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ABSTRACT

A
ntisubmarine warfare (ASW) had
been an important topic for mili-
tary operations research (MOR)

modelers and analysts during World War
II and the Cold War. It became, however,
somewhat out of vogue with the collapse of
the Soviet Union and the subsequent re-
duction of the threat of submarine-related
conflicts. In recent years, threats of such
engagement have increased, in particular
in the South China Sea. The re-emerging
interest in this type of warfare, com-
bined with new technologies and resulting
tactics, pose a renewed challenge for
MOR researchers. We study effective ways
to operate a helicopter, equipped with
dipping sonar (a dipper) in ASW missions.
Inparticular,weexamine thedippingpattern
and frequency. A high rate of dipping is
desirable as search effectiveness degrades in
time as the search area expands. However,
dipping too frequently results in overlap
with previous dips, which may be wasteful.
For a cookie-cutter sensor and a known
constant submarine velocity, we prove that
disjoint dips are optimal and generate the
corresponding optimal dipping pattern. We
analyze the effect of factors, such as helicop-
ter speed, submarine speed, sensor detection
radius, and travel time to the point of
detection, on the optimal dipping pattern.
We show that temporal parameters (sub-
marinevelocity andhelicopter arrival time to
the datum) are most critical. We also show
that the no-overlap result is not always true;
when the submarine’s velocity is onlyknown
with probability, the optimal dipping fre-
quency may include overlaps.

INTRODUCTION
Submarines pose amajor threat to naval

ships and therefore submarines become
prime targets during naval operations.
However, detecting and engaging these tar-
gets is challenging due to their stealth and
high endurance. A common practice in
modern antisubmarine warfare (ASW) is
to send out helicopters equipped with dip-
ping sonar, which allows the helicopter
crew to listen for underwater signals while
hovering at an altitude of 50 to 300 feet
above sea level (Global Security, 2016). The
helicopter uses a cable to lower the sensor

to the desired depth, which can range from
the just below the surface of the sea to 2,500
ft (Global Security, 2016). The dipping sonar
is primarily an active sensor, and hence the
sonar generates sound signals once lowered
into position. Signal processing algorithms
process the echoes that return to the sensor
to locate enemy submarines (Global Secu-
rity, 2016). In many situations, such helicop-
ters are dispatched to search and hunt
a submarine following a cue received from
some exogenous surveillance source such
as fixed-wing aircraft or towed arrays from
surface ships. This source provides the loca-
tion (known as the datum) of the suspected
target and the time of detection. Given this
datum, the question is what would be the
optimal dipping pattern for the search heli-
copter. The shape and size of this pattern
can indicate if it would be worthwhile to
dispatch the helicopter. We examine a more
specific question in this paper: given the
current dipping location, when and where
should the next dip occur? On one hand,
the dipping frequency should be high as
search effectiveness degrades in time as
the submarine moves and the search area
expands. On the other hand, dipping too
frequently may result in overlap with
previous dips, which may lower search
efficiency.

The (mathematical) problem of search
and detection has been studied for the past
70 years. The ground-breaking work of
Koopman (1946) laid the foundation for this
area of research. Other seminal works in
general search theory are Stone (1975),
Haley and Stone (1980), and Washburn
(2002). Search models specific to ASWoper-
ations appear in Shephard et al. (1988),
where a helicopter, equipped with sonar
buoys and torpedoes, is out to hunt a sub-
marine. Their model assumes a uniform
deployment of the sonar buoys in the con-
tainment circle and computes the optimal
payload of buoys and torpedoes.

Several papers study dipping sonar tac-
tics. Baston and Bostock (1989) examine
where a helicopter should drop a finite
number of cookie-cutter bombs to destroy
a mobile submarine. The two entities move
on a one-dimensional line and this limits
the spatial impact of the increasing search
area, which is crucial for our analysis of
the tradeoff between searching frequently
vs. limiting search overlap. Washburn and
Hohzaki (2001) and Soto (2000) consider
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mechanical limitations on a submarine’s veloc-
ity. They transform the discrete dips into a con-
tinuous search rate and examine the problem
from a random search perspective. Thus, there
is no analysis of when and where to discretely
dip next.

