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Abstract
A common network security approach is to create a De-Militarized Zone (DMZ)

comprising two layers of network defense. The DMZ structure provides an extra

layer of security between the sensitive information in a network (e.g., research

and development files) and the component of the network that must interface with

the general internet (e.g., the mail server). We consider a cyber-attack on a DMZ

network where both attacker and defender have limited resources and capabili-

ties to attack and defend, respectively. We study two optimization problems and

one game-theoretic problem. Given that the attacker (defender) knows the poten-

tial capabilities of the defender (attacker) in the two layers, we obtain the optimal

allocation of resources for the attacker (defender). The two-optimization problems

are not symmetrical. Absent any knowledge regarding the allocation of the adver-

sary’s resources, we solve a game-theoretic problem and obtain some operational

insights regarding the effect of combat (e.g., cyber) capabilities and their optimal

allocation.
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1 INTRODUCTION

Layered defense is a key concept in computer networks

defense (IBM, 2023). Specifically, a common network secu-

rity approach is to utilize a De-Militarized Zone (DMZ)

structure (Dadheech et al., 2018; Rababah et al., 2018), which

generates two layers of network defense. The DMZ itself con-

sists of the portions of the enterprise network between the

internet and the enterprise’s intranet (Dadheech et al., 2018).

The intranet contains sensitive files such as personal informa-

tion, financial records, and research and development plans.

The DMZ contains the parts of the network that must inter-

face with the internet (e.g., mail server). We focus on the

two defensive layers of the DMZ that border the DMZ – the

outer layer facing the internet, and the inner layer facing the

intranet. A cyber-attacker, attempting to penetrate a computer

network of the enterprise and access its intranet, needs to suc-

cessfully breach these two layers of defense, without being

detected by the defender, in order to successfully achieve its

attacking goal. More generally, we consider a conflict sit-

uation in which the attacker (Red) proceeds to sequentially

infiltrate the defender’s (Blue) two layers of defense.

Red prevails as the victor if it wins both battles. Otherwise,

Blue wins. This conflict situation is modeled as a one-on-two

combat model, where a single Red attacker engages two lay-

ers of Blue defense and Red must sequentially beat them

both in order to win. Given that Red (Blue) has limited

attack (defense) resources, the question is how should the

two sides allocate their respective resources, where Red wants

to maximize the probability of a win, and Blue wishes to

minimize it.

While we focus on the cyber domain as our motivating case

in this paper, our model is also appropriate for other scenarios.

For example, physical locations (e.g., military bases, banks,

museums) protected by layers of security that require different

skills and/or tools to penetrate. In the museum scenario the

attacker would need to first breach the exterior defenses of the

museum (e.g., locks, patrollers), and then would need to avoid

detection by guards, cameras, and sensors in the interior of

the museum to successfully steal the artifact.

Mathematical models representing related armed conflicts

comprise a large body of research that ranges between
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aggregate combat models, that is, Lanchester models, which

address large-formation engagements (Kress, 2009; Lanch-

ester, 1916; Taylor, 1983; Washburn & Kress, 2009), and

more detailed probabilistic models, that is, stochastic duels,

which describe small-scale engagements (Friedman, 1977;

Gafarian & Ancker Jr., 1984; Kress, 1987; Kress, 1992;

Williams & Ancker Jr., 1963).

Colonel Blotto games consider a similar scenario where

Red and Blue allocate resources across multiple battlefields

(Blackett, 1958; Roberson, 2006; Shubik & Weber, 1981).

While both our model and Blotto games are resource allo-

cation models, there are several important differences. In

contrast to our setting, most Blotto models assume the bat-

tlefields are homogenous and contested simultaneously, Red

and Blue have equivalent capabilities, and the resources are

discrete (e.g., military units). While Blotto assumes all bat-

tlefields are engaged in parallel, our setting can be viewed

as a series-system from Red’s perspective as Red must suc-

ceed in both layers to prevail. (Bier et al., 2005) examines

game theoretic interactions in a series-system, however there

are many differences between our scenario and the one in

(Bier et al., 2005). For example, only Red would choose their

resource allocation under the framework in (Bier et al., 2005),

whereas both Red and Blue make resource allocation deci-

sions in our model.

Our setting is similar to missile defense where Red fires

at Blue targets and Blue responds by launching a series

of salvos to intercept the Red threats (Hughes Jr, 1995;

Karasakal, 2008; Orlin, 1987). Red must sequentially pen-

etrate several layers of Blue defense (interception salvos at

long, medium, short range) to hit the targets. Blue only needs

to successfully intercept Red in one of the salvos. While

most of the work in missile defense is prescriptive, there are

some descriptive models that analyze the number of threats

that survive each layer (Armstrong, 2005; Armstrong, 2014;

Menq et al., 2007; Nunn et al., 1982). There are some cru-

cial differences between our setting and the missile defense

scenario. The missile defense problem is usually analyzed

from Blue’s perspective. While Red may have a decision

about which targets to fire at, Red does not allocate resources

across the defensive layers. Furthermore, most work in mis-

sile defense examines the weapon target assignment (WTA)

problem, which considers the assignment of specific intercep-

tors against specific threats at specific ranges (Cai et al., 2006;

Davis et al., 2017; Jaiswal et al., 1993). The WTA is a nonlin-

ear integer optimization problem, and most research focuses

on developing heuristics (Kline et al., 2019). Our model is

much simpler and provides insight into the resource alloca-

tion of both Red and Blue across the two layers, and how that

allocation varies with key input parameters.

