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Abstract.  We consider a multicriteria decision analysis (MCDA) problem where 

importance of criteria, and evaluations of alternatives with respect to the criteria, are 
expressed on a qualitative ordinal scale. Using the extreme-point principle of Data 
Envelopment Analysis (DEA), we develop a two-parameter method for obtaining overall 
ratings of the alternatives when preferences and evaluations are made on an ordinal scale. 
We assume no parametric setup other than the two parameters that reflect minimum 
intensities of discriminating among rank positions: one parameter for the alternatives’ 
ranking and one for the criteria ranking. These parameters are bounded by the ordinal input 
data, and they imply a universal tie among the alternatives when both parameters are selected 
to be zero. We describe the model, discuss its theoretical underpinning, and demonstrate its 
application. 
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factor. 

1. Introduction 

We consider an ordinal multi-criteria decision problem where all inputs – weights of criteria 
and evaluations of alternatives with respect to the criteria – are given in terms of qualitative 
ordinal rankings or ordinal scores such as the Likert scale [17], [2]. Ordinal elicitations of 
assessments and preferences in an MCDA setting are less cognitively demanding than 
cardinal ones [16]. In a decision environment that may be uncertain and nebulous, a simple 
ordering is more natural to express preferences than cardinal values [8], [15]. Therefore, it 
may be easier to implement an ordinal preference setting, rather than cardinal, in complex 
multi-criteria problems. The question is how to aggregate the ordinal input into an overall 
evaluation that can prioritize the alternatives in a reasonable and consistent way. 

The main thrust of this note is to propose a useful, transparent and easily-implementable 
method for assessing multicriteria linear value-functions in a purely ordinal setting. The 
method has the following two main features: (1) It is founded on the solid theoretical ground 
of the well-established Data Envelopment Analysis (DEA) methodology [5], (2) Besides two 
parameters, controlled by the decision-maker and functioning as “discriminating rheostat”, 
the method is fully ordinal and does not rely on any cardinal input, including no criteria 
weights. 

There have been several attempts to address a variant of this problem where the objective 
is to elicit cardinal weights of criteria from their ordinal ranking. Methods range from  
procedures [1] and models {12], [13]  converting qualitative (linguistic) terms into cardinal 



or fuzzy settings, which are essentially equivalent to quantitative approaches, to theoretical 
approaches based on partial preorder of reference alternatives whose values are known, as 
well as from other partial preorders [18], to a transformation, called global outranking 
method, from the two dimensional (alternative, criterion) space into a single dimensional 
ranking of the alternatives [21]. Other approaches for dealing with ordinal data in an MCDA 
setting are reported, among others, in [4], [11], [14], [19], [23], and [24]. Recent contributions 
to the topic address non-uniform scales, which are treated using the concept of ordinal 
proximity measure [9], [10]. Non-uniform scales are implicitly present in our approach in 
this paper, as shown later on. 

The main thrust of this note is to propose a useful, transparent and easily-implementable 
method for assessing multicriteria linear value-functions in a purely ordinal setting. The 
method has the following two main features: (1) It is founded on the solid theoretical ground 
of the well-established Data Envelopment Analysis (DEA) methodology [5], (2) Besides two 
parameters, controlled by the decision-maker and functioning as “discriminating rheostat”, 
the method is fully ordinal and does not rely on any cardinal input, including no criteria 
weights. 

The method is based on an extreme-point principle and models developed in [6] and [7]. 
The models are MCDA applications of DEA [5], which is a widely-accepted method for 
measuring efficiencies of decision making units in a most equitable way.  The multiple 
parameters in [6] and the non-linearity in [7] are reduced here to a two-parameter linear 
optimization model, which is transparent to and easily understandable by decision makers. 
The model is also easily implementable for real-world problems on a spreadsheet. An 
important feature highlighted here is the sensitivity of the decision outcome to the two 
parameters called discrininating factors, which represent the decision-maker’s general 
strength of opinion or preferences.  

Section 2 describes the model and Section 3 presents an example and short analysis. 
Concluding remarks are given in Section 4. 