Danskin (1968) has a similar setup to our
problem with a cookie-cutter dipping sensor.
He postulates that a discrete dipping spiral pat-
tern may be particularly effective (we show
under certain assumptions, it is optimal). How-
ever, Danskin does not calculate the specific
time and location of individual dips. He as-
sumes that dips will be disjoint, which is the
primary focus of our analysis. In this paper,
we show that, using a similar framework
to Danskin’s, disjoint dips are not necessarily
optimal. Thomas and Washburn (1991) and
Chuan (1988) also have a similar framework
to our model. These papers (as well as Danskin
[1968]) consider the decreasing effectiveness of
dips over time as the search area increases.
Thomas andWashburn (1991) formulate a com-
plex dynamic program to generate a search
plan. They do account for the negative impact
of traveling too far for the next dip, but they
do not explicitly consider the negative impact
of overlap as the target can move to any cell
in the region between dips. Chuan (1988) does
allow for overlap in practice due to operational
inefficiencies, but assumes that in theory the
dips should be disjoint.

Washburn (2002) examines a cookie-cutter
dipping problem, which he refers to as ‘‘Sprint
and Drift,’’ in Chapter 1.7. This is the only ex-
ample we found that suggests there may be
benefits from overlapping dips. However, the
model in Washburn (2002) is one-dimensional,
and there is no formal analysis for determining
an optimal dipping policy. Washburn (2002)
also suggests situations other than ASW dip-
ping sonar search where a discrete glimpsing
cookie-cutter approach, such as our model,
might apply. A sensor aboard a mobile asset
may only be able to operate effectively when
the asset is stationary due to noise or vibrations.
For example, in ecology predators periodically
stop to better localize their prey. In other scenar-
ios, the searcher may move passively and acti-
vate the sensor only at discrete times and
locations to mitigate counter-detection. Although

we focus on ASW dipping sonar in this paper,
there are other applications where our models
and results could be useful.

Our main contribution is in examining the
tradeoff between dipping frequency and search
overlaps. Most work takes for granted that dips
should be disjoint. Although we find that to be
the case under some assumptions, disjoint dip-
ping is not necessarily optimal under other as-
sumptions. In this paper, we primarily focus
on a deterministic submarine velocity. Themain
result is a provable optimal dipping pattern that
dictates how the search helicopter should dy-
namically deploy its dipping sensor. The key
characteristic of the optimal dipping pattern is
that the next dip location is the closest valid dip-
ping point to the current location that produces
a disjoint dip. Additional insights relate to the
effect of operational and physical parameters
on the shape and size of the resulting search
spiral. We also consider a random submarine
velocity and show that the optimal dipping
strategy may incorporate overlaps.

The rest of the paper is organized as fol-
lows. In the next section, we describe the oper-
ational setting, which is followed with the
statement of the main result for a deterministic
submarine velocity.Wediscuss the case of a non-
deterministic distributed submarine velocity in
the fourth section. The fifth section presents sen-
sitivity analysis regarding some key operational
and physical parameters for the deterministic
case. In the sixth section, we assume some par-
tial knowledge about the bearing of the hunted
submarine and show how this knowledge af-
fects the dipping pattern. Concluding remarks
appear in the seventh section.

