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ABSTRACT 

Some government and corporate decisions are hierarchical in two dimensions: a hierarchy of 
alternatives and a corresponding hierarchy of decision-makers. An example of such a 
hierarchical decision process is the US Department of Defense (DoD) Program Objective 
Memorandum (POM), which sets development and acquisition plans within a given budget. At 
the top level of the hierarchy senior leaders set directions for those acquisition and development 
plans, directions that can be viewed as or translated into families of portfolios called henceforth 
Programs. Programs comprise projects that are the eventual fundable entities. Although 
“hierarchy” is a core feature in this decision-making setup, it does not comply with the well-
known Analytic Hierarchy Process where decision alternatives are at the bottom level of a 
hierarchy that also includes goals and criteria. In this paper, we propose a modeling framework 
of a different type where the hierarchy only comprises alternatives; the criteria, which may be 
alternatives-dependent, are “orthogonal” to the levels of the hierarchy. We develop a 
methodology for handling such a decision setup and demonstrate its application in reference to 
the POM. The Multi-Criteria-Decision-Analysis part of the methodology hinges on the widely 
used concept of least squares.  
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INTRODUCTION 

We consider a hierarchy of decision alternatives such as investment opportunities, development 

programs, and acquisition decisions, which are interconnected across the levels of the hierarchy. 

Specifically, an alternative at a certain mid-level of the hierarchy is associated with one or more 

alternatives at a higher level (“parent alternatives”) and with one or more alternatives at a lower 

level (“child alternatives”). Except for the lowest level, each alternative is associated with a 

subset of child alternatives, and except for the highest level, each alternative is associated with a 

subset, which may comprise a singleton, of parent alternatives. This hierarchical structure of 

decision alternatives is motivated by the Department of Defense (DoD) Planning, Programming, 

Budgeting and Execution (PPBE) process (Blickstein e al., 2016), and in particular, the Program 

Objective Memorandum (POM) (Paden, 2018). However, the proposed hierarchical structure can 

apply to decision processes in any large organization or corporation in which inter-connected 

strategic, operational, and tactical decisions are taken by different levels of leadership and 

management.  

While the term “hierarchy” here is shared with the well-known Analytic Hierarchy Process 

(AHP) (Saaty, 1990), the decision setting here is profoundly different; our hierarchy only 

comprises decision alternatives, typical to a certain level of decision making, which are 

interconnected and shaped into a hierarchy. In this hierarchy there are no criteria, sub-criteria, 

etc, which are part of the hierarchy in the AHP. Criteria and sub-criteria are applied at any level 



3 
 

of the alternatives’ hierarchy, where a multiple-criteria analysis is performed on appropriately 

defined subsets of alternatives. This structure is described and demonstrated later on. 

Developing the PPBE and composing the POM are decision processes that fall under the general 

label of Multiple Criteria Decision Analysis (MCDA) (Koksalan et al., 2011), (Goicoechea et al., 

1992). These two decision processes also involve group decision-making (Saaty and Peniwati, 

2013), (Hwang and Lin, 1986) and concensus formation among stakeholders.  

The process producing the POM is a fiscally constrained prioritization exercise in which the 

DoD Services (Army, Navy, etc.) generate and/or change the contents of their defense programs 

to reflect updated planning priorities and budget constraints. The POM is a part of the Planning, 

Programming, Budgeting, and Execution (PPBE) process, which is the DoD’s resource allocation 

mechanism for allocating defense budget. The POM is created annually with a five-year outlook, 

adjusting the existing force structure to achieve strategic goals in both the near and long terms 

(Blickstein et. al 2016).  

There is an embedded hierarchy of decisions in the POM process, which is generally aligned 

with the chain of command. Senior leadership of the defense establishment sets general Thrusts 

for their respective Services. They give future directions for planning and actions, and prioritize 

among Program sets. Within a Thrust, flag officers set priorities among Programs related to that 

Thrust and determine programs of record. A Program may serve more than one Thrust. Senior 

staff officers within the relevant branches of the services determine priorities among Projects 

within Programs. Based on preferences among Thrusts at the top level, preferences among 

Programs associated with a certain Thrust (or several Thrusts) at the middle level, and 

preferences among Project within a Program, at the lowest level, the objective is to determine the 
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best set of Projects to be funded within the budget constraints. This hierarchical structure 

motivates the model proposed in this paper. 

