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Optimal Stopping Analysis of a Radiation Detection System
to Protect Cities from a Nuclear Terrorist Attack

Michael P. Atkinson,1 Zheng Cao,2 and Lawrence M. Wein3∗

We formulate and analyze an optimal stopping problem concerning a terrorist who is attempt-
ing to drive a nuclear or radiological weapon toward a target in a city center. In our model,
the terrorist needs to travel through a two-dimensional lattice containing imperfect radiation
sensors at some of the nodes, and decides at each node whether to detonate the bomb or
proceed. We consider five different scenarios containing various informational structures and
two different sensor array topologies: the sensors are placed randomly or they form an outer
wall around the periphery of the city. We find that sensors can act as a deterrent in some cases,
and that the government prefers the outer wall topology unless the sensors have a very low
detection probability and the budget is tight (so that they are sparsely deployed).
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1. INTRODUCTION

A nuclear weapon (made of uranium or pluto-
nium) detonated by a terrorist in a large U.S. city
could kill a half-million people and cause 1 trillion
dollars in direct economic damage (Bunn et al., 2003).
Although this threat is deemed “real and urgent”
(Bunn et al., 2003), a more likely scenario is for ter-
rorists to assemble a radiological dispersal device, or
so-called dirty bomb, containing radiological material
such as cesium, which would inflict much less damage
but would nonetheless wreak considerable havoc. Be-
cause the majority of nuclear material in the former
Soviet Union remains vulnerable to theft (Bunn et al.,
2003) and smuggling nuclear or radiological material
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into a U.S. port in a shipping container is fairly easy
(Flynn, 2000; Stana, 2004), this article analyzes our
last line of defense, which is to detect an assembled
nuclear or radiological weapon as it is driven into a
city and to provide timely and effective interdiction.
Indeed, the U.S. government is in the process of devel-
oping (U.S. Department of Homeland Security, 2005)
and deploying (including a pilot test in New York City;
Lipton, 2007) such detection-interdiction systems in
its largest cities. In this article, we focus on the game-
theoretic aspects of these systems by formulating and
analyzing five versions of an optimal stopping prob-
lem that make different assumptions regarding the
topology of the radiation sensor deployment and the
amount of information available to the terrorist. As
explained in Section 5, we embed our results into a
broader model (which allows for optimizing over the
number of sensors deployed) in a companion arti-
cle (Wein & Atkinson, 2007) to analyze the entire
detection-interdiction system; the goal of the compan-
ion article is to provide a rough-cut feasibility analysis
of such systems.

The detection model in Section 2 is an optimal
stopping problem on a finite two-dimensional lattice
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that has imperfect radiation sensors at some of its
nodes (e.g., highway exit ramps). The terrorist drives
a vehicle carrying a bomb from node (0, 0) toward a
target at node (N, N), and the damage from a deto-
nated bomb at node (m, n) is an increasing linear func-
tion of m + n; other topologies are possible, such as a
circular topology. Before entering each node, he de-
cides whether to proceed in the hope of getting closer
to the target, or to stop and detonate the bomb. If the
terrorist is detected at a node then he is immediately
interdicted and with a specified probability he suc-
cessfully detonates the bomb before being captured.
In Section 3, we analyze five different scenarios de-
pending on the topology of the sensor array (sensors
are either placed randomly or in an outer wall for-
mation) and the information known by the terrorist
(e.g., the detection probability of the sensors is known
or updated in a Bayesian manner). The main goal of
this analysis is to determine whether either the ran-
dom topology or the outer wall topology consistently
dominates the other. Numerical results for the five
scenarios are presented in Section 4 and concluding
remarks are offered in Section 5.

Network interdiction is an active field of study
within operations research; see Morton et al. (2007)
for a more thorough review of this literature than we
present here. Many of the early problems considered
maximizing an adversary’s shortest path, or minimiz-
ing an adversary’s maximum flow, through a determin-
istic network. Several authors (Wollmer, 1964; Wash-
burn & Wood, 1995; Pan et al., 2003), motivated by
military operations, or smuggling of nuclear materi-
als or drugs, allow the inspector to locate detectors
at certain arcs and permit the adversary to choose
a path through the network to maximize his prob-
ability of evading detection. Relative to these arti-
cles, our model makes the simplifying assumption that
the detection probability of sensors is independent
of location. While this assumption seems reasonable
in our context because the same technology is used
throughout the system, it may be violated if vehicle
speeds at different highway ramps (dictated by the
ramp curvature) and/or length of red lights at traffic
intersections differ appreciably. Our grid is also more
restrictive than the general networks considered in
the network interdiction literature, but it does allow
for closed-form solutions, which is helpful when em-
bedding the results in the model of Wein and Atkinson
(2007). On the other hand, our model is more com-
plex than those in the aforementioned articles in that
it considers the terrorist’s optimal stopping problem
and considers a variety of sensor array topologies and
informational structures. However, some recent net-

work interdiction studies consider uncertain network
topology (Hemmecke et al., 2003), interdictor’s un-
certainty about the smuggler’s origin-destination pair
(Morton et al., 2007), and different perceptions of the
two players about the network parameters (Morton
et al., 2007), while Bailey et al. (2006) models the ad-
versary’s problem as a Markov decision process. Fi-
nally, although using a much different model in a dif-
ferent setting—pedestrian suicide-bombers—Kaplan
and Kress (2005) is the only other study besides Wein
and Atkinson (2007) that we are aware of that ana-
lyzes a model that takes into account sensors, terrorist
behavior, and interdiction.

2. PROBLEM DESCRIPTION

The city is represented by a two-dimensional
square lattice, where the nodes are street intersec-
tions or highway entrance/exit ramps, and the edges
are road segments; it may also be possible to insert
sensors directly into the highway pavement, although
they would have to be engineered for durability. Im-
perfect sensors that are capable of detecting nuclear
or radiological material with a specified probability
are deployed at some of the nodes, and other nodes
may have phantom sensors, which are not functional
but are indistinguishable from real sensors from the
terrorist’s viewpoint; we refer to the collection of sen-
sors as an array. The terrorist starts at node (0, 0) and
travels toward node (N, N). The damage caused by
a bomb detonated at node (m, n) is assumed to be
a linear function of m + n (this symmetry allows us
to analyze the problem in one dimension rather than
two); because of the uncertainty in the exact nature
of the damage function, we carried out an analogous
study with a damage function that is exponential in
m + n, and compare the results from the linear and ex-
ponential functions in Section 4.4. The use of a linear
(or exponential) damage function is a gross simplifica-
tion. There are four main effects of a nuclear weapon:
shock and blast, thermal radiation, initial nuclear ra-
diation, and residual nuclear radiation (Glasstone &
Dolan, 1977). All four exposures are nonlinear func-
tions of distance (thermal radiation varies inversely
with distance squared, and radiation exposure varies
inversely with distance squared given scattering and
decreases exponentially with no scattering) and de-
pend greatly on the yield of the bomb. Moreover,
the dose-response effects and the population gradi-
ent are also nonlinear. Although the yield of a bomb
detonated by a terrorist is highly uncertain, the in-
stantaneously fatal effects are on the order of miles
(e.g., for the Hiroshima bomb) to tens of miles, and
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Table I. The Five Scenarios

Terrorist’s Knowledge Terrorist’s Knowledge
Scenario Topology of Sensor Array of Detection Probability

RK Random Known P(real sensor) Known
RB Random Bayesian P(real sensor) Bayesian
OKK Outer wall Observable wall Known
OKB Outer wall Observable wall Bayesian
OUB Outer wall Bayesian P(real sensor) Bayesian

the residual effects (which could also be eventually
fatal) are on the order of tens of miles. Although the
linear damage function with a 1-to-10 scale (see Equa-
tion (20)) allows policymakers to easily internalize our
results (by interpreting damage as relative distance),
we believe that our results would need to be combined
with detailed simulation models of the four effects of
a nuclear weapon (including dose-response models
and spatial population data) to provide comprehen-
sive input to policymakers; such an effort is beyond
the scope of this article.