OPERATIONAL SETTING
Anaval task force is equippedwith anASW

helicopter whose role is to hunt and kill enemy
submarines. The helicopter is dispatched upon
receipt of information about the location of a
potential submarine target. The source of such
information is typically a long-range antisub pa-
trol unit continuously surveying the operational
area of the task force (e.g., P-8 antisub aircraft or
a surface ship equipped with a sonar device or
even a satellite). Launching a helicopter for an
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ASW mission is costly both economically and
operationally. In particular, the helicopter may
have other competing missions. Arguably, the
decision to launch the ASW helicopter should
depend on the probability of mission success.
This probability is affected by the distance from
the launching site to the datum, the helicopter
velocity and endurance, and the submarine ve-
locity. These factors are manifested in the
shape and size of the search spiral (see next
section). Throughout most of this paper, we as-
sume that the searcher knows the sub’s veloc-
ity, and thus its distance from the datum, but
not its bearing.

The helicopter is equipped with dipping so-
nar (henceforth referred to as a dipper), which is
‘‘a sonar transducer that is lowered into the
water from a hovering ASW helicopter and re-
covered after the search is complete’’ (see
http://encyclopedia2.thefreedictionary.com/
dipping1sonar). Depth matters for our analysis
in that it affects how long it takes to deploy the
dipper and reel it back. However, we take the
dipping time to be a fixed constant, and thus
for this paper we assume that the dipper has
a two-dimensional circular cookie-cutter detec-
tion function. That is, the detection range is arbi-
trarily deep and we ignore possible evasive
actions by the submarine going deeper or shal-
lower.We also assumea perfect sensor: if the sub-
marine is present within the dipper’s circular
footprint (the detection circle), the dipper will de-
tect the submarine with certainty. Otherwise,
the submarine remains undetected.

A perfect cookie-cutter sensor is a signifi-
cant simplification. In reality, the dynamics of
sonar detection are quite complicated and de-
pend upon the acoustic properties of the envi-
ronment, which impact the transmission loss
between the target and sensor (Lee and Kim,
2012). However, cookie-cutter sensors are com-
monly used inmanymaritime search and detec-
tion applications to generate insight. Random
search, the cornerstone model for many search
analyses, is based on a cookie-cutter sensor
(see Chapter 2 of Washburn [2002]) and often
provides similar results to more complicated
and realistic detection dynamics (Lee and Kim,
2012). Furthermore, many ASW models use
cookie-cutter sensors, including Danskin (1968),
Shephard et al., (1988), Baston and Bostock

(1989), and Washburn (2002). Our goal is to
provide a baseline modeling framework and
generate initial results and insight. Future
work can build upon our approach with more
realistic detection functions.

DIPPING PATTERN FOR CONSTANT
AND KNOWN SUBMARINE VELOCITY

Although the sub’s velocity is assumed to
be constant and known to the searcher, its bear-
ing is unknown and assumed to be uniformly
distributed on [0, 360o]. This assumption is re-
laxed later in the paper. Thus, the location of un-
certainty (LoU) (the possible locations in which
the submarine may be present) is a circumfer-
ence of a circle with a radius that is determined
by the velocities of the sub and the helicopter,
and the distance the helicopter has to travel to
the datum.

A dipping pattern is a series of consecutive
dipping points for the dipper. A dipping pattern
is optimal if, for a given number of dipping
points, it maximizes the probability of detec-
tion, or, for an infinite number of available dip-
ping points it minimizes the expected time of
detection. Because the sub velocity is assumed
to be known, the searching helicopter would
know exactly the submarine’s location, had
the searcher known the sub’s heading. Thus,
at any given time, the circumference of the circle
around the datum on which the sub is located
(the location circle) is uniquely determined. The
coverage of a dip is the arc on the circumference
of the location circle that is covered by a dip,
which is equal to the angle a, rooted at the da-
tum, between the two tangents to the detection
circle (see Figure 1).