The paper is organized as follows. In the next section we describe the hierarchical model for the 

alternatives, in Section 3 we present the embedded Multiple-Criteria Decision Analysis (MCDA) 

model. The budget allocation model is shown in Section 4, and an example is presented in 

Section 5. Section 6 contains concluding remarks.  

 

MODEL 

While the hierarchy of decision alternatives can have any number of levels, we assume here, 

without loss of generality, a three-level hierarchy, which is consistent with the levels in the 

DoD’s POM. The model setting comprises two parallel hierarchies: alternatives and decision-

makers. As described above, the three levels of alternatives are: Thrusts, Programs and Projects. 

Top leadership of a military Service (or board of directors in a corporation) prioritizes Thrusts, 

flag officers (senior executive officers of a corporation) prioritize Programs, and senior staff 

officers (top management of a corporation) prioritize Projects. Obviously, each level of decision 

making can offer input to a higher level and can intervene in the prioritization taking place at a 

lower level.  

The three levels in the hierarchy also differ in the resolution in which the decision alternatives 

are specified. Thrusts, prioritized by Service leadership (e.g., US Navy’s Chief of Naval 

Operations (CNO)), are typically characterized in broad-brush terms such as, “readiness”, 

“capacity” and “capabilities”, (CNO, 2022). Thrusts point at areas of importance in view of 

current and future threats and may be manifested in statements such as “increase readiness of 
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surface forces”, “enhance capabilities of undersea warfare” or “focus on air warfare”. A Thrust is 

connected with one or more Programs, which affect the realization and effect of that Thrust. For 

example, various Programs of aircraft development such as fighter aircrafts, unmanned aerial 

vehicles (UAV) and helicopters serve the Air Warfare Thrust. Cyber defense and cyber attack 

Programs may serve a cyberwafare Thrust. A Program may comprise several Projects that need 

to be prioritized.  Figure 1 presents an example of such a hierarchy comprising two Thrusts, three 

Programs and four Projects. As we can see, the interrelations are general; a Thrust may have 

more than one associated Program, a Program may serve more than one Thrust and similar 

interrelations may apply to Programs and Projects.   

 

 

Figure 1: Decision-Alternatives Hierarchy 

Next, we formalize the interrelations in the alternatives’ hierarchy and show how we evaluate the 

Projects, which are the fundable entities. Define ,  and  as the sets of Thrusts, Programs and 

Projects, respectively. We say that Thrust iT   is associated with Program jP   if the former 

is a “parent alternative” of the latter. Similarly, we define association between a Program jP   
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and Project kE  . In other words, two alternatives in two adjacent levels are associated if they 

form a “parent-child” relation. For example, a possible Thrust alternative “Cyber Warfare” is 

associated with Programs “Firewall” and “Cyber Offense”, and the Program “Firewall” 

comprises the Projects “Iron Curtain”, “Steel Fence”, and “Rocky Passage”. The Program 

“Firewall” may also be associated with the Thrust “Information Security”. Obviously, this 

example, and its associated Projects’ names, are made-up just for illustration. 

Let C
iT denote the set of Programs associated with Thrust iT  (set of children of iT ) and F

jP the 

set of Thrusts associated with Program j (set of parents of jP ). Similarly, we define the set C
jP of 

children kE   of Program j, and the set F
kE of Program parents of Project k. We assume that 

each Thrust has at least one Program child, each Program has at least one Thrust parent and at 

least one Project child, and each Project has at least one parent. See Figure 1. Note that 

, ,
i j i j k

C F C
i j j i j k

T j P T P E

T P P T P E
    

              , and .
k j

F
k j

E P

E P
 

     Referring 

to Figure 1, we have the following: 1 1 2 2 2 3 1 1 2 1 2 3 2{ , }, { , }, { }, { , }, { }C C F F FT P P T P P P T P T T P T     , 

1 1 2 2 2 3 3 3 4 1 1 2 1 2 3 1 2 4 3{ , }, { , }, { , }, { }, { , }, { , }, { }.C C C F F F FP E E P E E P E E E P E P P E P P E P        

The alternatives in the set of Thrusts and in each of the subsets of Programs and Projects are 

evaluated by a combined MCDA and group-decision model described in Section 3. At the end of 

the evaluation stage we obtain ratings of the alternatives for each of the following sets of 

alternatives: (i) Set of Thrusts  , (ii) Each subset of Programs C
iT , and (iii) Each subset of 

Projects .C
jP  Note that the MCDA evaluation is performed for each aforementioned subset 
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separately, with respect to specially tailored set of criteria, and perhaps by different sets of 

stakeholders and decision makers.  