2. Model 

In many legacy MCDA models (e.g., the Analytic Hierarchy Process (AHP) [22]) the setup 
is rather simple: each of m criteria is assigned a weight , 1,..., ,iw i m= and each alternative

, 1,..., ,j j n= is evaluated with respect to each criterion i and is given a value .ijv    The overall 

evaluation iV of alternative i is the weighted sum of its values, that is, 
1

,
m

j ij
i

V V
=

= ∑  where

.ij i ijV w v= In the purely ordinal setting this type of evaluations are not applicable anymore. If 
we only know that, say, 1 2 ... mw w w> > > and that, for some criterion i, 1 2 ...i i inv v v> > > , 
what can we say about the sijV values and ultimately about the alternatives’ final ratings 

, 1,..., ?jV j n=  
Suppose that on each criterion, the n alternatives are evaluated on an ordinal scale having 

r rank positions. For example, if 5r = then we have the Likert scale (Likert, 1932; Allen and 
Seaman, 2007). Similarly, the importance or weight of each of the m criteria is determined 
on an ordinal scale having s rank positions. The choices of the ordinal scales – the parameters 



r and s – are completely arbitrary. For example, the alternatives and criteria could be strictly 
ordered on n and m rank positions, respectively.  Higher rank (lower index number) indicates 
higher value for an alternative and higher importance (weight) for a criterion. Let ijx denote 
the “value” of being ranked in the j th− rank position with respect to a criterion ranked in 
the i th− rank position. We make no specific requirements regarding the values ijx other than 
the following natural assumptions: 

 
(1) The values are nonnegative, 0.ijx ≥  

(2) A higher rank of an alternative on a certain criterion has a larger value than a lower 
rank on that criterion,  

, 1 0, 1,..., , 1,..., 1. (1)ij i jx x i s j r+− > = = −  

The third assumption relates to the rank positions of the criteria. The effect of the ordering 
of the criteria leads to two possible interpretations: a strict one and a relaxed one. In the strict 
interpretation we require that an alternative’s rank position on a higher ranked criterion has 
a lager value ijx than the same rank position on a lower ranked criterion. That is,  

1, 0, 1,..., 1, 1,..., . (2)ij i jx x i s j r+− > = − =  

The logic behind these relations is that being, say, best on a more important criterion carries 
more value (larger ijV value) than rated best on a less important criterion. A more relaxed 
assumption is simply to require that the total value assigned to a higher ranked criterion is 
larger than the total value of a lower ranked criterion, that is 

1,
1
( ) 0, 1,..., 1. (2 )

r
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j
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We will analyze and compare the two aforementioned interpretations of criteria rankings. 

 
Next, we define, 
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If the ijx values were known, then the overall evaluation, or rating, of alternative k would 

be:  



1 1 1
( ) , 1,..., . (5)
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Similarly to many other MCDM models (e.g., [22]) the alternative with the highest V 
value is the most preferred. The question is how to determine the ijx values in a reasonable 
and “fair” way, consistent with equations (1) and (2) (or, alternatively, (2a)). 

To do so, we propose an extreme-point principle, which is well established in the theory 
of Data Envelopment Analysis (DEA) [5]. The idea is to give each alternative its “best shot” 
for presenting itself. In other words, each alternative can select its own ijx values such that it 
would get the highest possible rating subject to the constraints (1) and (2) (or (2a)), and the 
requirement that when the selected ijx values are applied to the other alternatives, no 
alternative gets a rating higher than a certain bound which is normalized to be equal to 1. 
This is an “equitable” concept in the sense that the rating of each alternative is evaluated in 
exactly the same way as the others’. 

To put this idea into practice, we define two discriminating factors. Similarly to the idea 
in (Punkka and Salo 2013) the discriminating factors express how clearly a decision-maker 
can distinguish among rank positions of the alternatives and the criteria. These factors are 
related to the concept of proximity measure described in [9] and [10], and are somewhat 
similar to the concept of value-difference in [20]. Define ε as the discriminating factor for 
the alternatives rank position. This is the minimum gap between two consecutive rank 
positions of alternatives. Formally, 

, 1 , 1,..., , 1,..., 1. (6)ij i jx x i s j rε+− ≥ = = −  

Similarly, we define δ as the discriminating factor for the criteria. That is, 

1, , 1,..., 1, 1,..., (7)ij i jx x i s j rδ+− ≥ = − =  

for the strict case, and  

1,
1
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for the relaxed case. 