Continuous search patterns over an expand-
ing circle are well known to be a spiral with
a shape dictated by the velocity of the sub
(Washburn, 1980; 2002). Because our search is
discrete, we must determine where on the spiral
to next dip. There are essentially three generic
dipping patterns: overlapping, tangential and ex-
cessively disjoint (see Figure 2). Following a dip,
the helicopter can travel a short distance and
dip again (Figure 2a), in which case the coverage
of the second dip is relatively large, but part of it
overlaps with the coverage of the first dip.
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If the helicopter travels farther away, the
coverage shrinks but the overlap disappears
(Figure 2b). The tangential dip is the closest dis-
joint dip. If the helicopter travels even farther,
the coverage is even smaller and there are some
gaps in the area searched (Figure 2c). Whereas,
evidently, excessively disjoint dips are subopti-
mal, it is not obvious which of the two cases—
overlapping dips or tangential dips—is better.
Specifically, while dip 2 in Figure 2a has a larger
coverage than dip 2 in Figure 2b, it is not clear if
the effective coverage of dip 2 in Figure 2a (i.e., the
angle between the right tangent of dip 2 and the
right tangent of dip 1 in Figure 2a) is larger or
smaller than the coverage of dip 2 in Figure 2b.
We prove that the latter is true; tangential dip-
ping is optimal.

LetU andV denote the velocities of the sub-
marine and helicopter, respectively. The dipper
detection range is R and the time duration of
a dip is tD. Let (0, 0) denote the location of the
datum, Pi¼ (Xi, Yi) be the location of the ith dip-
ping point, and Ti is the time, measured from

the moment the external surveillance source
delivered the datum, the ith dip starts. In partic-
ular, T1 is the time the helicopter arrives to the
first dipping point.

Theorem 1: For a given number of dips,
tangential dips maximize the probability of
detection.

The proof of the theorem appears in Appen-
dix A. An optimal dipping pattern appears
in Figure 3. To derive the actual expressions
for the ith dipping point, Pi, and the start time
of ith dip, Ti, requires additional notation and
solving simultaneous nonlinear equations. Con-
sequently, we defer presentation of these ex-
pressions to Appendix A.

We conclude this section by considering an
imperfect cookie-cutter dipper. If the target lies
within the footprint of the dipper, a detection
only occurs with probability 0 , q , 1. In this
scenario, overlap has an additional benefit as it
provides an opportunity to detect a previous
false-negative.We assume the dip signals are in-
dependent across dips. The next theorem states
that a tangential dipping policy is no longer nec-
essarily optimal when the dipper is imperfect.

Theorem 2: When the dipper is an imperfect
cookie-cutter sensor with detection probability
0 , q , 1 within the sensor footprint, the opti-
mal dipping frequency may include overlaps.

We prove Theorem 2 via a counterexample
in Appendix B. In some cases, it may be bene-
ficial for one dip to completely overlap the

Figure 2. Dipping patterns.

Figure 1. Location circle and coverage.

Figure 3. Optimal dipping pattern.
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previous dip. An overlap strategy is particularly
effective when the time to reach the disjoint dip-
ping location is relatively long. This occurs
when the searcher is relatively slow (small V/U
ratio) and the dip duration tD is short. A smaller
value of the detection probability q also increases
the importance of overlap. For realistic parameter
values (e.g., largeV/U ratio), the disjoint dipping
strategy is usually close to optimal for the imper-
fect sensor case.

RANDOM SUBMARINE VELOCITY
Similarly to the framework described in

Danskin (1968), suppose that immediately after
the surveillance asset detects the submarine at
the datum, the submarine’s velocity and heading
are randomly initialized, and the submarinemain-
tains these two values throughout the search.

If the submarine’s velocity is a random vari-
able that takes on only a finite number of values,
the analysis in the previous section general-
izes in a natural way with multiple spirals: one
corresponding to each velocity. If there are multi-
ple searchers, then each searcher dips on one spi-
ral. If there is only one searcher, then we must
determine the order the searcher should process
the different velocity-spirals. Formore details see
(Ben Yoash, 2016).

In a more realistic case, the submarine’s ve-
locity is a continuous random variable. We as-
sume a uniform bivariate distribution for the
velocity and heading over the ‘‘speed circle’’
(see Danskin [1968]), where the heading varies
over [0, 360o] and the velocity varies over [0,
Umax]. This implies that at time t the location
of the submarine is uniformly distributed within
a containment circle of radius r(t) ¼ Umaxt.