Let 0iu   denote the value of Thrust ,iT  0ijv  denote the value of Program C
j iP T  when 

evaluated with respect to Thrust ,iT   and 0jkw   denote the value of Project C
k jE P  when 

evaluated with respect to Program P.jP   Note that a certain Program jP  may belong to two or 

more Thrusts, that is, the subsets F
jP may not be mutually exclusive. For example, in Figure 1, 

the subsets 1
FP and 2

FP contain the mutual alternative Thrust 1T . The same relation may also 

occur for the subsets of Projects F
kE with respect to Programs. In the next section we describe 

how we obtain the values of , and i ij jku v w . 

Suppose there are 100 units of “value” to be distributed among the alternatives at each level of 

the hierarchy. That is, 
, ,

100, , , 0.i ij jk i ij jk
i i j j k

u v w u v w       The value iu of Thrust iT  is 

distributed among its child Programs in C
iT such that   

. (1)
C

j i

ij i
P T

v u


  

The overall value of Program jP is: 

. (2)
F

i j

j ij
T P

V v


   

Similarly, we distribute the value jV of Program jP among its child Projects such that 

. (3)
C

k j

jk j
E P

w V


  
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The overall value of Project kE is: 

. (4)
F

j k

k jk
P E

W w


   

It is easily seen that by this construction 100.i j k
i j k

u V W       

In addition to incorporating the relative standing of a Project within its subset of Projects, the 

value kW also reflects the values of the alternatives – Programs and a Thrusts – up the 

alternatives’ hierarchy. 

For example, consider Project 2 ( 2E  in our notation) in Figure 1. Its “lineage” includes Programs 

1 and 2, and both Thrusts. It supports two parent Programs – Program 1 ( 1P  in our notation) and 

Program 2 ( 2P  in our notation). Program 1 supports only one Thrust, 1T , but Program 2 supports 

both Thrusts. From Equations (1) and (2) we have that: 

2 12 22 1 2 11 23( ) (5)W w w V V w w       

Where 1 11V v  and 2 1 11 21.V u v v    So we can see that the full lineage is manifested in the 

value of Project 2. 

The objective is to maximize the overall values of the funded Projects subject to a budget 

constraint and possibly other constraints, as discussed later on in the OPTIMIZATION section.  
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OBTAINING ALTERNATIVES’ RATINGS 

We first describe the general model for obtaining ratings in a multiple-criteria multiple-

stakeholders setting, and then we apply it to our hierarchy of alternatives to obtain the values u, 

V and W. Consider a set of N alternatives evaluated with respect to L criteria by a group of S

stakeholders. Similarly to the AHP method (Saaty, 1990), we assume that stakeholders express 

their preferences by ratio-scale matrices (Golany and Kress, 1993). A ratio-scale matrix is a 

square matrix that comprises positive entries ijr such that 1
ij jir r . Each stakeholder conveys 

their preferences by L ( N N ) ratio-scale matrices that provide pairwise comparisons of the N  

alternatives – one for each criterion – and one ( )L L matrix for the pairwise comparisons of the 

criteria’s weights. 

Let ( )l
ijr s  denote the extent alternative i  is preferred to alternative , , 1,..., ,j i j N  with respect 

to criterion , 1,...,l l L  by stakeholder , 1,..., .s s S  Similarly, we define ( )lmd s as the extent 

criterion l  is considered more important than criterion m by stakeholder s . There are several 

ways to obtain the ratings for alternatives, and weights for criteria, from ratio-scale matrices 

(Golany and Kress, 1993). For example, The AHP model obtains these values and weights by 

computing the principal eigenvectors of the ratio-scale matrices (Saaty, 1990). Here we propose 

a different approach based on extremal principles, namely, least squares. It has been shown that 

the least squares method performs as well as other scaling methods (Golany and Kress, 1993) 

and it is widely used in other contexts, e.g., regression analysis in statistics. Most importantly, it 

is intuitive and naturally addresses scaling of preferences by multiple decision makers and 

obtaining group-decision consensus. The least-squares model is a quadratic separable 

optimization model where the objective is to find the set of ratings that are closest, in the 
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Euclidean distance sense,  to the pairwise comparisons given by the stakeholders. This model is 

easily solved, for realistic-size problems, by minimal computational resources.  