Traditionally, combat models have been applied to vio-

lent “kinetic” conflicts where attacks are conducted with

lethal weapons and attrition is physical. However, combat

models can also be applied to “soft kill” settings, such as

cyber-warfare, where missiles and bullets are replaced by

lines of code. In such situations, attrition is manifested in loss

of valuable information and/or disruptions in the operation of

the computer network. Cyber warfare has drawn the attention

of the research community (Musman et al., 2011; Rid, 2012),

and in particular, its potential impact on kinetic warfare

(Hartmann & Steup, 2013; Yildiz, 2014). Moreover, the

operations-research community has addressed cyber-related

modeling challenges by combining combat and epidemic

models (Draeger & Ottl, 2018; Schramm & Gaver, 2013;

Yildiz, 2014), analyzing the development and employment

of munitions against exploits (Schramm et al., 2014), and

applying exploration-exploitation models (Kronzilber, 2017).

A recent survey paper (Enayaty-Ahangar et al., 2020) reviews

studies that apply optimization to the design of cyber infras-

tructure.

Game-theoretic approaches for modeling cyber warfare are

reported in (Rao et al., 2016) and references therein. The

setting in (Colbert et al., 2020) is similar to ours with two

layers of a cyber defense. However, the model in (Colbert

et al., 2020) considers many discrete attack and defense

options with varying costs, which leads to an intractable

non-zero-sum game that is analyzed with various heuristics.

In contrast, we derive analytic results that provide insight into

how the inputs drive the results.

Unlike most of the work reported in the cyber-warfare lit-

erature, we explicitly address the layered-defense feature that

characterizes many computer networks in the form of the

DMZ structure. The question we study in this paper is that

of resource allocation, both by the Red and Blue, between

the two layers of defense. This study also naturally leads to

game-theoretic situations.

The rest of the paper is organized as follows. We describe

the model in Section 2 and present results in Sections 3–5

for various scenarios where either Blue or Red or both

make resource allocation decisions. Sections 6 and 7 con-

sider extensions to the model where Red does not need to

necessarily penetrate both layers to accomplish its objectives.

Section 8 expands the game theoretic results from Section 5

to N layers.

2 MODEL

We base our model on the fundamental stochastic duel, where

one Blue shooter and one Red shooter repeatedly fire at each

other until one is hit (Williams & Ancker Jr., 1963). There

are many extensions to the basic model, including multiple

shooters and tactical considerations (Friedman, 1977; Gafar-

ian & Ancker Jr., 1984; Kress, 1987; Kress, 1992). In most

duel models the time until a shooter scores a successful hit fol-

lows an exponential distribution (Friedman, 1977; Gafarian

& Ancker Jr., 1984; Kress, 1987). Our problem can be viewed

as two sequential duels – one at each layer. Red, the attacker,

wins if it successfully penetrates the two layers. Blue wins if

it detects Red in one of the layers. As in the duel literature,
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576 ATKINSON and KRESS

we model Red’s penetration time and Blue’s detection time as

exponential random variables.

Although we later on somewhat relax it, we assume that

the two layers of defense require different attack and defense

capabilities. For example, hacking layer 1 requires a much

different set of skills than hacking layer 2. Therefore, both

Red and Blue have to decide how to allocate their respective

cyber-resources (money and manpower) between the two lay-

ers. Obviously, Red must allocate non-zero resources to each

one of the two layers in order to have a non-zero probability

to win.

If Blue and Red allocate xi and yi of their respective

resources to attack and defend layer i, i = 1, 2,, respectively,

then the expected time until Red penetrates layer i and Blue

detects the attack on that layer, are
1

𝜇iyi
and

1

𝜆ixi
, respectively.

We normalize resources to unitless parameters such that 0 ≤

xi, yi ≤ 1, i = 1, 2. and x1+x2 = y1+y2 = 1. The last condition

simply says that not utilizing all of one’s resources is a domi-

nated strategy. Otherwise, Red (Blue) should simply allocate

the remaining resources to either layer and the probability of

successful penetration will increase (decrease).

The parameters 𝜆i and 𝜇i incorporate two factors. The first

is Blue’s (Red’s) intrinsic, or “per-capita”, effectiveness (e.g.,

cyber qualifications and experience of individual computer

analysts) in layer i. As mentioned earlier, the characteristics

of the two layers might be very different, and so Blue could

be effective at defending one layer but not the other (e.g.,

𝜆1 ≫ 𝜆2). The second factor is the overall level of resources

(e.g., number of computer analysts) at Blue’s (Red’s) disposal.