We next examine a similar tradeoff between
timeliness and dipping overlaps as in the deter-
ministic velocity case discussed previously. For
simplicity, we ignore here the dipping time tD.
Given the dipper has a cookie-cutter detection
function with radius R, and assuming the dip
footprint is entirely within the containment cir-
cle, the probability the first dip detects the target
is R2/r2(T1). If the second dip occurs at time
T2 ¼ T1 1 �t, then the contribution to the
overall detection probability from the second
dip is

pR
2 2 overlap �tð Þ
pr

2
T1 1�tð Þ ;

where overlap(�t) is the area of overlap be-
tween two circles: the second dip footprint
and the area cleared by the first dip. For �t ¼ 0,
there is complete overlap between the first two
dips (overlap(0)¼ pR2), which results in a worth-
less search effort. For a large enough�t, eventu-
ally there is no overlap (overlap(�t) ¼ 0, for
large �t). The exact expression for overlap(�t)
is somewhat complicated and appears in Ap-
pendix C. In general, overlap(�t) will decrease
with �t, and thus both the numerator and de-
nominator increase in �t. In the previous sec-
tion, we showed, for the deterministic velocity
case, that at optimality the next dip satisfies
overlap(�t) ¼ 0: tangential dips are optimal.
This is quite an intuitive result and it is taken
for granted in other works (e.g., Chuan [1988],
Danskin [1968]). The following theorem states
that this result is not necessarily optimal when
the submarine velocity is not deterministic.

Theorem 3: When the submarine heading and
velocity have a bivariate uniform distribution
over the speed circle of radiusUmax, the optimal
dipping frequency may include overlaps.

The details of the examples demonstrating
this property require tedious calculations in-
volving the area of the intersection of circles.
We defer these examples to Appendix C. The
optimal search pattern should include overlap
when the helicopter arrives to the datum very
soon after detection. The initial dip produces
a relatively large detection probability. Because
the detection probability from future dips de-
creases quickly (} (time)22), the searcher bene-
fits from taking the next dip soon after, even
though the second dip partially overlaps with
the first dip. The amount of overlap increases
with a slow searcher as it takes longer to move
to a location that produces a disjoint dip.

For most current ASW dipping scenarios, the
helicopterwill bemuch faster than the submarine,
so a disjoint dipping strategy should be near op-
timal formost realistic parameters. Determining
the specific times and locations for the optimal
dipping pattern in the bivariate uniform sce-
nario is a challenging problem that requires
much more complicated machinery than we
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utilize in this paper. For an example of how one
could proceed, see the dynamic programming
approach in Thomas and Washburn (1991). For
the remainder of the paper we return to the de-
terministic velocity scenario.

SENSITIVITY TO OPERATIONAL AND
PHYSICAL PARAMETERS

Next, we analyze the effect of operational
and physical parameters on the shape of the op-
timal dipping pattern for deterministic subma-
rine velocity. We start off with a base case that
reflects typical values of the various parameters.
Specifically, helicopter speed V ¼ 100 knots,
submarine speed U ¼ 8 knots, time of arrival
to first dipping point T1 ¼ 2 hrs, detection range
R ¼ 2 nm, and dipping time tD ¼ 5 min.

Helicopter’s Speed (V )
The helicopter chases the submarine and

therefore the faster the helicopter operates, the

smaller would be the area of uncertainty and
therefore also the dipping spiral, as shown in
Figure 4.Whereas a velocity ofV¼ 200 nm is ob-
viously unrealistic for a helicopter, we observe
that speed has decreasing marginal effect; the
decrease in the spiral radius as a result of veloc-
ity increase from 50 knots to 100 knots is larger
than the effect when the speed increases from
100 knots to 200 knots.