Specifically, for a given criterion , 1,..., ,l l L we solve the following non-linear optimization 

problem for the ratings of the alternatives with respect to the l-th criterion: 

2

1 1 1

( ) (6)
lN N S

li
ijl

i j s j

x
Min r s

x  

 
  

 
  

s.t. 

                                            
1

1, 0, 1,..., . (7)
N

l l
i i

i

x x i n


    

The variables , 1,..., ,l
ix i N represent the derived least-squares ratings for the alternatives with 

respect to criterion .l The optimal values of these variables are closest, in the Euclidean (L2) 

metric, to the pairwise-comparison evaluations provided by the S stakeholders. In a sense, these 

ratings represent a formal “mathematical” consensus among the stakeholders regarding the 

evaluations of the alternatives with respect to criterion k. Equation (5) is just a normalizing 

constraint. We discuss the meaning and usefulness of these derived consensus ratings in Section 

6. Note that problem (4), (5) is solved K times – once for each criterion.  

A similar consensus-formation procedure applies to determining the criteria weights. The 

minimization problem in this case is: 

2

1 1 1

( ) (8)
L L S

l
lm

l m s m

y
Min d s

y  

 
 

 
  

s.t. 
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1

1. 0, 1,..., . (9)
L

l l
l

y y l L


    

Note that this model can be generalized to account to weighted opinions by stakeholders. The 

opinion of some stakeholders, say, a subject matter expert, on a certain set of alternatives and/or 

criterion, may have a heavier weight than other stakeholders when forming the consensus in (4) 

and (6). Specifically, (4) may be replaced by  

2

1 1 1

( )
lN N S

li
s ijl

i j s j

x
Min a r s

x  

 
  

 
  

where 0sa  is the weight of the opinion of stakeholder s. No particular scaling restrictions are 

required for these coefficients. Same generalization may apply to (8). 

If ˆ , 1,..., , 1,... ,l
ix i N l L   denote the optimal evaluation ratings of the alternatives (optimal 

solutions of running (6),(7) L times), and ˆ , 1,... ,ly l L are the optimal criteria weights obtained 

as the solutions of (8),(9), then the final overall rating of alternative i is 

1

ˆ ˆ ˆ . (10)
L

l
i l i

l

X y x


  

By definition, ˆ (0,1)iX   and it is easily verified that 
1

ˆ 1.
n

i
i

X


   

The Least-Squares models (6),(7) and (8),(9) are applied on the set   of Thrusts and on all the 

subsets C
iT of Programs and all the subsets C

jP of Projects, as defined in Section 2. For the set 

of alternative Thrusts iT  , we define a set of, say, TL  criteria and a set of stakeholders. Each 

stakeholder generates TL  pairwise-comparison ratio-scale ( )   matrices for evaluating the 
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alternative Thrusts, and one ( )T TL L matrix for the criteria. The resulting ˆ
iX ratings in (10), 

multiplied by 100, are the desired iu values. Next we apply (6)-(10) to each subset C
iT of 

Programs and multiply the resulting ˆ
ijX  ratings for that subset by iu  to obtain ijv  and eventually, 

via (2), the values jV . Finally, we apply (6)-(10) to each subset C
jP  of Projects, and multiply the 

resulting ˆ
jkX  ratings for that subset by jV  to obtain jkw  and eventually, via (4), the values .kW  

In the EXAMPLE section below we demonstrate the process described above.  