Recall that we normalize resources to lie within [0,1] and so

while xi = 0.5 and yi = 0.5 are equivalent from a relative

standpoint, they might differ substantially from an absolute

perspective. The units of 𝜆i and 𝜇i are 1/(time) since the

resources xi and yi are unitless.
1

𝜆i
(

1

𝜇i
) is the expected amount

of time for Blue (Red) to defend (penetrate) layer i when Blue

(Red) utilizes all available resources in layer i. In this paper,

we only consider linear functions of resources: 𝜆ixi and 𝜇iyi.

We leave for future work analysis of non-linear relationships

between resources and the rates.

Recall that the engagement is asymmetric: Red must suc-

cessfully defeat both layers to achieve its objective, whereas

Blue only needs to detect Red in one layer. Assuming the

layers are independent, the probability Red wins is:

P[Red wins] =
𝜇1y1

𝜇1y1 + 𝜆1x1

×
𝜇2y2

𝜇2y2 + 𝜆2x2

=
𝛼1y1

𝛼1y1 + x1

×
𝛼2y2

𝛼2y2 + x2

(1)

where 𝛼i ≡
𝜇i

𝜆i
is the Red-Blue effectiveness ratio at layer

i, i = 1, 2. Recall from the discussion above that the 𝛼i ratio

incorporates both the quality and quantity aspects of the two

adversaries. Note also that if yi = 0, in some layer, then

P[Red wins] = 0 regardless of what Blue does.

Recall we assume the two layers of defense require differ-

ent types of resources (e.g., cyber skills or tools). However,

this may not always be the case; cyber personnel who success-

fully hack layer 1 may be able to also hack layer 2. Although

we primarily focus on the situation where resources cannot

be reused (x1 + x2 = 1, y1 + y2 = 1), we will show some

numerical examples where one side, say Blue, can fully reuse

its resources (e.g., x1 = x2 = 1).

We first consider one-sided situations in Sections 3 and 4

where we fix yi (xi) and optimize xi (yi) and then study a

simultaneous game in Section 5. We conclude this section by

presenting the model parameters in Table 1.

3 BLUE’S DEFENSE ALLOCATION

In this section we assume Red’s allocation is fixed to y1 and y2,

and Blue knows the values of 𝜇1y1 and 𝜇2y2. Blue optimizes

TABLE 1 Model parameters.

Symbol Range Description

𝜆i (0,∞) Blue defensive effectiveness in layer i

𝜇i (0,∞) Red offensive effectiveness in layer i

𝛼i (0,∞) 𝛼i ≡
𝜇i

𝜆i
: Red-Blue effectiveness ratio at layer i

C (0,∞) C ≡ 𝛼
1

𝛼
2

: the effectiveness ratio in layer 1 relative to layer 2

D (0, 1) Partial reward for Red when Red stops after layer 1 (Section 6 only)

q (0, 1) Probability Red wins immediately after penetrating layer 1 (Section 7 only)

xi [0, 1] Blue’s defensive resource allocation in layer i

yi [0, 1] Red’s offensive resource allocation in layer i

x [0, 1] When x appears without a subscript, it is Blue’s allocation in layer 1. In this case Blue allocates

1 − x to layer 2

y [0, 1] Red’s allocation in layer 1. In this case Red allocates 1 − y to layer 2

b (x; y1, y2) [0, 1] Red win-probability when Blue allocates x in layer 1 and (1 − x) in layer 2 and Red allocates yi
to layer i (Section 3 only)

r (y; x1, x2) [0, 1] Red win-probability when Blue allocates xi to layer i and Red allocates y in layer 1 and (1 − y)
in layer 2 (Section 4 only)

g(x, y) [0, 1] Red win-probability when Blue allocates x in layer 1 and (1 − x) in layer 2 and Red allocates y
in layer 1 and (1 − y) in layer 2 (Section 5 only)
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ATKINSON and KRESS 577

the allocation x to layer 1, which determines the allocation

1 − x to layer 2, such that its detection and threat-elimination

rates are 𝜆1x and 𝜆2(1 − x) for layers 1 and 2, respectively.

We first rewrite the Red win-probability in (1) to highlight the

functional dependence on x:

P[Red wins] ≡ b (x; y1, y2) =
𝛼1y1

𝛼1y1 + x
×

𝛼2y2

𝛼2y2 + (1 − x)
(2)

Blue wishes to minimize b (x; y1, y2) subject to x ∈ [0, 1].
This is equivalent to minimizing log b (x; y1, y2):

log b (x; y1, y2) = log 𝛼1y1 − log(𝛼1y1 + x)
+ log 𝛼2y2 − log(𝛼2y2 + (1 − x)) . (3)

It is easily seen that log b (x; y1, y2) is convex in x. Set-

ting the derivative of log b(x) to 0 yields the unconstrained

minimizer of b (x; y1, y2):

x̂ =
𝛼2y2 − 𝛼1y1 + 1

2
. (4)