At each node, the terrorist makes the decision of
either detonating the bomb at that node or moving
forward based on his estimate of the probability of
reaching the next node without being detected, which
depends on his perception of whether the next node
contains a real sensor and his belief about the de-
tection probability of the sensor. In this section, we
make no attempt to explicitly model the interdiction
process. This is done in a companion article (see Sec-
tion 5). Here, we simply assume that if the terrorist
is detected by the sensor at a certain node, he would
try to detonate the bomb at that node, and he would
succeed in doing so (before being killed or captured)
with a specified probability.

In Sections 3.1–3.5, we solve the terrorist’s op-
timal stopping problem under the five scenarios de-
scribed in Table I, which vary according to the topol-
ogy of the sensor array and the terrorist’s knowledge
about the array. The first two scenarios in Table I as-
sume a random topology, where each node contains
a real sensor with a certain probability, and phantom
sensors are placed at all other nodes. In scenario RK
(R = random, K = known), the terrorist knows the
probability that each node has a real sensor, but not
the actual location of the sensors (because each node
has either a real or a phantom sensor), and he also
knows the detection probability of the real sensors;
we do not investigate the scenario in which the ter-
rorist can see the randomly placed sensors (i.e., there
are no phantom sensors) because then the terrorist

can simply avoid the sensors if the density of real
sensors is not sufficiently high (by standard results in
percolation theory (Grimmett, 1999), the threshold
density is 0.5 in the asymptotic, large-network limit).
In scenario RB (R = random, B = Bayesian), the ter-
rorist knows neither the fraction of real sensors nor
the detection probability of real sensors, and updates
his probability of successfully traversing a node in a
Bayesian manner. The other three scenarios have an
outer wall topology, where the outermost layers of
nodes (i.e., nodes (m, n) such that m or n are near
0) are deployed with sensors that form a wall around
the periphery of the city. In scenario OKK (O = outer
wall, K = known topology, K = known probability),
the terrorist can observe the wall (i.e., there are no
phantom sensors) and knows the detection proba-
bility of the sensors. In scenario OKB (outer wall,
known, Bayesian), the terrorist can observe the wall
but updates the detection probability of the sensors in
a Bayesian fashion. Finally, in scenario OUB (outer
wall, unknown topology, Bayesian), the terrorist’s in-
formation is the same as in scenario RB: he cannot
observe the wall because of the presence of phantom
sensors and does not know the detection probability
of sensors, and he updates his probability of success-
fully traversing a node in a Bayesian manner.

In our view, scenarios RB and OUB possess the
most realistic informational structures in the case of
a mildly sophisticated terrorist, and their direct com-
parison allows us to determine the best (i.e., damage-
minimizing) array topology. Indeed, we view this
problem as a Stackelberg game (Gibbons, 1992): the
government is the leader and designs the sensor ar-
ray, and the terrorist, as the follower who cannot ob-
serve the array or the detection probability of sensors,
solves an optimal stopping problem with Bayesian up-
dating to maximize the expected damage. However,
the analysis of these five scenarios allows us not only
to solve this Stackelberg game, but also to assess the
value of phantom sensors in the outer wall topology,
and to compute the value to the terrorists of having
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prior information about the array topology and sen-
sor sensitivity. A sophisticated terrorist could conceiv-
ably gain this knowledge (at the risk of arousing the
government’s suspicion) by surveillance and by prob-
ing the network with legal shipments of radiological
materials prior to the actual attack. In a somewhat dif-
ferent setting, Bier (2007) discusses the effects of var-
ious informational assumptions in attacker-defender
games.

3. ANALYSIS OF THE OPTIMAL
STOPPING PROBLEM

The five scenarios described in Table I are ana-
lyzed in Sections 3.1–3.5.

3.1. RK Scenario: Random Array,
Known Passing Probability

In scenario RK, sensors are deployed randomly
and the terrorist has knowledge about the probabil-
ity that a sensor is real and the detection probabil-
ity of the real sensors. The square lattice has (N +
1)2 nodes indexed by m, n = 0, . . . , N. Because the
damage caused by a detonated bomb at node (m, n)
depends only on m + n, by the symmetry along the
diagonal line segment connecting the points (0, 0) and
(N, N), we can reduce the state of the system to the
one-dimensional quantity k = m + n, which can take
on the values 0, 1, . . . , 2N. Each node has a real sensor
with probability ps , and has a phantom sensor other-
wise, independent of all other nodes. Each real sensor
has a false negative rate f , i.e., its detection probabil-
ity is 1 − f , and we assume that detection at different
nodes are statistically independent events, which is
partially justified by the fact that neutron emissions
are very bursty (Hage & Cirafelli, 1985), background
noise can vary across time and space, and different
nodes have different sensors. To the extent that a
small amount of positive correlation may exist among
sensor results, we may be slightly overestimating the
efficacy of these multi-layer detection systems. False
positives are introduced in Wein and Atkinson (2007),
where we discuss the current capabilities of radiation
sensors, and the factors that influence the sensitivity
and specificity. If we let pu denote the probability that
a terrorist traverses a node without getting detected,
then

pu = 1 − ps + ps f. (1)

By our informational assumptions, the terrorist knows
the value of pu in this scenario.

In our model, the terrorist makes his detonate vs.
proceed decision just before he passes through the
sensor at each node. Suppose the terrorist manages
to arrive at (but not yet pass through) state k (i.e.,
node (m, n) where n + m = k) without being caught.
Now he has two choices. He can either detonate the
bomb at this node or move to the next node (at state
k + 1) in an attempt to increase the damage inflicted.
If he detonates the bomb, it causes damage ak + b,
where a > 0, b ≥ 0. If he instead proceeds through
state k, he avoids detection with probability pu, in
which case he travels to the next node at state k + 1.
If the terrorist is detected as he passes through state
k, then with probability q he detonates the bomb be-
fore being killed or captured and causes ak + b in
damage. Taken together, if V(k) is the optimal value
function (i.e., maximum expected damage if in state
k) then the terrorist’s optimal stopping problem can
be formulated as (e.g., Section 3.4 in Bertsekas, 1976)

V(k) = max

{
ak + b︸ ︷︷ ︸

detonate

, (1 − pu)q(ak + b)︸ ︷︷ ︸
proceed, detected

+ puV(k + 1)︸ ︷︷ ︸
proceed, undetected

}

for k = 0, . . . , 2N − 1, (2)

with boundary condition

V(2N) = 2aN + b. (3)

The following proposition (proved in Section A of the
Appendix), gives the solution to this problem.