If a Program (Project) is associated with more than on Thrust (Program) its rating X̂  in the 

various subsets to which it belongs may differ substantially. There may be several reasons for 

such likely discrepancies. First, the contexts may be completely different; the value of a program 

in, say, aerial context may be completely different than in a surface-warfare context. Second, 

criteria weights, and even the set of criteria, may be different in different subsets. For example, 

the criterion “Timeliness” (regarding a Program) may have different weights in the two Thrusts: 

“Future Force Structure” and “Power Projection in Region Z”. Third, The evaluation of the 

(common) Program itself with respect to the same criteria may be different in the two subsets 

1 2andC CT T  because the Program is evaluated relative to different sets of alternatives (e.g. 2P  in 

Figure 1 is evaluated relative to 1P  in 1
CT , and relative 3P  in 2 .CT  The same arguments apply to 

Projects with regards to Programs. Thus, for all practical purposes we can assume independence 

of ratings across subsets. 

Finaly, note that the cardinality of subsets within a certain level – Programs and/or Projects – 

may vary. Some Thrusts may generate more Programs than others, and some Programs may 

cover more Projects than others. For example, the number of Programs associated with the 
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Thrust “Surface Warfare” may be different than the number of Programs in the “Cyber Warfare” 

Thrust. In such situations, for the same value of their respective parent alternatives, a large subset 

has a smaller average rating than a small subset because more alternatives share value of the 

parent alternative. This potential discrepancy may wrongly affect the values because highly 

valued Projects or Programs may receive low ratings just because they are members in a larger 

subset than other, less valued, subset of alternatives. Although it looks like an issue of concern, it 

is actually not. First, the variability among subsets size in a certain level of the hierarchy may not 

be that large. It is quite unlikely that one Thrust will have, say, two Programs, and another will 

have ten. Even if such a situation happens, one could redefine Thrusts and Programs (e.g., split a 

Thrust into “sub-Thrusts”) such that the cardinalities will be compatible. Second, one could 

address this issue by defining the cardinality of a subset – the “number of children” – as a 

criterion in the MCDA process where Programs are compared; more Project in a Program will 

award that Program more value. Finally, recall that the main objective is to discriminate among 

alternatives and prioritize them so that ultimately a subset of Projects is selected for funding (if 

the budget is sufficient to fund all Projects there is no need for the POM in the first place…). 

Tying the values of alternatives will not attain this objective because it will be impossible to 

identify the desired subset of fundable Projects. Stakeholders of a larger subset of Projects will 

be incentivized to prioritize the alternatives, as opposed to tying them, to avoid splitting the 

parent Program’s value over too many Projects and thus “wasting” value. An example can 

explain this point. Suppose Program 1 controls two Projects, 1 2 and ,E E   and Program 2 

controls four projects, 3 4 5 6., ,  and .E E E E That is, 1 22, 4.C CP P   Let 1 230, 40V V   be the 

obtained values of Programs 1P  2and ,P  respectively. If, following the preference analysis, 

1 2 1 is tied with in ,CE E P and 3 4 5 6. 2, , , are tied in CE E E E P  then the Projects 1 2 and E E  will get a 
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value 1 2 30 / 2 15,W W   while 3 4 5 6 40 / 4 10.W W W W      If all Projects are of equal 

costs and only two Projects can be funded, then the two Projects in Program 1 will be funded and 

none of Program 2, despite the fact the Program 2 is more valuable. If there is a clear winner in 

the first set, say, 
1

ˆ 0.8,EX   and a clear winner in the second set, say, 
3

ˆ 0.7,EX  then 

1 30.8 30 24, 0.7 40 28,W W       and the rating of 3E  reflects its worth. In summary, if one 

of the subsets of alternatives is larger than others in its level, the stakeholder needs to work 

harder to identify those alternatives at the top. Finally, one could always control the number of 

Project selected from each Program, regardless of its cardinality, by imposing additional 

constraints in the resource allocation model as discussed in the next section. See (13) and (14) in 

Section OPTIMIZATION. 