Note that there are boundary conditions for x̂ that are

affected by the effectiveness ratios 𝛼i, i = 1, 2. Intuitively,

Blue should concentrate its resources where it has a bet-

ter chance of detecting Red. Specifically, if 𝛼1y1 ≥ 1 +
𝛼2y2, then Blue should invest all its resources in protecting

layer 2. Conversely, if 𝛼2y2 ≥ 1 + 𝛼1y1, then Blue should

only focus on layer 1. When 𝛼1y1 and 𝛼2y2 are more simi-

lar (−1 < 𝛼2y2 − 𝛼1y1 < 1) the interior solution x̂ given

by (4) is optimal, and Blue allocates resources to both lay-

ers. We summarize Blue’s optimal allocation in the following

proposition:

Proposition 1. Blue’s optimal defense alloca-
tion for layer 1 is

x∗ = min(max(̂x, 0), 1). (5)

where x̂ is defined by (4).

The constrained minimizer x∗ in Proposition 1 follows by

combining the unconstrained minimizer x̂ with the convexity

of log b (x; y1, y2).
We conclude this section by examining the worst case sce-

nario for Blue, when Red is able to reuse all of its resources

allocated to layer 1 in layer 2, that is, y1 = y2 = 1. As

discussed in Section 2, this could occur if Red is able to

use the same personnel or tools to hack both layers. We

do not have data to estimate the parameters – they are typ-

ically classified – however, fortunately, we only need the

relative quantities 𝛼i, which should be easier to estimate com-

pared to individual parameters. Arguably, 𝛼1 ≥ 𝛼2; as Red

penetrates deeper into the network, it becomes more vulner-

able to Blue’s detection capabilities. Figure 1 presents the

optimal allocation x∗ for Blue, as a function of 𝛼1 for sev-

eral values of C ≡
𝛼

1

𝛼
2

. The parameter ranges we consider

in Figure 1 and the rest of the paper correspond to mod-

erate settings where Blue and Red have similar capabilities

(i.e., 𝛼i do not assume extreme values) and one layer is not

FIGURE 1 Blue’s optimal allocation at layer 1, x∗, as a function of 𝛼1 for

several values of C ≡ 𝛼1

𝛼2

. Red is able to reuse all its resources from layer 1

in layer 2: y1 = y2 = 1.

significantly more difficult to penetrate than the other (i.e., 𝛼1

and 𝛼2 have the same magnitude). For small values of 𝛼1 the

optimal allocation x∗ is the unconstrained minimizer x̂, which

by inspection of (4) is just a line with an intercept of
1

2
and

a slope of
1

2

(
1

C
− 1

)
. Notice, as trivially observed from (4),

that if the two layers have equal effectiveness ratios (C = 1),

Blue should equally split its resources between the two layers,

regardless of the actual value of the effectiveness ratio 𝛼1. As

C increases (i.e., the effectiveness ratio in layer 1 increases

compared to layer 2), the fraction of Blue’s resources directed

to layer 1 decreases. For a given C > 1, as 𝛼1 increases (i.e.,

Red becomes more effective compared to Blue in layer 1)

x∗ decreases to the point where Blue should abandon layer 1

and put all of its resources in layer 2 (e.g., when C = 5 and

𝛼1 ≥ 1.25).
As mentioned above, it is most likely that C ≥ 1. The case

C < 1 is presented in the plot just as a reference.

4 RED’S ATTACK ALLOCATION

We now assume that Blue’s allocation is fixed at x1 and x2

and Red optimizes its resource allocation while knowing the

values of 𝜆1x1 and 𝜆2x2. Red optimizes y to layer 1 and 1 − y
to layer 2. Thus, Red’s problem is to choose y that maximizes

P[Red wins] ≡ r (y; x1, x2) =
𝛼1y

𝛼1y + x1

×
𝛼2(1 − y)

𝛼2(1 − y) + x2

. (6)

Equation (6) is a special case of (1). Note that r (0; x1, x2) =
r (1; x1, x2) = 0 for any x1, x2 ∈ [0, 1], whereas r (y; x1, x2) >
0 for any 0 < y < 1. Hence unlike Blue, who might

optimally concentrate all of its resources only in one layer

(see Section 3), Red must allocate positive effort to each

layer because otherwise P[Red wins] = 0. Thus, the optimal

allocation must lie in the interior: y∗ ∈ (0, 1). The following

proposition presents the optimal allocation.
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578 ATKINSON and KRESS

FIGURE 2 Red’s optimal allocation at layer 1, y∗, as a function of 𝛼1 for

several values of C ≡ 𝛼1

𝛼2

. Blue is able to reuse all its resources from layer 1

in layer 2: x1 = x2 = 1.

Proposition 2. Red’s optimal attack allocation
to layer 1 is

y∗ =
−x1 (𝛼2 + x2) +

√
x1x2 (𝛼1 + x1) (𝛼2 + x2)

𝛼1x2 − 𝛼2x1

for 𝛼1

x1

≠
𝛼2

x2

(7)

When the denominator of (7) is 0
(
𝛼

1

x
1

= 𝛼
2

x
2

),
y∗ = 0.5.