PROPOSITION 1. The optimal solution to Equations
(2)–(3) is for the terrorist to proceed to state

k∗ = min

{
2N, max

{
0,

⌈
pu

(1 − pu)(1 − q)
− b

a

⌉}}

(4)

and detonate the bomb just before passing through k∗

if he has yet to be caught. The expected damage under
the optimal policy is

U = (1 − q)pk∗
u (ak∗ + b) + aqpu

1 − pk∗
u

1 − pu
+ qb. (5)

Proposition 1 is proved by showing that if there
is a state k in which it is optimal to proceed, then it
is also optimal to proceed in states 0, . . . , k − 1. We
then derive Equation (4) by solving the conditions in
which it is preferable to proceed in states 0, . . . , k∗ −
1 and to detonate in states k∗, . . . , 2N.
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3.2. RB Scenario: Random Array,
Bayesian Passing Probability

We now turn to scenario RB, in which the ter-
rorist updates his perception about pu as he moves
through the network. Since the event that the terror-
ist gets caught or not at any given node is a Bernoulli
random variable, the beta-binomial conjugate prior
is a natural choice for modeling the terrorist’s updat-
ing process. Furthermore, we assume that the terror-
ist has no prior information about the government’s
deployment of real sensors or the detection proba-
bility of real sensors, and uses the uniform distribu-
tion as an uninformative prior to represent his initial
perception. That is, just before passing through state
k, the terrorist has successfully passed through states
0, . . . , k − 1, and believes that E(pu) = k+ 1

k+ 2 (Berger,
1985). However, if the prior is informative with beta
distribution parameters α and β, then tractability
is maintained and E(pu) = β + k

α + β + k after successfully
passing states 0, . . . , k − 1 (see problem 5 on page 287
of Berger, 1985); we return to the informative prior
case at the end of this subsection.

The uninformative prior yields the optimal stop-
ping problem

V(k) = max
{

ak + b,
q

k + 2
(ak + b)

+ k + 1
k + 2

V(k + 1)
}

for k = 0, . . . , 2N − 1,

V(2N) = 2aN + b.

PROPOSITION 2. It is optimal for the terrorist to either
detonate the bomb in state 0 or to proceed to state 2N
and detonate it there.

The intuition behind Proposition 2, which is
proved in Section C of the Appendix, is that if the
terrorist decides to proceed in state 0 and the attempt
is successful, then the posterior probability of pu be-
comes stochastically larger, which gives the terrorist
an even stronger incentive to proceed in state 1, and
this argument holds as he proceeds toward the target.
We show in Section B of the Appendix that k∗ = 2N
if

b ≤
2N−1∑
i=0

q(ai + b)
(i + 1)(i + 2)

+ 2aN + b
2N + 1

, (6)

≈ 2Nq(b − 2a)
2N + 1

+ aq ln 4N + 2aN + b
2N + 1

. (7)

Isolating q in Equation (7) and using a second analyt-
ical approximation gives

q ≥
2N

(
b
a

− 1
)

(2N + 1) ln 4N + 2
b
a

N − 4N
, (8)

≈
b
a

− 1(
ln 4N + b

a
− 2

) for large N. (9)

By Equation (5), the expected damage under the
terrorist’s optimal policy is

U =




b if k∗ = 0;

(1 − q)p2N
u (2aN + b)

+ aqpu
1 − p2N

u

1 − pu
+ qb if k∗ = 2N,

(10)

where pu continues to represent the true probability
of passing through a node undetected.

In the more general case where the prior distribu-
tion is informative with parameters α and β, Propo-
sition 2 does not hold in general because to prove it
we would need to show that (generalizing inequalities
(C.3) and (C.5) in Section C of the Appendix)

2N − 1 + b
a

2N + b
a

≥ β + 2N − 1
α + β + 2N − 1 − qα

(11)

implies

2N − 2 + b
a

2N − 1 + b
a

≥ β + 2N − 2
α + β + 2N − 2 − qα

, (12)

but there are (α, β) pairs that violate Equations (11)–
(12). However, this more general case can be solved
using a generic O(N) dynamic programming algo-
rithm (see Section 4.5).

3.3. OKK Scenario: Outer Wall, Known Topology,
Known Detection Probability

In the OKK scenario, the terrorist observes the
precise location of the real sensors and knows these
sensors’ detection probability. Hence, he correctly
perceives that his passing probability is f at a node
with a real sensor and is 1 at all other nodes. In the
outer wall topology with K layers of sensors, i.e., with
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thickness K, real sensors are placed at all nodes (m, n)
such that min(m, n) ≤ K − 1. The terrorist, upon ob-
serving the wall, chooses a path through the wall that
only goes through nodes satisfying max(m, n) ≤ K,
so as to minimize the number of real sensors that are
confronted. The associated optimal stopping problem
with K layers of sensors is

V(k) = max{ak + b, q(1 − f )(ak + b)

+ f V(k + 1)} for k = 0, . . . , 2K − 1,

V(2K) = V(2N) = 2aN + b.

The solution to this optimal stopping problem is
derived in Section D of the Appendix. The optimal
stopping point is

k∗ = max

{
0,

⌈
f

(1 − f )(1 − q)
− b

a

⌉}

if
1 − q(1 − f )

f
≥

2N + b
a

2K − 1 + b
a

. (13)

If the inequality in Equation (13) is violated, then
it is preferable to proceed rather than detonate in state
2K − 1, and

V(2K − 2) = max{a(2K − 2) + b,

q(1 − f )(a(2K − 2) + b)

+ f [q(1 − f )(a(2K − 1) + b)

+ f (2aN + b)]}. (14)

If the optimal decision at each state is to proceed then
k∗ = 2N; however, if this is not the case, there exists a
state M such that the optimal decision is to detonate
in state M but the optimal decision is to proceed in
states M + 1 and beyond. Then the optimal stopping
point is

k∗ = min

{
M, max

{
0,

⌈
f

(1 − f )(1 − q)
− b

a

⌉}}
.

(15)

The expected damage under the optimal policy is
given by Equation (5) if k∗ < 2N. If k∗ = 2N, then
the expected damage is

U =
2K−1∑
i=0

(1 − f ) f i q(ai + b)

+
[

1 −
2K−1∑
i=0

(1 − f ) f i

]
(2aN + b),

= (2aN + b) f 2K + aqf
1 − f 2K

1 − f

+ qb − q(2aK + b) f 2K. (16)

3.4. OKB Scenario: Outer Wall, Known Topology,
Bayesian Detection Probability

In scenario OKB, the terrorist can see the outer
wall of real sensors, but does not know the false neg-
ative probability f of these sensors. As in Section 3.2,
the terrorist uses a beta-binomial conjugate pair with
an uninformative prior to update the likelihood that
he can pass through a node that has a real sensor.
Once inside the K layers of the outer wall, he knows
there are no sensors and that he can travel freely. The
optimal stopping formulation in this scenario is

V(k) = max
{

ak + b,
q

k + 2
(ak + b)

+ k + 1
k + 2

V(k + 1)
}

for k = 0, . . . , 2K − 1,

V(2K) = V(2N) = 2aN + b.

The analysis of this scenario closely mimics the
analysis in Section 3.2, and the details are omitted.
The optimal stopping point is either the first or last
node, i.e., Proposition 2 carries over to this scenario.
An analysis similar to Equations (6)–(7) implies that
k∗ = 2N if

b ≤
2K−1∑
i=0

q(ai + b)
(i + 1)(i + 2)

+ 2aN + b
2K + 1

,

≈ 2Kq(b − 2a)
2K + 1

+ aq ln 4K + 2aN + b
2K + 1

, (17)

which simplifies to

b
a

≤ q
1 − q

(
2K + 1

2K
ln 4K − 2

)
+ N

K(1 − q)
. (18)

In the case where K is small compared to N, i.e., the
wall is thin, inequality (18) is approximated by

K ≤ aN
b(1 − q)

, (19)

and the right-hand side of Equation (19) is likely to be
an upper bound on the true threshold. The expected
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damage is U = b if k∗ = 0 and is given by Equation
(16) if k∗ = 2N.