The marginal effect of speed is demon-
strated in the number of dips and the time it
would take the helicopter to complete a full
(360o) spiral (see Figure 5). From the top plot
in Figure 5, we see that as the speed of the heli-
copter increases the flat parts of the plot become
longer. That is, the sensitivity of the number of
dips to changes in speed decreases as the heli-
copter travels faster. The bottom plot shows that
the effect of helicopter speed on the time to com-
plete a full spiral is strictly monotone decreas-
ing, as one would expect. The discontinuities
in the plot, which are aligned with the jumps in
the upper plot, correspond to unit decreases in
the number of dips.

Figure 4. Dipping patterns for varying helicopter speeds (V ¼ 50, 100, 200 knots).
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Arrival Time (T1) and Dipping
Time (tD)

The decision to dispatch the search helicop-
ter (the ‘‘go/no-go’’ decision) is crucially affected
by the time T1 it takes the helicopter to arrive at
the first dippingpoint. For a given cruising speed
of the helicopter, the arrival time is determined
by the distance from the take-off site to the da-
tum. Even if unrealistically we assume limitless
endurance for the helicopter, that is, it could al-
ways complete a full spiral, the effect of arrival
time on the shape of the spiral is quite significant,
as shown in Figure 6.

With limited endurance the effect of lower
speed becomes even more significant; slower
speeds directly create larger spirals (see Figure 4)
and therefore more dips are needed for a given
coverage, but slower speeds also increase T1,
which further increases the size of the spiral.

Similar effects occur when we vary the time
it takes to execute a dip, as shown in Figure 7. As
one would expect, longer dipping times gener-
ate bigger spirals but, surprisingly, while

there is barely any difference between 2.5- and
5-minute dips, there is a significant change be-
tween 5- and 10-minute dips.

Detection Radius (R)
Figure 8 demonstrates the significant effect

of the dipper’s detection range.
We observe that doubling the detection

range from 1.5 miles to 3 miles reduces the
number of dips by more than a factor 3. The ef-
fect of detection range on the number of dips
and duration of a complete search appears in
Figure 9.

As observed above, for small detection
ranges (e.g., less than 1.5 mile), the effect of mar-
ginal improvement in range is super-linear,
which is not the case for larger detection ranges
where the marginal effect is negligible.

Submarine’s Speed (U)
The submarine’s speed is the only parame-

ter that is not controllable by the searcher. As

Figure 5. Number of dips and time to complete a search as a function of helicopter velocity.
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Figure 6. Dipping pattern for T1 ¼ 30, 60, and 90 minutes.

Figure 7. Dipping pattern for tD ¼ 2.5, 5, and 10 minutes.
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observed from Figure 10, the submarine’s speed
has a significant impact on the dipping pattern;
doubling the speed of the sub from 8 knots (base
case) to 16 knots results in more than quadrupling
the number of required dips to complete a spiral.
For comparison, reducing the helicopter speed
from 100 knots (base case) to 50 knots increases
the number of dips by less than 30 percent.

In reality, the searcher will not know exactly
the submarine speed, only an estimate based on
intelligence sources. The results reported above
hold even when there is some uncertainty about
the actual speed as long as the velocity error pro-
duces locational errors within the detection range
of the dipper over the course of the search period.

PARTIAL INFORMATION ABOUT
SUB’S BEARING

Thus far, we assume that that the searcher
has no information about the sub’s bearing
and therefore each direction of movement of
the sub is taken to be equally likely. In some sit-
uations, however, additional information about

the sub’s bearing may be available and could be
utilized to improve the effectiveness of the
search. Suppose that the bearing of the subma-
rine may be in one of three possible wedges of
the LoU having angular sizes a, b, and g, a 1
b 1 g # 360, with probabilities q, p, and 1 – p –
q, respectively (see Figure 11). The direction
within a wedge is uniformly distributed, which
implies that the optimal dipping pattern within
each wedge is derived from Theorem 1, and
manifested by a partial spiral of tangential dips.