As in standard DEA (Primal) model, we solve n linear programming problems – one for 
each alternative. As a convention for simplifying notation, an alternative for which the rating 
V is computed, and therefore appears in the objective function, we assign the index 0. Thus, 
we solve the following n LP problems: 
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In the DEA context, alternatives for which the objective in (8) reaches the value 1 are said 

to be efficient. In our MCDA context we call such alternative non-dominated. Alternatives 
for which the corresponding functional in (8) is less than 1 are dominated by those 
alternatives for which the functional is equal 1. Based on the ordinal evaluations, the 
objective of the decision maker is to narrow down the set of non-dominated alternatives and 
thus identify the desired alternatives. If 0ε = then all the alternatives are trivially non-
dominated as they all can reach the highest rating of 1. In that case each alternative can set 

1 , 1,..., , 1,..., ,ijx i s j r
m

= = = and all ratings , 1,..., ,kV k n= become the same at 1. As the 

values of ε and δ increase from 0, alternatives begin to separate in their values; the better 
alternatives maintain the rating 1 but the other alternatives start to get values V lower than 1. 
This process ends when either ε  or δ become too large so that problem (8) – (11) becomes 
infeasible. For example, if ε δ= then the maximum possible value of ε is obtained when it 
is taken as a decision variable in (8) – (11), and we add the term Mε to the objective function, 
where M is a large constant. Formally, 
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3. Example and Analysis 

 To demonstrate the model and its features, and analyze its outcomes, consider the following 
example with 6n = alternatives and 4m = criteria. The value of the alternatives with respect 
to the criteria, and the importance of the criteria are evaluated on a Likert scale, that is, 

5.r s= =  To be consistent with the notation thus far, we reverse the conventional definition 
of the scale and assign the following rank values for an alternative and a criterion, 
respectively: 

 
1 – Most Valuable/Important, 

2 – Very Valuable/Important, 

3 – Valuable/ Important, 

4 – Rather Valuable/ Important, 

5 – Marginally Valuable/Important. 

 

Table 1 presents the Likert scores for the criteria. 

Table 1. Likert Scores for Criteria Importance 
 

Criterion 
Likert 

Score 

C1 2 

C2 1 

C3 4 

C4 5 

 
Table 2 presents the Likert scores for the six alternatives, labeled A1,…,A6, with respect 

to the four criteria. Notice that no alternative is trivially dominated by another, that is, no 
alternative is ranked lower than another alternative on all criteria. Therefore, there is no 
obvious inferior alternative that we could discard from further consideration. 

 
 
 
 
 
 
 
 
 



Table 2. Likert Scores for Alternatives’ Values with Respect to the Four Criteria. 

 
 A1 A2 A3 A4 A5 A6 

C1 2 4 3 2 2 3 

C2 3 2 5 3 2 1 

C3 3 2 1 5 1 4 

C4 2 2 2 1 3 5 

 
First, we consider the strict case where we use constraints (7) in problem (8) – (11). Table 

3 presents the non-dominated alternatives whose functional (8) reaches the value 1 and 
therefore they are most preferred. We can see that as the discriminating factors ε  and δ
increase, fewer alternatives stay non-dominated. Also notice that, as discussed above, when 

0ε = , which practically means that the decision maker has no clear way of distinguishing 
among the alternatives – all alternatives are equally valuable. Table 3 also displays the range 
of discriminating factors for which problem (8) – (11) (with constraints (7)) is feasible. 

 
 

Table 3: Non-Dominated Alternatives for the Case of Strict Criteria Discrimination 
 

                                                            ε  
 
 
 
δ  

 0 .02 .04 .06 .08 
0 A1,…,A6 A1,…,A6 A1,…,A6 A5,A6 Infeasible 

.02 A1,…,A6 A1,…,A6 A1,…,A6 A5,A6 Infeasible 

.04 A1,…,A6 A1,…,A6 A5,A6 Infeasible Infeasible 

.06 A1,…,A6 A1,…,A6 A5,A6 Infeasible Infeasible 

.08 A1,…,A6 A1,A2,A5,A6 Infeasible Infeasible Infeasible 

.1 A1,…,A6 Infeasible Infeasible Infeasible Infeasible 

 
Alternatives A5 and A6 remain non-dominated throughout. No feasible combination of 

the discriminating factors can bring any of these two alternatives to an objective value smaller 
than 1. The conclusion is that, based on the Likert scores provided for the importance of the 
alternatives, and the values of the alternatives with respect to the criteria, the two alternatives, 
A5 and A6, are equally desired at the top.  