3.5. OUB Scenario: Outer Wall, Unknown
Topology, Bayesian Passing Probability

The terrorist’s optimal stopping problem in sce-
nario OUB is the same as that in Section 3.2: in both
cases, the terrorist has the same information about the
sensor array, and whether sensors are deployed ran-
domly or in an outer wall does not affect his optimal
stopping policy. However, the resulting damage is af-
fected by the array topology. In this case, the damage
is given by Equation (16), although the condition un-
der which this equation applies is given in Section 3.2.

4. COMPUTATIONAL STUDY OF THE
OPTIMAL STOPPING PROBLEM

The experimental design for our computational
study is described in Section 4.1, the optimal stopping
policies for the terrorist in the five scenarios are com-
puted and discussed in Section 4.2, and the scenarios
are compared in Section 4.3. A comparison of the re-
sults under linear vs. exponential damage appears in
Section 4.4, and a brief outline of how to extend our
analysis to more general damage functions and more
general sensor placements is provided in Section 4.5.

4.1. Experimental Design

The government’s decision variable is the prob-
ability that a node has a real sensor (ps) in the ran-
dom array topology, and the wall thickness (K) in the
outer wall topology. The remaining parameters in our
model are the network size (N), the damage param-
eters (a and b), the probability that the bomb will be
detonated during interdiction (q), and the false neg-
ative probability of the real sensors (f ). We consider
two networks: a large network with N = 50 and a
small network with N = 5; see Table II for a succinct
description of our experimental design. The network

Table II. The Experimental Design

Parameters Large Network Small Network

N 50 5
Number of nodes 2601 36
State space 0, . . . , 100 0, . . . , 10
Damage slope a 0.09 0.9
Damage intercept b 1 1
Detonation probability q 0.5, 0.9 0.5, 0.9

size relates to how ambitious the deployment is and
on the actual topology of a city. Cities that are laid out
on a grid, or contain a sprawl of highways, may have
a large value of N. Highway systems with very few
checkpoints (e.g., cities near waterways) would have
a small value of N. We set the damage parameters so
that the damage equals 1 in state 0 and 10 at the target
state 2N, i.e.,

b = 1, a = 9
2N

. (20)

A terrorist possessing a nuclear weapon would likely
be capable of detonating the bomb from the driver’s
seat with a remote detonation device. A suicide
bomber would only be stopped if he is killed or other-
wise physically prevented from detonating the device.
We consider two values of q, which are 0.5 and 0.9,
with the latter value probably being more practical
in the absence of persuasive intelligence information
that the truckdriver is a suicide bomber. As explained
in Section 5, the false negative probability of real sen-
sors depends on a variety of factors, and can essen-
tially vary from 0 to 1. Because the optimal stopping
probability strictly depends on f in only one of the
five scenarios, we need not specify a value for f at this
point. Hence, we consider four cases in Section 4.2:
large and small networks, and q = 0.5 and 0.9.

4.2. Calculation of Optimal Policies

In this subsection, the exact (i.e., not using the
approximations to simplify the conditions separating
k∗ = 0 from k∗ = 2N) optimal policies for the param-
eter values in Table II are summarized in Table III,
and are discussed and compared to our analytical
approximations.

RK Scenario. Proposition 1 implies that the optimal
policy in the RK scenario satisfies

k∗ =




0 if pu ≤ 1 − 1
12.1 − 11.1q

=
{

0.847 if q = 0.5;

0.526 if q = 0.9;

100 if pu ≥ 1 − 1
112 − 111q

=
{

0.982 if q = 0.5;

0.917 if q = 0.9;

(21)
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Table III. Summary of the Exact
Optimal Policies.

Scenario Detonation Probability q Large Network Small Network

RK 0.5 k∗ = 0 if pu ≤ 0.847 k∗ = 0 if pu ≤ 0.357
RK 0.5 k∗ = 2N if pu ≥ 0.982 k∗ = 2N if pu ≥ 0.835
RK 0.9 k∗ = 0 if pu ≤ 0.526 k∗ = 0 if pu ≤ 0.100
RK 0.9 k∗ = 2N if pu ≥ 0.917 k∗ = 2N if pu ≥ 0.503
RB k∗ = 2N if q ≥ 0.705 k∗ = 2N if q ≥ 0.048
OKK Figure 1 Figure 1
OKB 0.5 k∗ = 2N if K ≤ 10 k∗ = 2N
OKB 0.9 k∗ = 2N k∗ = 2N
OUB k∗ = 2N if q ≥ 0.705 k∗ = 2N if q ≥ 0.048

for the large network, and

k∗ =




0 if pu ≤ 1 − 1
2.1 − 1.1q

=
{

0.357 if q = 0.5;

0.100 if q = 0.9;

10 if pu ≥ 1 − 1
11.1 − 10.1q

=
{

0.835 if q = 0.5;

0.503 if q = 0.9;

(22)

for the small network. In Equations (21)–(22), k∗ ∈ (0,
2N) if pu is between the two threshold values. Hence,
a sufficiently small passing probability pu, which itself
depends on the probability ps a sensor is real and a
real sensor’s false-negative probability f , deters the
terrorist from proceeding to the target. As expected,
this deterrent is stronger (i.e., the pu threshold for k∗

=0 is larger) for larger networks (because the terrorist
has more sensors to traverse before getting close to
the target) and for smaller values of the detonation
probability q. The passing probability needs to be well
above 0.5 for the terrorist to proceed to the target in all
cases. Hence, the sensor array can be far from perfect
and still provide a deterrent in the RK scenario.

RB and OUB Scenarios. The optimal policy in the
RB and OUB scenarios (recall that they have iden-
tical solutions) does not depend on the true value of
pu, which is assumed unknown in these Bayesian sce-
narios. In these scenarios, the optimal policy can be
described as a threshold in terms of q: the terrorist
proceeds to the target as long as the detonation prob-
ability is sufficiently high. Hence, there is no need to
explicitly consider the specific values of q = 0.5 and
0.9. By Equation (9), the optimal policy in the RB
scenario is approximated by

k∗ = 2N if q ≥
b
a

− 1

ln 4N + b
a

− 2

=



0.701 for the large network;

0.053 for the small network. (23)

These threshold values are very close to the corre-
sponding exact values in Table III. As in the RK sce-
nario, the large network provides a stronger deterrent
than the small network in Equation (23).