 

OPTIMIZATION 

The ratings kW , cost figures kC for the various Projects, and a budget limit B , are inputs to the 

optimization model, which is a standard knapsack problem: the goal is to identify the set of 

Projects that maximize the total ratings’ value subject to the budget constraint. Let kz be a binary 

variable that takes the value 1 if Project k is selected for funding and 0 otherwise. The 

optimization model is: 

E

(11)
k

k k
E

Max W z

  

St. 
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E

, {0,1} (12)
k

k k k
E

C z B z


   

A natural and simple heuristics to rank order the Projects for funding is to order the ratios k

k

W

C
in  

descending order  (1) (2)

(1) (2)

...
W W

C C

 
   

 
and to select the set of Projects (1) ( *)( ,..., )kE E where *k is 

such that 
*

( )
1

,
k

i
i

C B


  but 
* 1

( )
1

.
k

i
i

C B




  

The basic knapsack model can be modified to account for additional constraints associated with 

Programs and Thrusts. For example, it may be decided that the budget allocation to Program 

jP   should be at least a fraction   of the budget. This requirement will result in the 

constraint: 

. (13)
C

k j

k k
E P

C z B


  

Another possible requirement is that the budget allocation for Program jP   should be at least 

as high as the budget allocation to Program 'jP  . In that case we add to (13), (14) the 

constraint:  

'

0. (14)
C C

k j k j

k k k k
E P E P

C z C z
 

    

 

 

 



16 
 

EXAMPLE 

We demonstrate the methodology on a made-up and oversimplified POM process in the Navy. 

While the example does not give any analytical insights regarding a real POM process (part of 

which may be classified), it highlights and narrates all the modeling and structural aspects of the 

proposed method. 

Navy leadership have identified two Thrusts to be considered, called “Air” and “Surface”. 

Following the identification of several criteria, such as, “capability gaps” and “future needs”, an 

MCDA model, as described in Section 3, is set up and solved. The stakeholders at this level are 

Navy leadership. After some discussions, including sensitivity analysis for the (judgmental) 

inputs of the MCDA model, it is agreed that at the Thrust level Air gets the rating of 0.3 and 

Surface the rating of 0.7. That is, u(Air) = 30 and u(Surface) = 70. Next, the two sets of 

Programs, corresponding to the two Thrusts, are considered: C
AirT , which comprises “Air 

Defense” (AD) and “Aircraft” (AC), and C
SurfaceT , which comprises “AD” and “Ships”. Note that 

the Program “AD” belongs to the two Thrusts as it affects both surface security and air 

superiority. The stakeholders involved in prioritizing the Programs in  C
AirT  reached a consensus 

that the ratings of AC and AD are 0.4 and 0.6, respectively. The stakeholders of C
SurfaceT  reached a 

consensus of 0.2 and 0.8, for Programs AD and Ships, respectively. Further down the 

alternatives’ tree there are three subsets of Projects: C
ACP  comprising Projects Proj1 and Proj2, 

C
ADP  comprising Projects Proj2 and Proj3, and C

ShipsP  comprising Projects Proj3, Proj4 and Proj5. 

Note that Proj2 supports both Programs “AC” and “AD”, and Proj3 supports Programs “AD” 
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and “Ships”. Also notice the uneven cardinality of the Projects’ subsets: while 2C C
AC ADP P  , 

3.C
ShipsP    

 

 

Figure 2: A POM-Related Example 

Next, we demonstrate the process for obtaining the ratings of Proj3, Proj4 and Proj5 within the 

Program “Ships”. Similar processes obtained the values for the Thrusts and Programs presented 

above, and the values of the rest of the Projects.  

Suppose there are four stakeholders who rate the three Projects in C
ShipsP according to five criteria. 

This results in 20 3 3 ratio-scale matrices of pairwise comparisons of the three alternatives – 

one for each stakeholder and criterion. Solving (6), (7) for each one of the five criteria, we obtain 

the consensus ratings , , Proj3, Proj4, Proj5l
Ships kx k  , for criteria 1,...,5.l   Next the four 

stakeholders evaluate the criteria importance and submit four 5 5  ratio-scale matrices of 

pairwise comparisons of the five criteria. Solving now (8), (9) we obtain the consensus weights 

ly  for the criteria. The relative values of the alternatives are obtained as a linear functional: 
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5

, ,
1

, Proj3, Proj4, Proj5.l
Ships k l Ships k

l

X y x k


   The ratings for the alternatives obtained from the 

MCDA stage in the various subsets are summarized in Table 1.   