The proof for Proposition 2 proceeds in a similar fashion to

the logic in Section 3 for Blue’s defense allocation. We show

that r (y; x1, x2) is a concave function of y and y∗ in (7) satisfies

the first order condition. Full details of the proof for Propo-

sition 2 appears in Appendix B.2 of the Online Supporting

Information.

As with Figure 1, Figure 2 displays the optimal resource

allocation y∗ for Red as a function of 𝛼1 for six values of

C ≡
𝛼

1

𝛼
2

. Similarly to Figure 1, we assume a worst case

for Red where Blue can fully reuse its resources in layer 2:

x1 = x2 = 1. In the special case when the two layers are

equal in terms of effectiveness ratios (C = 1), the optimal

allocation is to equally split the resources between the two

layers. Also, notice from Figure 2 that, unlike the case for

Blue in Figure 1, Red’s resource allocation is quite insensitive

to both the effectiveness ratios 𝛼i and the relative effective-

ness between the two layers C. As observed above, Red has

to engage in both layers to succeed, but Figure 2 shows that

Red’s level of engagement in the two layers is close to parity,

unless both 𝛼1 and C are very large.

5 SIMULTANEOUS ALLOCATION

In the previous two sections we assume that Blue (Red) allo-

cates its finite resource against a fixed Red (Blue) allocation.

Suppose now that both sides choose how to allocate their

limited resources between the two layers simultaneously. As

in Sections 3 and 4, we assume that resources in layer 1 can-

not be reused in layer 2: x1 + x2 = y1 + y2 = 1. Hence Blue

(Red) only needs to choose its allocation x (y) in layer 1, with

the remaining 1 − x (1 − y) going to layer 2. Both Blue and

Red know the effectiveness ratios 𝛼1, 𝛼2, but do not know the

allocation of effort (y, x) in the opposite side. In this case,

Equation (1) can be written as

P[Red wins] ≡ g(x, y) =
𝛼1y

𝛼1y + x
×

𝛼2(1 − y)
𝛼2(1 − y) + (1 − x)

. (8)

Red wishes to maximize g(x, y) while Blue wants to min-

imize it. Examining the second derivative of g(x, y) reveals

that g(x, y) is a strictly convex function of x for a fixed y,

and strictly concave function of y for a fixed x. Therefore,

we have a concave-convex game, which implies g(x, y) has a

saddle point, which is the solution of the allocation game of

the cyber resources.

Proposition 3. The unique solution of the simul-
taneous zero-sum allocation game between Red
and Blue is

x∗ = y∗ = 1

1 + 𝛼
1
+1

𝛼
2
+1

(9)

The value of the game – the probability that Red
wins – is

v∗ = 𝛼1

𝛼1 + 1
× 𝛼2

𝛼2 + 1
. (10)

Because we have a concave-convex game, we just need to

verify that (x∗, y∗) in (9) satisfies the first order conditions.

The complete proof of Proposition 3 appears in Appendix B.3

of the Online Supporting Information.

Figure 3 shows the layer 1 resource allocation for both Blue

and Red. As in the one-sided cases, we see that if the effec-

tiveness ratios are the same in both layers (C = 1) then the

allocation is equal in the two layers, regardless of the actual

FIGURE 3 Blue and Red’s optimal allocation at layer 1 as a function of 𝛼1

for several values of C ≡ 𝛼1

𝛼2

.
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ATKINSON and KRESS 579

value of the ratio 𝛼1. When the effectiveness ratio tilts, as

one would expect, toward Blue at the second layer (i.e., C
increases), the allocation of resources also tilts toward layer

2, albeit in moderate manner, as shown in Figure 3. The mini-

mum fraction of resources Red (and Blue) must put in layer 1

is
1

1+C
(when C > 1). Even if 𝛼1 >> 𝛼2 Red must still allocate

some resources to layer 1 to penetrate it.

6 PARTIAL REWARD FOR RED

Thus far we assume a binary situation: either Red successfully

penetrates undetected the two defense layers of Blue, in which

case Red is the winner, or Red is intercepted by Blue, either

in layer 1 or layer 2, and Blue is the winner. Now suppose that

Red can choose to stop after penetrating layer 1 and collect

some partial reward D < 1. For example, a hacker can stop

after penetrating the DMZ and just download email messages.

If Red decides to continue to layer 2 after successfully pene-

trating layer 1, Red will collect a reward of 1 if not intercepted

by Blue in layer 2. Red receives a reward of 0 if Blue inter-

cepts Red in either layer. That is, Red forfeits the D collected

in layer 1 if Red continues to layer 2 and Blue intercepts Red

at layer 2. So, the question here is regarding Red’s stopping

rule: shall Red stop after penetrating layer 1 or should Red

continue to layer 2. Now in addition to Red and Blue choos-

ing their resource allocations, Red must also choose whether

to stop after layer 1. More specifically, we consider the simul-

taneous game situation where Blue decides on the value of

x, and Red chooses both the value of y and whether to stop

after layer 1 or proceed to layer 2. We use the nomenclature

“choose layer 1” or “choose layer 2” to denote Red’s options

for its stop/continue decision.