OKK Scenario. Among the five scenarios, the opti-
mal solution is most complicated in the OKK sce-
nario, in which the terrorist has full information about
the array and the detection probability. There are
two cases to consider, depending on whether the
inequality in Equation (13) is satisfied or violated.
Moreover, it is possible for k∗ ∈ (0, 2N) as in the
RK scenario, and this stopping point is a function
of q and f . Fig. 1 shows the indifference curves for
k∗ = 0 and k∗ = 2N in terms of f and K, in four cases
(two values of q and for the large and small networks).
In Fig. 1, the terrorist chooses k∗ = 0 (i.e., detonates
the bomb at the first node) in the region in the graph
below the bottom curve, chooses k∗ = 2N (i.e., moves
to the last node and detonates) in the region above
the top curve, and chooses an intermediate node k∗ ∈
(0, 2N) in the region between the two curves in Fig. 1.
These plots show that the terrorist is more apt to pro-
ceed to the target when interdiction is ineffective (q is
large), the detection probability is low (f is large), or
the network is small. Three of these four curves (all
except the q = 0.9, small network case) are highly con-
cave, implying that the wall thickness initially plays a
strong deterrent role, but has decreasing value once
the wall reaches a certain thickness (approximately
K = 10 layers in the large network).
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Fig. 1. The terrorist’s optimal stopping point (k∗) in the OKK scenario, as a function of the false negative probability f and the wall thickness
K, for the case of (a) detonation probability q = 0.5 and a large network (N = 50); (b) q = 0.9, N = 50; (c) q = 0.5 and a small network
(N = 5); (d) q = 0.9, N = 5.

OKB Scenario. In scenario OKB, the Bayesian as-
sumption implies that the optimal policy does not de-
pend on f , and hence can be expressed as a threshold
with respect to K (i.e., if the wall is sufficiently thin
then proceed to the target) for the two values of q.
The numerical solution to approximation (18) coin-
cides with the exact values in Table III, and the thin-
wall approximation (19) applied to the large network
yields

k∗ = 2N if K ≤ 4.5
1 − q

=
{

9 if q = 0.5;

45 if q = 0.9.

(24)

These two values are close to the true values in Ta-
ble III, confirming the accuracy of the thin-wall ap-
proximation. Hence, when the detonation probability
q = 0.9, the wall does not deter the terrorist.

4.3. Comparison of Scenarios

In this subsection, we compare the expected dam-
age that is incurred across scenarios. We investigate
five comparisons: RK vs. OKK and RB vs. OUB al-
low us to compare the two array topologies under
two different informational structures, OKB vs. OUB
permits us to assess the value of phantom sensors in
the outer wall design, and RK vs. RB and OKK vs.
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Table IV. Percentage Increase in (Linear
and Exponential) Damage of the First

Scenario Relative to the Second
Scenario, Averaged Over 30 Cases

Linear Damage Exponential Damage

Scenario Focus of Large Small Large Small
Comparison Comparison Network Network Network Network

RK vs. OKK Network topology 15.66% 21.28% 3.79% 7.67%
RB vs. OUB Network topology 11.80% 27.19% 4.75% 13.62%
OKB vs. OUB Phantom sensors 28.95% 0.00% 28.90% 0.00%
RK vs. RB Probing network 24.27% 5.85% 15.71% 7.86%
OKK vs. OKB Probing network 6.66% 15.07% 6.00% 19.69%

OKB allow us to quantify the value to the terrorist of
probing the network before the attack for the two ar-
ray topologies. For each of these five comparisons and
for large and small networks, we report in Table IV
the percentage difference in expected damage aver-
aged over 30 scenarios, which are the six possibilities
of f = 0.1, 0.5, 0.9 and q = 0.5, 0.9, multiplied times
either five values of K (1, 12, 24, 36, 48 for large net-
works and 1, 2, 3, 4, 5 for small networks) if two outer
wall scenarios are being compared or five values of ps

(0.1, 0.3, 0.5, 0.7, 0.9) if two random array scenarios
are being compared.

To meaningfully compare a random array sce-
nario to an outer wall scenario, we need the average
number of real sensors deployed in each scenario to be
the same. For an outer wall with K layers, the fraction
of nodes that have real sensors is 2K(N+1)−K2

(N+1)2 . Hence,
we substitute this quantity in for ps in Equation (1) to
compute the passing probability pu at a node in the
corresponding random array scenario, which gives

pu = (N − K + 1)2 + f K[2(N + 1) − K]
(N + 1)2

. (25)

When comparing a random array scenario to an outer
wall scenario, we choose the five values of K in the
previous paragraph and then use Equation (25) to
find the corresponding values of pu for the random
array scenario.

RK Scenario vs. OKK Scenario. Fig. 2 compares the
expected damage of the RK and OKK scenarios as
a function of the outer wall thickness for large net-
works. Corresponding plots for small networks are
qualitatively similar and appear in Fig. 3. Fig. 2 shows
that neither of these two array designs always dom-
inates the other under this informational structure,
in which the terrorist, by probing the network prior
to the attack, knows the detection probability of the
real sensors, the fraction of sensors in the random ar-
ray that are real, and the precise location of the outer
wall. From the government’s point of view, the outer

wall is preferable (i.e., there is less damage) when the
real sensors are reasonably effective (detection prob-
ability equals 0.5 or 0.9). When the sensors have a
detection probability of 0.1, the random array usually
(but not when q = 0.9) leads to less damage if the sen-
sor deployment is sparse (small K and pu), and the
outer wall is preferable if the sensor deployment is
dense. The intuition is that if the real sensors have a
high detection probability, then the terrorist will have
a hard time penetrating an outer wall (even if it is rel-
atively thin), whereas he may make some progress—
and hence cause more damage—in a random array
design. Conversely, an outer wall of sensors with a
low detection probability does not provide much of a
deterrent to the terrorist. When the detection proba-
bility is 0.9, the sensor array is a good deterrent regard-
less of the value of q, and the two outer wall scenarios
give the same expected damage.

Computational experience shows, as expected,
that better interdiction (smaller q) leads to less ex-
pected damage in Fig. 2. The expected damage can
be maintained at a relatively low level (e.g., 3 on the
1-to-10 scale) even with low interdiction (q = 0.9) and
poor sensors (f = 0.9), by compensating with a high
density of real sensors (Fig. 2c).

RB Scenario vs. OUB Scenario. Fig. 4 is similar to
Fig. 2, but assumes that the terrorist cannot observe
the array topology or the detection probability of the
sensors. For the large network in Fig. 4, the outer wall
leads to less damage than the random array when
q = 0.9 (poor interdiction). When q = 0.5 in the large
network, the terrorist always detonates the bomb at
the first node in both scenarios, resulting in the same
damage. In these two information-poor scenarios, a
larger q does not necessarily lead to more damage
(particularly when the detection probability is high),
because the bolder play induced by larger q may lead
the terrorist further away from the optimal decision
under perfect information (which is to detonate at the
first node if the detection probability is high). In the
small network (see the corresponding plots in Fig. 5),
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Fig. 2. RK scenario vs. OKK scenario for large networks when the false negative probability is (a) f = 0.1, (b) f = 0.5, (c) f = 0.9.

larger q leads to more damage because the terrorist
always moves toward the target, and the outer wall is
preferable in five of the six cases: in the ( f = 0.9, q =
0.5) case, the random array leads to less damage for
sufficiently sparse deployments.

Overall, the outer wall topology is better than the
random topology for the great majority of scenarios
in Figs. 2–5, and in the few cases in which the random
topology is preferred, neither design is very effective.
Consequently, we consider an outer wall topology in
Wein and Atkinson (2007).

OKB Scenario vs. OUB Scenario. The average in-
crease in damage as a result of the knowledge of
the outer wall location is 28.95% for large networks

(Table IV). However, for small networks, the terrorist
proceeds to the target regardless of whether or not he
can observe the outer wall, which generates the zeroes
in Table IV. In some scenarios, knowledge of the wall,
coupled with the uncertainty in the detection proba-
bility, causes the terrorist to play too boldly, thereby
decreasing the damage. Phantom sensors appear to
enhance the performance of the outer wall design for
large networks.

