

µV θK ln(1 − r−µV

µV θ
) for late − lethal;

µV τeθNV (0) − (1 + θ)2 µV θ

r
K ln(1 − r−µV

θ(µV (1+θ)−(r−µV ))
) for early − lethal,

(A.45)

which is equation (10) in the main text. As expected, the argument of the logarithm is positive if

and only if r
µV

− 1 < θ. Fig. 4 compares the approximation in (A.45) to their exact values. This

approximation performs well for late-lethal.

5. Crude Approximations for M for all Three Policies

In this section, we derive crude approximations forM that act as lower bounds for practical

versions of all three policies. The crux of this approximation is to assume that the RIDL control

prevents all future births, which reduces equation (5) in the main text toṄV (t) = −µV NV (t).

For the constant policy,R(t) = C, we assume eradication occurs whenNV (t∗) = 0.1 (rather

thanIV (t∗) = 0.1), i.e., at timeτe+
ln(10NV (0))

µV
. Hence, by equation (8) in the main text, the number

of mosquitoes required for eradication for the constant policy is

M̂constant = [1 + µV τe + ln(10NV (0))]C. (A.46)

For the proportional and trajectory policies, we substitute the solution ofṄV (t) = −µV NV (t)

into equation (A.39), and assumet∗ = ∞ andR(t∗) = 0 to obtain our approximations. For the
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proportional policy (R(t) = θNV (t)), we have

M̂proportional = µV τeθNV (0) + µV θ

∫

∞

τe

NV (t) dt, (A.47)

= µV τeθNV (0) + µV θNV (τe)

∫

∞

τe

e−µV (t−τe) dt, (A.48)

= (µV τe + 1)θNV (0) because NV (τe) = NV (0). (A.49)

A similar calculation for the trajectory policy (R(t) = φ
NV (t)(K−NV (t))

K
− NV (t)) yields

M̂trajectory =
(φ

r
(µ2

V τe +
r + µV

2
) − µV τe − 1

)

NV (0). (A.50)

Fig. 5 compares these three approximations to their exact values in the special case where

NV (0) = 8 × 104 and for late-lethal. Except when the policy parameters are very close to their

threshold values, these approximations provide useful lower bounds for the number of mosquitoes

required for eradication.
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FIGURE LEGENDS

Figure 3. The number of RIDL mosquitoes required for eradication in equation (8) of the main

text vs. the initial RIDL-to-female ratio,R(0)
NV (0)

, for both late-lethal (- -) and early-lethal (—) for all

three policies: the proportional policy (red), the constant policy (green), and the trajectory policy

(black). The ratio R(0)
NV (0)

equalsθ, C
NV (0)

, andφµV

r
− 1, respectively, for the three policies. When

computing equations (1)-(5) in the main text, we set the initial state variables to their nontrivial

pre-treatment steady-state values. We consider four values of NV (0)
NH

: (a) 4, (b) 8, (c) 12, (d) 16.

Figure 4. The number of days until eradicationt∗ (i.e.,IV (t∗) ≤ 0.1) vs. the initial RIDL-to-female

ratio, R(0)
NV (0)

, for both late-lethal (- -) and early-lethal (—) for all three policies: the proportional

policy (red), the constant policy (green), and the trajectory policy (black). The ratio R(0)
NV (0)

equals

θ, C
NV (0)

, andφµV

r
− 1, respectively, for the three policies. When computing equations (1)-(5) in

the main text, we set the initial state variables to their nontrivial pre-treatment steady-state values.

We consider four values ofNV (0)
NH

: (a) 4, (b) 8, (c) 12, (d) 16.

Figure 5. The system dynamics using late-lethal RIDL for the proportional policy (red), the con-

stant control (green), and the trajectory policy (black) using theM-minimizing values of the free

parameters (θ = 6, C = 1.5NV (0), andφ = 11), and for NV (0)
NH

= 8. (a) The number of infected

mosquitoes,IV (t), (b) the wild female population,NV (t), (c) the RIDL population,R(t), (d) the

total number of RIDL mosquitoes added to the system,M(t) from equation (A.38),(e) M ′(t), and

(f) R(t)
NV (t)

.

Figure 6. The exact (red) and approximate (black) number of RIDL mosquitoes required for erad-

ication vs. the initial RIDL-to-female ratio,R(0)
NV (0)

, for both late-lethal (- -) and early-lethal (—)

using the proportional policy. The exact value,M , is given by equation (8) of the main text and

the approximation,̃M , is equation (10) in the main text. When computing equations(1)-(5) in the

main text, we set the initial state variables to their nontrivial pre-treatment steady-state values. We
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consider four values ofNV (0)
NH

: (a) 4, (b) 8, (c) 12, (d) 16.

Figure 7. The exact (—) and approximate (- -) number of RIDL mosquitoes required for eradication

using late-lethal control policies andNV (0)
NH

= 8. The exact value,M , is given by equation (8) of

the main text and the approximations are derived in§5. When computing equations (1)-(5) in the

main text, we set the initial state variables to their nontrivial pre-treatment steady-state values.(a)

Proportional policy,(b) constant policy, and(c) trajectory policy.
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(a) NV (0)/NH = 4
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(b) NV (0)/NH = 8

0 5 10 15
0

5

10

15

20

R(0)/N
V
(0)

to
ta

l n
um

be
r 

of
 R

ID
L 

m
os

qu
ito

es
 fo

r 
vi

ru
s 

er
ad

ic
at

io
n 

(1
06 )

(c) NV (0)/NH = 12
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(d) NV (0)/NH = 16

Figure 1
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(a) NV (0)/NH = 4
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(b) NV (0)/NH = 8
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(c) NV (0)/NH = 12
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(d) NV (0)/NH = 16

Figure 2
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(a) NV (0)/NH = 4
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(b) NV (0)/NH = 8
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(c) NV (0)/NH = 12
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(d) NV (0)/NH = 16

Figure 4
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(a) proportional policy
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(b) constant policy
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(c) trajectory policy

Figure 5
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