The question now is in what order to search
the wedges. If the wedges are searched sequen-
tially (I ! II ! III or III ! II ! I), then the dip-
ping pattern is a spiral that starts on the left ray
of wedge I or the right ray of wedge III, respec-
tively. Otherwise, the helicopter has to ‘‘hop’’
over wedges and the dipping pattern is no lon-
ger a contiguous spiral. For example, if the
search order is II ! I ! III, then the helicopter
starts the dipping at a point on the right ray of
the middle wedge (II) and spirals towards the
left ray of I. Once it reaches that ray, it flies back
to a certain point, farther away on the right ray
of II and resumes the search towards the right
ray of III (see Figure 12). Note that unlike the

Figure 8. Dipping pattern for R ¼ 1.5, 3, and 6 nm.
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Figure 9. Number of dips and search time for varying detection ranges.

Figure 10. Dipping pattern for U ¼ 4, 8, and 16 knots.
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continuous searches described for the cases I!
II ! III or III ! II ! I, in this search pattern
there is some wasted ‘‘lull’’ time when the heli-
copter moves from wedge I to wedge III (the
thin arrow in Figure 12). The objective is to min-
imize the expected time to detection and there-
fore such discontinuous dipping patterns are
possible if, for example, p . q � 1 – p – q.

There are six possible orders of searching
the wedges:

1. I ! II ! III
2. I ! III ! II
3. II ! I ! III
4. II ! III ! I
5. III ! I ! II
6. III ! II ! I

Recall that our objective is to determine
the search order that minimizes the expected

time to detection. For each one of the six search

orders, there are values of p and q for which the

order is optimal. Figures 13 to 15 present the (p, q)

region in which each order is optimal. The com-

putational details for generating these figures

appear in (Ben Yoash, 2016).
Figure 13 presents the case where a ¼ b ¼

g ¼ 30� and the velocity ratio between the heli-

copter and the sub is S¼ V/U¼ 10. Each region

is labeled with the number corresponding to the

search order presented above. For example, re-

gion 1 contains all the (p, q) values for which

the wedges search order is I ! II ! III.

We see that the larger p is (probability that the
submarine is in wedge II), themore likely we are to
start in thatmiddlewedge (searchorders 3 and4). If
q (probability of the submarine in wedge I) is rela-
tively large, then it ismore likely that the searchwill
start at wedge I (patterns 1 and 2).

Figure 14 demonstrates the effect of varying
the sizes of the two side wedges (angles a and
g) on the optimal order. We vary them together,
keeping the two other parameters constant (b ¼
30�, S ¼ 10).

We see that increasing the angles of the side
wedges decreases the regions of (p, q) where
the searcher uses patterns 2 and 5, which corre-
spond to patterns in which the center wedge is
searched last. Although this seems counterin-
tuitive, the explanation is that searching the
center wedge last means that the helicopter
has to fly over a side wedge, which has already
been searched, back to the center. This wasted
flying time increases as the side wedge be-
comes wider. We also see that regions 3 and
4 increase, that is, starting the search at the
center wedge becomes more common when
the side wedges increase in size. This happens
because wider wedges imply lower probabil-
ity per unit angle, which make them less at-
tractive in terms of ‘‘bang-for-the-dip’’ (the
expected reward from a dip). We notice, how-
ever, that for side wedges wide enough the
changes are marginal (e.g., see the plots for 45o

and 60o.)

Figure 11. Bearing in one of three wedges. Figure 12. Dipping pattern for II ! I ! III.
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Last we examine the sensitivity of the
search order to the speed ratio S between the
helicopter and the submarine. We assume
a ¼ b ¼ g ¼ 30� throughout. Figure 15 depicts
this sensitivity.

Clearly, as the speed ratio increases, pat-
terns 1 and 6 become less common and patterns
2, 3, 4, and 5 become more common. Orders 1
and 6 are the only search patterns that do not
involve ‘‘hopping’’ over wedges (i.e., patterns
I ! II ! III and III ! II ! I). The faster the he-
licopter flies, the less significant is the time loss
for jumping over wedges.