RK Scenario vs. RB Scenario. Table III shows that
the terrorist is more apt to proceed to the target in
the RB scenario than in the RK scenario. The average
damage in the RK scenario is 24.27% higher than in
the RB scenario for large networks, and 5.85% larger
for small networks (Table IV). These increases reflect



364 Atkinson, Cao, and Wein

Fig. 3. RK scenario vs. OKK scenario for small networks when the false negative probability is (a) f = 0.1, (b) f = 0.5, (c) f = 0.9.

the fact that the terrorist’s optimal Bayesian decision
leads to less damage due to lack of information.

OKK Scenario vs. OKB Scenario. As in the previ-
ous paragraph, Table III reveals that the terrorist’s
decisions are erroneously bold under the Bayesian
informational structure, where in this case he is un-
certain about the detection probability of the real
sensors. The average damage in the OKK scenario
is 6.66% higher than in the OKB scenario for large
networks and 15.07% larger for small networks (Ta-
ble IV). These damage increases are smaller for large
networks and larger for small networks than in the
analogous comparison under the random array design
(i.e., RK vs. RB). In both comparisons, it is worthwhile
for terrorists to probe the network prior to the attack.

Finally, although some of the percentage in-
creases in Table IV are modest, Figs. 2 and 4 reveal
that the percentage increase can be very large for
sparse deployments; i.e., the similarity of performance
in the scenarios under dense deployments suppresses
the numbers in Table IV.

4.4. Comparison of Linear and Exponential Damage

Because of the questionable appropriateness of a
linear damage function, we performed a parallel anal-
ysis (and derived closed-form solutions to the optimal
stopping problem) to that in Sections 3–4.3, but using
an exponential damage function eak+b. In our numer-
ical study, we set b = 0 and a = ln 10

2N , so as to maintain



Optimal Stopping Analysis of a Radiation Detection System 365

Fig. 4. RB scenario vs. OUB scenario for large networks when the false negative probability is (a) f = 0.1, (b) f = 0.5, (c) f = 0.9.

the 1-to-10 scale implied by Equation (20). Due to
space considerations, we briefly summarize our re-
sults here but do not show any of the mathematical
or computational details of the exponential damage
case.

Overall, the results in the exponential damage
case are qualitatively similar to the results in the lin-
ear damage case (Table IV), which suggests that our
results are somewhat robust. Here, we mention the
minor differences in the two cases. In the RK sce-
nario, the relatively slow increase in damage as the
terrorist proceeds through the network in the expo-
nential case causes him to forgo an intermediate stop-
ping point. He is more likely to proceed all the way
to the target in the exponential case, but is also more

likely to detonate the bomb at (0, 0). In the RB and
OUB scenarios, the thresholds in the exponential case
are slightly larger than the thresholds in the linear
case, meaning that the terrorist is bolder (i.e., more
likely to proceed to the target) in the linear case. In
contrast to the RB and OUB scenarios, in the OKB
scenario the terrorist moves more boldly in the expo-
nential case than the linear case because of the lower
damage gradient in the exponential case as the terror-
ist moves through the outer wall. Unlike the solution
to the linear case in Fig. 1, the solution in the OKK
scenario in the exponential case is either k∗ = 0 or
2N.

The RK vs. OKK comparison is similar for the
linear and exponential cases, although the average
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Fig. 5. RB scenario vs. OUB scenario for small networks when the false negative probability is (a) f = 0.1, (b) f = 0.5, (c) f = 0.9.

percentage difference in damage is 5.73% in the
exponential case compared with 18.47% for the lin-
ear case. In the exponential case, the random array is
preferable to the outer wall in a large network with
poor interdiction (q = 0.9) and poor detection ( f =
0.9), and in a small network with poor detection. The
RB vs. OUB comparison is similar for both cases, but
the difference in damage between the two designs is
smaller (9.19% vs. 19.50%) in the exponential case
than the linear case. The policies in the OKB and
OUB scenarios coincide in the small network case
under exponential damage (as they do in linear case),
and the terrorist’s knowledge of the outer wall pro-
vides a similar large increase in damage in the large
network for the exponential and the linear case. The

RK vs. RB and OKK vs. OKB comparisons are similar
under both damage functions.

4.5. General Damage Functions and Linear
Sensor Locations

Thus far, to maintain analytical tractability, we
have idealized the problem to linear or exponential
damage functions and equally spaced sensors. In this
subsection, we briefly outline how to formulate and
solve more general problems in which the damage
g(x) is a function of distance to the city center and
sensors can be placed at generic locations (x0, . . . , xn),
where 0 ≤ x0 < x1 < · · ·< xn and the target is located at
xn. For the RK scenario, the optimal stopping problem
generalizes to
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V(xk) = max{g(xn − xk), (1 − pu)qg(xn − xk)

+ puV(xk+1)} for k = 0, . . . , n − 1,

V(xn) = g(0). (26)

Generalizing the other four scenarios requires chang-
ing V(k) to V(xk), ak + b to g(xn − xk), and the
boundary condition to g(0). While it may no longer
be possible to compute analytical conditions for the
decision variable k∗ as we did in Section 3, solving this
optimal stopping problem numerically is a straight-
forward application of dynamic programming tech-
niques (e.g., Section 3.4 in Bertsekas, 1976). Using
backward induction we can solve for V(xn−1), then
for V(xn−2), and continuing until we compute V(x0).
The optimal stopping node is then given by

k∗ = min{k : V(xk) = g(xn − xk)}, (27)

and the expected damage for the RK scenario is

U =
k∗−1∑
i=0

pi
u(1 − pu)qg(xn − xi )

+
(

1 −
k∗−1∑
i=0

pi
u(1 − pu)

)
g(xn − xk∗), (28)

with similar modifications made to the expected dam-
age expressions for the other scenarios. Implementing
this algorithm only involves a few lines of code, and is
an O(n) algorithm because we only need to compute
the value function V(xk) at n states and each calcu-
lation involves a constant number of operations and
comparisons. Computing k∗ requires no extra effort
and the damage in Equation (28) also only requires
O(n) computations. Thus, the total number of calcu-
lations to determine the optimal policy and expected
damage scales linearly with the number of sensor
locations.

Other extensions, such as the informed priors de-
scribed in Section 3.2 or node-dependent detection
and interdiction probabilities, can be handled using
this backward induction technique.

5. CONCLUDING REMARKS

Our analysis generates three main results, which
are conditional on rapid interdiction because the
model implicitly assumes instantaneous interdiction.
The first result is that the sensor array can deter a ter-
rorist if it is densely deployed (i.e., a large network
with many sensors) and interdiction is effective (i.e,
the detonation probability is q = 0.5). In our view,
this result should not be taken too literally because

it is very difficult to understand a terrorist’s mindset
(we assume he is risk-neutral, although he could be
risk-seeking or risk-averse), and it seems likely, par-
ticularly if he has a device to detonate the bomb from
the driver’s seat, that he views the probability q as
very large. Hence, we believe it is prudent to assume
that a terrorist will proceed directly to the target, al-
though the possibility of deploying a dense set of fake
(i.e., inoperable) sensors in addition to the real sen-
sors should be investigated.