Define fi(x, y) as the game payoff (Red expected reward)

if Red chooses layer i with allocation y and Blue uses

allocation x.

f1(x, y) ≡
𝛼1y

𝛼1y + x
D (11)

f2(x, y) ≡
𝛼1y

𝛼1y + x
𝛼2(1 − y)

𝛼2(1 − y) + (1 − x)
(12)

For a small value of D, Red gains little benefit from stop-

ping after layer 1 and thus Red chooses layer 2; therefore the

solution is the same as in Proposition 3. For larger values of

D, Red plays a mixed strategy; with some probability Red

only attacks layer 1 and obviously puts all its resources in that

layer. Otherwise, Red plans to attack layer 2 too and allocates

resources to both layers.

Proposition 4. If

D <

𝛼2

𝛼2 + 1
× 𝛼1 + 𝛼2 + 1

𝛼1 + 𝛼2 + 2
(13)

then the solution of the game is the same as
in Proposition 3. That is, Red chooses layer 2
and the resource allocation between the two lay-
ers will be the same for Red and Blue as in

Equation (9). Otherwise, Red plays a mixed strat-
egy across two options:

• With probability p∗ Red chooses to allocate
all of its resources to layer 1 (y = 1).

• With probability 1 − p∗ Red chooses layer 2
and only allocates a fraction y∗ to layer 1.

Blue uses a pure strategy and allocates x∗ to
layer 1. The triple (x∗, y∗, p∗) satisfies the follow-
ing simultaneous equations

y =
−x (𝛼2 + (1 − x)) +

√
x(1 − x) (𝛼1 + x) (𝛼2 + (1 − x))

𝛼1(1 − x) − 𝛼2x
(14)

p =
𝛼2y(1 − y)(𝛼1 + x)2 ((𝛼1y + x) − (𝛼2(1 − y) + (1 − x)))

𝛼2y(1 − y)(𝛼1 + x)2 ((𝛼1y + x) − (𝛼2(1 − y) + (1 − x)))
+ D(𝛼1y + x)2(𝛼2(1 − y) + (1 − x))2

(15)

D (𝛼1y + x) (𝛼2(1 − y) + (1 − x)) = 𝛼2y(1 − y) (𝛼1 + x) (16)

The proof of Proposition 4 appears in Appendix A of the

Online Supporting Information. Equation (14) determines

Red’s best allocation y when choosing layer 2 if Blue allocates

x. Equation (15) dictates Blue’s best response to Red mixing

with probability p and allocating y when Red chooses layer

2. Equation (16) equalizes the payoff between choosing layer

1 and layer 2 (f1 (x∗, 1) = f2 (x∗, y∗)), which allows for a Red

mixed strategy to be optimal.

The threshold for D in (13) that determines whether Red

solely chooses layer 2 is driven primarily by 𝛼2. When Red is

very effective in layer 2 (large 𝛼2), then Red will attempt to

penetrate layer 2 unless D is close to 1. For smaller values of

𝛼2, Red is more likely to be satisfied with collecting D and

stopping at layer 1.

While there is no closed form solution for (x∗, y∗, p∗)
in (14)–(16), solving for these three parameters numeri-

cally is very straightforward as we only need to perform a

grid-search over x, which fully determines the solutions for

y and p via (14)–(15). We describe the grid-search approach

in Appendix A.2.1 of the Online Supporting Information.

Figure 4 plots (x∗, y∗, p∗) from (14) to (16) versus D for dif-

ferent values of 𝛼1 and 𝛼2. The curves are flat when D is less

than the threshold in (13) and the solution is given by Proposi-

tion 3. As D increases, layer 1 becomes more enticing for Red

as there is little marginal benefit to risking layer 2. However,

as Proposition 4 reveals, Red never fully commits to layer 1

for D < 1. Figure 4 illustrates that, while theoretically Red

never fully commits to layer 1 with certainty, practically, Red

(and Blue) do put all the effort into layer 1 as D → 1 since

x∗, y∗, p∗ → 1.

x∗ and y∗ no longer equal each other once D increases

beyond the threshold specified in (13). x∗ more quickly
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580 ATKINSON and KRESS

FIGURE 4 Blue (x∗) and Red’s (y∗, p∗) optimal strategy as a function of D for several combinations of (𝛼1, 𝛼2).

increases to 1 than y∗. This occurs partly because x∗ needs to

account for Blue’s response to Red choosing either layer 1 or

layer 2, whereas y∗ is the solution conditioned on Red choos-

ing layer 2. Red also shifts its focus to layer 1 via its mixing

probability p∗ as D increases. x∗ increases more quickly also

because of the asymmetric nature of the engagement: Blue

only needs to intercept in one layer, whereas Red needs to suc-

ceed in both, so Red cannot be as aggressive shifting toward

layer 1.