Set Ratings 

T   0.3; 0.7Air SurfaceX X   

C
AirT  , ,0.4; 0.6Air AC Air ADX X   

C
SurfaceT  , ,0.2; 0.8Surface AD Surface ShipsX X   

C
ACP  ,Proj1 ,Proj20.6; 0.4AC ACX X   

C
ADP  ,Proj2 ,Proj30.3; 0.7AD ADX X   

C
ShipsP  ,Proj3 ,Proj4 ,Proj50.6; 0.1; 0.3Ships Ships ShipsX X X    

 

Table 1: Relative Ratings of Alternatives 

 

Table 1, along with Figure 2, provide all the information needed for obtaining the values of the 

Projects. First, the values of the Thrusts are: 100 100 0.3 30,Air Airu X      

100 100 0.7 70Surface Surfaceu X     . Next, we compute the values of the Programs: 

, , 30 0.4 12,AC Air AC Air Air ACV v u X      , , , , 30 0.6 70 0.2 32AD Air AD Surface AD Air Air AD Surface Surface ADV v v u X u X         , 

and , , 70 0.8 56.Ships Surface Ships Surface Surface ShipsV v u X     Finally, we obtain the values of the 

Projects which are fed into the resource allocation optimization model.  
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Proj1 ,Proj1 ,Proj1

Proj2 ,Proj2 ,Proj2 ,Proj2 ,Proj2

Proj3 ,Proj2 ,Proj2 ,Proj3 ,Proj3

Proj4

12 0.6 7.2,

+ 12 0.4 32 0.3 14.4,

+ 32 0.7 56 0.6 56,

AC AC AC

AC AD AC AC AD AD

AD AD AD AD Ships Ships

W w V X

W w w V X V X

W w w V X V X

W

     

         

         

,Proj4 ,Proj4

Proj5 ,Proj5 ,Proj5

56 0.1 5.6,

56 0.3 16.8.

Ships Ships Ships

Ships Ships Ships

w V X

W w V X

     

     

 

We verify that indeed 
5

Proj
1

100k
k

W


 , and see that Proj3 has a relative high value (56) due to its 

high desirability in two valuable Programs – AD and Ships. Suppose the total costs of the 

Projects (in Billions) are:  1, 3, 7, 4, 2 for projects Proj1,...,Proj5, respectively, and the budget is 

$12B. The resource allocation problem is a standard knapsack model: 

1 2 3 4 57.2 14.4 56 5.6 16.8Max z z z z z     

s.t.                1 2 3 4 53 7 4 2 12 (15)

{0,1}, 1,...,5.i

z z z z z

z i

    

 
 

The optimal solution of (15) is 2 3 5 1 41, 0.z z z z z      Thus, the fundable Projects are Proj2, 

Proj3 and Proj5. One could impose additional constraints to reflect priorities such as “at least one 

Project from Program AC must be funded”, which translates into 1 2 1z z  , or “the budget 

allocation for Program Ships must be at least 40% of the total budget”, which adds the constraint 

3 4 57 4 2 4.8z z z   to (15), etc. 
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SUMMARY AND CONCLUSIONS 

We have developed a decision-aid methodology for dealing with a multi-level decisions, where 

alternatives form a natural hierarchy among themselves. The methodology resembles the AHP 

model but is different from it in two major aspects. First, the hierarchy only comprises 

alternatives; the criteria, which may be different for different sets of alternatives, are 

“orthogonal” to the levels of the hierarchy, they are not part of it. Moreover, the desirability 

(value) of a Project does not only depend on its relative ratings compared to other Projects within 

its subset, but also on the desirability of alternatives up the alternative chain in the hierarchy. In 

our case, Programs and Thrusts. Also, Projects that support more Programs and Thrusts (have 

more parents) benefits by obtaining higher ratings. In other words, the model balances off 

between the value of a Project within its peers and its “popularity” among Programs and Thrusts. 

Second, the consensus ratings of the alternatives in the various sets are obtained by a simple and 

theoretically sound extremal method where the Euclidian distance from a desired consensus is 

minimized. This approach is widely used in statistics (least squares regression) and is intuitively 

appealing. 

The final note is a word of caution. The methodology described in this paper is by no means a 

“black box” that produces the “correct” set of Projects to be selected, as is, into the POM. It is a 

decision-aid, not a decision tool. Its purpose is to introduce some structure into a decision 

process concerning multiple levels of alternatives and decision makers, which is typical to the 

POM process.  
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