Our other two main results, in contrast, are quite
robust: (i) even if interdiction and the sensors are inef-
fective (i.e., q = 0.9 and the false negative probability
f = 0.9), the mean damage can be maintained at a rel-
atively moderate level (i.e., 3 on a 1-to-10 scale) by a
dense deployment, and (ii) the outer wall leads to less
mean damage than the random deployment except in
the case of poor sensors ( f = 0.9) and sparse deploy-
ment, in which case neither deployment is effective.

The random topology and the outer wall topol-
ogy studied here are not the only possibilities. We also
tested (results not shown) a nonrandom strategy that
deploys sensors at a fixed proportion of nodes in a
uniform manner (e.g., locate the sensors in a checker-
board pattern if half of the nodes have real sensors)
and found that it led to slightly less damage (although
essentially the same damage for large networks) than
the random topology if the terrorist knows the sen-
sors’ detection probability but does not have any in-
formation about the sensor layout. This nonrandom
strategy generated more damage than the outer wall
topology, which also lacks randomness. Although ran-
dom strategies are more difficult for a terrorist to
probe, overall our analysis suggests that it is prefer-
able to use an outer wall to keep the terrorist as far
from the target as possible. This led us to consider an
interdiction model with an outer wall design in Wein
and Atkinson (2007).

Perhaps the biggest shortcoming of the model is
that the spatial grid is merely a caricature of an actual
highway system. While a spatial lattice seems appro-
priate for crudely comparing an outer wall and a ran-
dom deployment, as we have done here, more refined
insights would require the modeling of a specific city’s
highway structure (see Section 4.5 for a start in this
direction), or possibly the modeling of highways by
a percolation process (Grimmett, 1999), which would
be much more difficult to analyze. Other worthwhile
generalizations to our model, alluded to earlier, are
noninstantaneous interdiction (which is pursued in
Wein & Atkinson, 2007 via a spatial queueing model),
terrorists that are risk-averse or risk-seeking, and a
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detailed simulation analysis of the four effects of a
nuclear weapon, which could perhaps be summarized
by the generic damage function g(x) in Section 4.5.

In a companion article (Wein & Atkinson, 2007),
we embed three models into a Stackelberg game: a
sensor model first developed in Wein et al. (2006),
which determines the detection probability and the
false positive probability as a function of the neutron
threshold level of the sensor, the OKB scenario of the
optimal stopping problem analyzed here, and a spatial
interdiction model that incorporates scarce interdic-
tion resources (i.e., it is a spatial queueing model). In
this game, the U.S. government (as the leader) chooses
the neutron threshold level, the thickness of the wall
sensors (i.e., how many sensors the terrorist needs to
pass through), and the number of interdiction vehi-
cles to minimize the expected damage inflicted by a
terrorist subject to a budget constraint on the annual
cost of sensors and interdiction vehicles, and the ter-
rorist (as the follower) observes the wall thickness and
solves the optimal stopping problem with the goal of
maximizing the expected damage.
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APPENDIX

Sections A and C contain the proofs of Proposi-
tions 1 and 2, respectively. The analysis of scenarios
RB and OKK appear in Sections B and D, respec-
tively.

APPENDIX A: PROOF OF PROPOSITION 1

We first show that if it is optimal to proceed in
state 2N − 1 then it is optimal to proceed in states
k = 0, . . . , 2N − 2, in which case k∗ = 2N, i.e., it is
optimal for the terrorist to proceed directly to his goal.
By Equation (2), if it is optimal to proceed in state
2N − 1 then

a(2N − 1) + b ≤ (1 − pu)q[a(2N − 1) + b]

+ pu(2aN + b), (A.1)

and at state 2N − 2,

V(2N − 2) = max{a(2N − 2) + b,

(1 − pu)q[a(2N − 2) + b]

+ pu[(1 − pu)q[a(2N − 1) + b]

+pu(2aN + b)]}. (A.2)

By writing the last term in (A.1) as pu[a(2N − 1) +
a + b], we can reexpress this inequality as

2N − 1 + b
a

≤ pu

(1 − pu)(1 − q)
. (A.3)

Turning to the decision at state 2N − 2, we have

2N − 2 + b
a

< 2N − 1 + b
a

,

≤ pu

(1 − pu)(1 − q)
by (A.3), (A.4)

and the approach used to derive Equation (A.3) from
Equation (A.1) can be applied to reexpress Equation
(A.4) as

a(2N − 2) + b ≤ (1 − pu)q[a(2N − 2) + b]

+ pu[a(2N − 1) + b]. (A.5)

But by Equation (A.1) we know that the right side of
Equation (A.5) satisfies

(1 − pu)q[a(2N − 2) + b] + pu[a(2N − 1) + b]

≤ (1 − pu)q[a(2N − 2) + b] + pu[(1 − pu)

× q[a(2N − 1) + b] + pu(2aN + b)], (A.6)

and Equations (A.5) and (A.6) imply that the second
term inside the maximum of Equation (A.2) domi-
nates the first term, i.e., it is optimal to proceed in state
2N − 2. This same backward induction argument ap-
plies to states 2N − 3, . . . , 0. Hence, if Equation (A.1)
holds then it is optimal to proceed to state 2N.

Now assume that Equation (A.1) is violated, so
that it is preferable to detonate rather than proceed
in state 2N − 1. Furthermore, suppose that the det-
onation term (i.e., the first term in the maximum in
Equation (2) in the main text) also dominates in states
k∗, . . . , 2N − 2, but that the proceed term dominates
in state k∗ − 1. Then by an argument identical to that
in the previous paragraph, it follows that the proceed
term also dominates in states 0, . . . , k∗ − 2, and hence
it is optimal to proceed to state k∗ and detonate the
bomb there. Under this set of assumptions, we have
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ak∗ + b > (1 − pu)q(ak∗ + b) + pu[a(k∗ + 1) + b],

(A.7)
a(k∗ − 1) + b < (1 − pu)q[a(k∗ − 1) + b)

+ pu[ak∗ + b]. (A.8)

Equation (4) in the main text follows from inequalities
(A.7) and (A.8) and the restriction that k∗ needs to
be between 0 and 2N.

Before the terrorist reaches state k∗, he may be
detected as he passes through states 0, . . . , k∗ − 1, in
which case he successfully detonates the bomb with
probability q. Hence, the expected damage under the
optimal policy is

U =
k∗−1∑
i=0

pi
u(1 − pu)q(ai + b)

+
(

1 −
k∗−1∑
i=0

pi
u(1 − pu)

)
(ak∗ + b), (A.9)

which simplifies to Equation (5) in the main text.

APPENDIX B: ANALYSIS OF THE
RB SCENARIO

Because the perceived pu is no longer constant
in the Bayesian case, the proof of Proposition 2 in
Section C does not yield a necessary and sufficient
condition for k∗ = 0 or 2N. Rather, it first shows that
if it is optimal to detonate in state 2N − 1 then it is
optimal to detonate in all earlier states, which implies
that k∗ = 0. But if it is optimal to proceed in state
2N − 1, it is no longer true that it is optimal to proceed
in states 0, . . . , 2N − 2. However, in this case, we can
still show that if there exists a state k < 2N − 1 where
it is preferable to detonate then it is preferable to
detonate in states 0, . . . , k − 1, implying k∗ = 0, and if
there does not exist such a state then k∗ = 2N.