7 EARLY VICTORY

We consider here a similar situation to the one described

in Section 6. Instead of partial reward D, we assume that

there is a probability q that Red wins – it attains its attack

goals – immediately after penetrating layer 1. In that case,

Red does not need to proceed to layer 2, in which a suc-

cessful attack guarantees a win. In the cyber DMZ scenario

this could occur if a critical file, targeted by Red, is mistak-

enly moved by Blue into the DMZ. Such a situation could

occur, for example, when an individual needs to work at

home and emails themselves the critical file; once the file

is on the email server, Red can gain access to it without

penetrating layer 2. For the museum scenario, Red’s tar-

get artifact has been moved to a less secure location in

the museum for cleaning. This early victory setting rep-

resents Red getting lucky and only needing to exploit the

outermost layer to win. For arbitrary Blue allocation (x1, x2)

and Red allocation (y1, y2) the Red win-probability in (1)

generalizes to:

P[Red wins] =
𝛼1y1

𝛼1y1 + x1

(
q + (1 − q)

𝛼2y2

𝛼2y2 + x2

)
(17)

The term outside the parentheses is the probability Red is

successful in layer 1; Red still must penetrate layer 1 to win.

If Red succeeds in layer 1, then with probability q Red wins,

otherwise Red proceeds to layer 2 and must succeed in layer

2 to win. We assume that q is a fixed constant; future work

could examine the situation where Red or Blue could modify

q via resource allocation.

We extend the results from Sections 3–5 in the following

three subsections.

7.1 Blue’s defense problem

Given fixed Red allocation (y1, y2), Blue’s problem is to

minimize

P[Red wins] =
𝛼1y1

𝛼1y1 + x

(
q + (1 − q)

𝛼2y2

𝛼2y2 + (1 − x)

)

(18)

Define:

x̃ =
q + 𝛼2y2 −

√
𝛼2y2(1 − q) (q (1 + 𝛼1y1) + 𝛼2y2)

q
. (19)

Proposition 5. Blue’s optimal defense alloca-
tion for layer 1 is

x∗ = min(max(̃x, 0), 1). (20)

where x̃ is defined by (19).

The proof of Proposition 5 appears in Appendix B.1of the

Online Supporting Information.

7.2 Red’s attack problem

Given fixed Blue allocation (x1, x2), Red’s problem is to

maximize

P[Red wins] =
𝛼1y

𝛼1y + x1

(
q + (1 − q)

𝛼2(1 − y)
𝛼2(1 − y) + x2

)

(21)

Define:

ỹ =

𝛼2x1 (𝛼2 + x2)
−
√
𝛼2x1x2 (𝛼2 + x2) (1 − q) (𝛼1x2q + (𝛼1 + x1) 𝛼2)

𝛼2 (𝛼2x1 − 𝛼1x2(1 − q))
.

(22)

In the special case when the denominator of (22) equals 0,

ỹ simplifies to

ỹ = 1

2
+

x2q
2𝛼2

(23)

Proposition 6. Red’s optimal attack allocation
for layer 1 is

y∗ = min(̃y, 1). (24)

where ỹ is defined by (22)–(23).
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ATKINSON and KRESS 581

The proof of Proposition 6 appears in Appendix B.2. In

the original formulation with q = 0 in Section 4, Red had

to optimally allocate a positive amount to both layers. With

q > 0, Red must still allocate a positive amount to layer 1.

However, if q is large enough, Red might neglect layer 2 and

allocate everything to layer 1 in the hope that the early victory

occurs.

7.3 Simultaneous allocation

When both Blue and Red optimally allocate their resources,

then Red and Blue are engaged in a zero-sum game: Red wants

to maximize and Blue minimize the following value

P[Red wins] =
𝛼1y

𝛼1y + x

(
q + (1 − q)

𝛼2(1 − y)
𝛼2(1 − y) + (1 − x)

)

(25)

Proposition 7. The unique solution of the simul-
taneous zero-sum game is

x∗ = y∗ =
q(𝛼2 + 1)2 + (1 − q)𝛼2 (𝛼2 + 1))

q(𝛼2 + 1)2 + (1 − q)𝛼2 (𝛼1 + 𝛼2 + 2)
(26)

The game value (Red win-probability) is:

v∗ = 𝛼1

𝛼1 + 1

(
q + (1 − q) 𝛼2

𝛼2 + 1

)
(27)

The proof of Proposition 7 appears in Appendix B.3 of the

Online Supporting Information. Figure 5 plots the relation-

ship between x∗, y∗ and q for different values of 𝛼1 and 𝛼2. x∗
and y∗ start at the solution given in Proposition 3 at q = 0 and

increase toward 1 in a near linear fashion. In particular, lin-

earity is attained in the case of parity, 𝛼1 = 𝛼2 = 1, where the

allocation is x∗ = y∗ = q+1

2
, and the probability Red wins is

v∗ = q+1

4
. More generally, the relationship is linear whenever

𝛼2 = 1

𝛼
1

, in which case x∗ = y∗ = q + (1 − q) 1

𝛼
1
+1

.

FIGURE 5 Blue and Red’s optimal allocation at layer 1 as a function of q
for several combinations of (𝛼1, 𝛼2).