Table 4 presents the V values for the six alternatives when we assume that ε δ= . In that 
case, the maximum feasible value of the common discriminating parameter is 0.05. We can 
see now in detail the general picture presented in Table 3. First, if the common discriminating 



factor is less than or equal 0.03, all six alternatives are non-dominated; the decision maker 
cannot identify a smaller set of desired alternatives. For discriminating factor greater than or 
equal .04 we see that the six alternatives are divided into 3 subsets: the non-dominated 
alternatives A5 and A6, the second tier of alternatives: A1 and A2, and the inferior 
alternatives: A3 and A4. These observations are consistent with the results in Table 3. 

 

Table 4: V Scores for Alternatives for Equal Discriminating Factors 
 

 
ε δ=  

                Alternatives 
A1 A2 A3 A4 A5 A6 

0 1 1 1 1 1 1 
.01 1 1 1 1 1 1 
.02 1 1 1 1 1 1 
.03 1 1 1 1 1 1 
.04 .99 .99 .95 .95 1 1 
.05 .90 .90 .85 .85 1 1 

 
Table 5, which is similar to Table 3, presents the non-dominated alternatives for the 

relaxed case where constraints (7a) replace constraints (7) in problem (8) – (11). Notice that 
in this case the significant values of δ  are order of magnitude larger than those values in the 
strict case, which is reasonable considering we compare now sums of rank values.  

 

Table 5: Non-Dominated Alternatives for the Case of Relaxed Criteria Discriminating 
 

 ε  

 
 
 
 
 
δ  

 0 .02 .04 .06 .08 
0 A1,…,A6 A1,…,A6 A1,…,A6 A1,…,A6 A5,A6 
.1 A1,…,A6 A1,…,A6 A1,…,A6 A1,…,A6 A5,A6 
.2 A1,…,A6 A1,…,A6 A1,…,A6 A1,A2,A4,A5,A6 Infeasible 
.3 A1,…,A6 A1,…,A6 A1,…,A6 A5,A6 Infeasible 
.4 A1,…,A6 A1,…,A6 A1,…,A6 Infeasible Infeasible 
.5 A1,…,A6 A1,…,A6 A1,A2,A4,A5,A6 Infeasible Infeasible 
.55 A1,…,A6 A1,…,A6 A5,A6 Infeasible Infeasible 
.6 A1,…,A6 A1,…,A6 Infeasible Infeasible Infeasible 
.7 A1,…,A6 Infeasible Infeasible Infeasible Infeasible 
.8 Infeasible Infeasible Infeasible Infeasible Infeasible 

 
As one can see, the results of the relaxed model are consistent with those of the strict 

model presented in Table 3. If we assume that is 0.1ε δ=  then the maximum feasible 
discriminating factor is .476δ = , in which case both alternatives A5 and A6 are still at the 
top with 5 6 1A AV V= = . For the other four alternatives, we have, 1 2 .91A AV V= = and 

3 4 .86A AV V= = , which is consistent with the results in Table 4, for the strict discrimination 
case. We conclude that for the two types of the criteria weights’ discriminating factors – the 
strict and the relaxed – the results are consistent: alternatives A5 and A6 are indistinguishable 



and ranked at the top. The set of non-dominated alternatives expands as the decision maker 
is less convinced about discriminating among rank positions.  

4. Conclusions 

We presented a simple, equitable and intuitive method for evaluating MCDA problems with 
ordinal inputs. The method has a theoretical foundation derived from extreme-point principle 
manifested in Data Envelopment Analysis. Two parameters – one associated with the criteria 
and one with the alternatives – called discriminating factors, play a role of lower bounds on 
gaps among rank positions. Higher lower bounds indicate stronger preferences among rank 
positions. Low values of the discriminating factors, which indicates weak preferences and/or 
opinions, result in more tied alternatives at the top rating, as one would expect. As the 
discriminating factors increase better alternatives are distinguished from the other. The 
methodology presented is flexible enough to accommodate variability among criteria where 
the decision maker may be more confident about his preferences on one criterion than on 
another. In our model such a situation would be manifested by a vector of ε values – one for 
each criterion – rather than a single factor. We also note that the proposed model can 
accommodate additional, not necessarily ordinal, requirements and assumptions regarding 
the criteria and the alternatives. For example, if the weight of criterion C2 in the example in 
Section 3 is evaluated to be at least two times the weight of C1, then problem (8) – (11) is 

modified by adding the constraint  
6 6

2 1
1 1

2 0.j j
j j

x x
= =

− ≥∑ ∑  
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