Therefore, the proof of Proposition 2 implies that
the necessary and sufficient condition for k∗ = 2N is
that it is optimal to proceed in state 0, given that it is
optimal to proceed in states 1, . . . , 2N − 1. That is, if
we let V̄(k) denote the value function in state k if it is
optimal to proceed in states k + 1, . . . , 2N − 1, then
k∗ = 2N if V̄(0) ≥ b and k∗ = 0 otherwise. We have
by induction that

V̄(k) = q
k + 2

(ak + b) +
2N−1∑
i=k+1

q(k + 1)(ai + b))
(i + 1)(i + 2)

+ (k + 1)(2aN + b)
2N + 1

,

and hence k∗ = 2N if

b ≤
2N−1∑
i=0

q(ai + b)
(i + 1)(i + 2)

+ 2aN + b
2N + 1

, (B.1)

=
2N−1∑
i=0

q(b − 2a)
(i + 1)(i + 2)

+ aq
2N−1∑
i=0

(i + 2)
(i + 1)(i + 2)

+ 2aN + b
2N + 1

,

= 2Nq(b − 2a)
2N + 1

+ aq
2N∑
i=1

1
i

+ 2aN + b
2N + 1

,

≈ 2Nq(b − 2a)
2N + 1

+ aq ln 4N + 2aN + b
2N + 1

. (B.2)

The approximation in Equation (B.2) comes from the
approximation

∑2N
i=1

1
i ≈ ln 2N + γ ≈ ln 2N + ln 2 ≈

ln 4N, where γ ≈ 0.5772 is the Euler-Mascheroni con-
stant.

APPENDIX C: PROOF OF PROPOSITION 2

We first prove that if it is preferable to detonate
the bomb in state 2N − 1 then it is preferable to det-
onate in states 0, . . . , 2N − 2, implying that k∗ = 0. If
it is preferable to detonate in state 2N − 1 then

a(2N − 1) + b ≥ q
2N + 1

[a(2N − 1) + b]

+ 2N
2N + 1

(2aN + b), (C.1)

V(2N − 2) = max
{

a(2N − 2) + b,
q

2N
[a(2N − 2) + b]

+ 2N − 1
2N

[a(2N − 1) + b]
}

. (C.2)

Manipulating Equation (C.1) yields

a(2N − 1) + b ≥ q
2N + 1

[a(2N − 1) + b]

+ 2N
2N + 1

(2aN + b),

⇐⇒ 2N + 1 − q
2N + 1

[a(2N − 1) + b] ≥ 2N
2N + 1

(2aN + b),

⇐⇒
2N − 1 + b

a

2N + b
a

≥ 2N
2N + 1 − q

. (C.3)

Now we combine the inequality(
2N − 1 + b

a

)
+ 2N + 1 − q < 2N + b

a
+ 2N

(C.4)
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with Equation (C.3) to get

(
2N − 1 + b

a

)
(2N + 1 − q) −

(
2N − 1 + b

a

)
+ 2N

+ 1 − q >

(
2N + b

a

)
2N −

(
2N + b

a
+ 2N

)
,

⇐⇒
(

2N − 1 + b
a

− 1
)

(2N + 1 − q − 1)

>

(
2N + b

a
− 1

)
(2N − 1),

⇐⇒
2N − 2 + b

a

2N − 1 + b
a

>
2N − 1
2N − q

, (C.5)

⇐⇒ a(2N − 2) + b >
q

2N
[a(2N − 2) + b]

+ 2N − 1
2N

[a(2N − 1) + b], (C.6)

which implies that it is preferable to detonate in state
2N − 2 in (C.2). Applying the same analysis to states
2N − 3, . . . , 0 shows that it is preferable to detonate
in every state, so that k∗ = 0.

If condition (C.1), and hence Equation (C.3), is
violated, then inequality (C.4) is in the wrong direc-
tion to derive an inequality in the opposite direction of
Equation (C.6). That is, it is not true that if it is prefer-
able to proceed in state 2N − 1 then it is preferable
to proceed in states 0, . . . , 2N − 2. However, suppose
that for some k it is optimal to proceed in states k +
1, . . . , 2N − 1, and optimal to detonate in state k, i.e.,

ak + b ≥ q
k + 2

(ak + b) + k + 1
k + 2

V(k + 1)

>
q

k + 2
(ak + b) + k + 1

k + 2
[a(k + 1) + b],

V(k − 1) = max
{

a(k − 1) + b,
q

k + 1
[a(k − 1) + b]

+ k
k + 1

(ak + b)
}

.

Using an analysis similar to Equations (C.4) and (C.6),
we can show that it is preferable to detonate in states
0, . . . , k − 1, and hence the optimal stopping point is
still k∗ = 0. But if it is preferable to proceed in every
state from 0 to 2N − 1, then the optimal stopping point
is k∗ = 2N.

APPENDIX D: ANALYSIS OF THE
OKK SCENARIO

We begin by deriving Equation (13) in the main
text. At state 2K − 1 of the OKK optimal stopping
problem, we have

V(2K − 1) = max{a(2K − 1) + b,

q(1 − f )(a(2K − 1) + b) + f (2aN + b)}.
If the first term is larger, i.e.,

1 − q(1 − f )
f

≥
2N + b

a

2K − 1 + b
a

, (D.1)

then at state 2K − 2,

V(2K − 2) = max{a(2K − 2) + b, q(1 − f )

× (a(2K − 2) + b) + f (a(2K − 1) + b)}.
In this case, the optimal stopping problem is identical
in structure to the one in scenario RK (see Equa-
tion (A.2)), which implies that the optimal stopping
point is

k∗ = min

{
2K − 1, max

{
0,

⌈
f

(1 − f )(1 − q)
− b

a

⌉}}
.

Moreover, condition (D.1) implies that

2K − 1 > max

{
0,

⌈
f

(1 − f )(1 − q)
− b

a

⌉}
,

and hence

k∗ = max

{
0,

⌈
f

(1 − f )(1 − q)
− b

a

⌉}

if Equation (D.1) is satisfied. (D.2)

We now derive Equation (15) in the main text.
If Equation (D.1) is violated, then it is preferable to
proceed rather than detonate in state 2K − 1, and

V(2K − 2) = max{a(2K − 2) + b,

q(1 − f )(a(2K − 2) + b) + f [q(1 − f )

× (a(2K − 1) + b) + f (2aN + b)]}.
(D.3)

Suppose there is a state M such that the optimal deci-
sion is to detonate in state M but the optimal decision
is to proceed in states M + 1 and beyond. It follows
that
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V(M + 1) = max

{
a(M + 1) + b,

q(1 − f )
2K−1∑

i=M+1

(ai + b) f i−M−1

+ f 2K−M−1(2aN + b)]

}
(D.4)

and the second term inside the maximum is larger
than the first one, whereas in state M,

V(M) = max

{
aM + b, q(1 − f )

2K−1∑
i=M

(ai + b) f i−M

+ f 2K−M(2aN + b)]

}
(D.5)

and the first term inside the maximum dominates the
second one. Under conditions (D.4)–(D.5), the prob-
lem reduces again to the one in scenario RK, for at
state M − 1,

V(M − 1) = max{a(M − 1) + b,

q(1 − f )(a(M − 1) + b) + f (aM + b)}.
Therefore, Proposition 1 implies that the optimal
stopping point is

k∗ = min

{
M, max

{
0,

⌈
f

(1 − f )(1 − q)
− b

a

⌉}}

if Equation (D.1) is violated. (D.6)
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