8 N-LAYER SIMULTANEOUS GAME

In this section we extend the game theoretic model from

Section 5 to N layers. Blue allocates x = (x1, x2, … , xN) to

defend the layers and Red allocates y = (y1, y2, … , yN) to

attack. Equation (1) generalizes to

g(x, y) ≡ P[Red wins] =
N∏

i=1

𝛼iyi

𝛼iyi + xi
(28)

We assume resources cannot be reused across layers, that

is,
∑N

i=1
xi =

∑N
i=1

yi = 1, xi, yi ≥ 0. As in Section 5, the game

payoff in (28) generates a concave-convex game and yields

the following saddle point solution.

Proposition 8. The unique optimal solution of
the simultaneous zero-sum game is

x∗i = y∗i =
1

𝛼i+1∑N
j=1

1

𝛼j+1

(29)

The game value (Red win-probability) is:

v∗ =
N∏

i=1

𝛼i

𝛼i + 1
(30)

The proof of Proposition 8 appears in Appendix C of

the Online Supporting Information. Proposition 8 generalizes

Proposition 5.

If 𝛼i is large compared to 𝛼j, j ≠ i, then the optimal allo-

cation x∗i (y∗i ) is close to 0 for layer i. In this case Red is very

effective relative to Blue in layer i, and so Blue essentially

concedes layer i. If 𝛼i is small compared to 𝛼j, j ≠ i, (i.e., Blue

is very effective relative to Red in layer i), then the resource

allocations (x∗i , y
∗
i ) increase, but do not approach 1. Red has

to successfully penetrate every layer, so cannot allocate too

much to any one layer. For example, if 𝛼i ≈ 0, and 𝛼j ≡ 𝛼

are equal across the remaining layers j ≠ i, Equation (29)

simplifies to

x∗j = y∗j =

{
𝛼+1

N+𝛼
if j = i

1

N+𝛼
if j ≠ i

(31)

The resource allocation in layer i (where Red is ineffective)

is 𝛼+1 times greater than the allocation in any of the other lay-

ers. For example, with N = 7 layers and 𝛼 = 8, Blue and Red

allocate x∗i = y∗i = 0.6 to layer i, which leaves a substantial

amount of resources for the other layers.

9 CONCLUSION

As in any contest, resource allocation in cyber warfare may

determine the outcome of the confrontation. Specifically

when cyber resources, either offensive or defensive, are lim-

ited, actors engaged in cyber warfare must optimize the

deployment of those resources and/or modify their tactics. In

 15206750, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22106 by N

aval Postgraduate School, W
iley O

nline L
ibrary on [18/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



582 ATKINSON and KRESS

this paper, we formulate a base model where Red needs to

successfully penetrate both layers to achieve victory, whereas

Blue only needs to detect Red in one of the layers. We also

consider extensions where Red may achieve its objective

without penetrating both layers. In the situation where Blue

optimizes its allocation for a fixed Red allocation, Blue

focuses all its resources on the layer where it has the advan-

tage unless the relative effectiveness levels in the two layers

are similar. This contrasts with the scenario when Red is

the sole decision-maker against a fixed Blue allocation: Red

always allocates resources to both layers in a nearly equal

split that is fairly insensitive to the effectiveness of Red

and Blue. In the game where both Red and Blue allocate

resources, the allocation is symmetric and usually of mod-

erate value; the allocation only approaches 0 or 1 when the

two layers significantly differ in their effectiveness ratios.

When Red can obtain rewards for just penetrating layer 1,

both Red and Blue shift resources to layer 1. The models pre-

sented in this paper, combined with controlled Red Team/

Blue Team exercises and wargames, can guide cyber com-

bat developers in determining where would be the highest

“bang for the buck” in allocating resources in cyber attack

or defense.

There are many avenues for future research. One could

examine the notion of reusable resources more carefully.

For example, the resources could be split into three bins:

those that apply solely to layer 1, those that apply solely to

layer 2, and those that apply to both layer 1 and layer 2.

Presumably, the resources that specialize to only one layer

are more effective than the general resources that can be

used in both. Another possible extension is to generalize the

fixed early-victory parameter q in Section 7 to account for

resources that may affect its value. Red might be easier to

detect when Red allocates more resources to a layer. There-

fore, Blue’s overall defensive rate may depend upon yi in

addition to xi. Another related approach would have Red allo-

cate its resources between a speed component and a stealth

component of its attack plan. We assume complete informa-

tion framework where both sides know all parameters. Future

work could develop a Bayesian game for an incomplete infor-

mation setting. If Red repeatedly attacks, a learning compo-

nent could be incorporated where Blue and Red update their

beliefs about their opponent’s parameters after each round.

Cyber data sets exist (e.g., (Canadian Institute for Cyberse-

curity, 2023)), however most are meant to be benchmarks for

machine learning classifiers trying to detect cyber intrusions.

Future work could perform an empirical exercise to exam-

ine our model by collecting data via experiments or cyber

competitions.
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