CONCLUSIONS
The US Navy MH-60R helicopter may be

equipped with dipping sonar for detecting
and localizing adversaries’ submarines. This
discrete search pattern is different from more
common continuous searches. In this paper, we
present an analysis of the optimal dipping fre-
quency. We primarily focus on the deterministic
submarine velocity scenario and derive an opti-
mal dipping pattern: the optimal next dipping
location is the closest point that produces a dis-
joint dip. We investigate the effect of various
operational and physical parameters on the
characteristics of the dipping pattern. We ob-
serve that temporal parameters (time to arrival
to the datumand velocity of the submarine) have

Figure 14. Three wedges model, S ¼ 10, b ¼ 30, a,
and g varied.

Figure 15. Three wedges model, a ¼ b ¼ g ¼ 30�,
S varied.

Figure 13. Three wedges model, a ¼ b ¼ g ¼ 30�,
S ¼ 10.
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significant effect on the dipping pattern and the
time to complete a full coverage (spiral) of the sub-
marine location. We also examine the case where
the submarine velocity is a random variable. Dis-
joint dips are not necessarily optimal in this sce-
nario when the helicopter arrives on station
quickly. However, for most realistic parameter
values, a disjoint dipping strategy should perform
near optimally. Future work could consider more
realistic detection functions and more complex
target dynamics, such as counter-detection.
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APPENDIX A: PROOF OF THEOREM 1
Wefirst provide additional background and

notation, before proceeding with the proof. We
present the mathematical representation for
the optimal dipping pattern at the end of the
first section.

Background
We define the optimal dipping pattern as

the one that, given a limited number of dips (be-
cause of limited flight endurance), maximizes
the probability of detecting the submarine.
Since we assume that we know the speed U of
the submarine, the LoU at time T is a circum-
ference of a circle with radius T 3 U. Since the
size of the circumference is growing with time,
we analyze the problem using coverage angles.
Absent any knowledge regarding the bearing
of the submarine, we assume any direction
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is equally likely, that is, the direction of the
submarine is uniformly distributed between 0�
and 360�.

Given a particular dip (not necessarily the
first one) that occurs at time T, we compute
the coverage angle a. See Figure A.1 for refer-
ence. The dip footprint DP in Figure A.1 is the
circle centered at the dip point with radius R
(the dipper’s detection range). The coverage an-
gle a satisfies sin(a/2) ¼ R/T 3 U, so

a5 2 sin21 R

T3U

� �
;

where we assume the inverse sin function re-
turns degrees.

Since the movement direction of the sub-
marine is uniformly distributed, the prob-
ability of detection by a dip that has no overlap
with previous dips equals the coverage angle
divided by 360. If the dip has overlap with
previous dips, then the effective coverage of
the current dip is its coverage a minus the
overlap with the previous dips. Mathemati-
cally the detection probability of one dip at
time T satisfies

P½detection  during  dip  at  time T�# a

360

5
sin21 R

T3U

� �

180
:

The inequality follows because the dip at
time at time T may overlap with previous dips.
If there is no overlap, the detection probability is
exactly a/360.

Obviously, larger effective coverage is equiv-
alent to a higher detection probability. The
question is what is the optimal way to dip?
More precisely: given the current dip location
Pi, what is the optimal next dip location P�

i11?
We assert that Figure A.2 illustrates the answer
to this second question.

Looking at Figure A.2, we claim that after
dipping at point Pi the best next dipping point,
P�
i11, would be a disjoint one. Moreover, point

P�
i11 is the closest possible disjoint dip. That is

the dip footprint DP�
i11

is tangent to the same
tangent line of footprintDPi

but ‘‘from the other
side’’ (as shown in Figure A.2).We prove this in
the next section and provide a mathematical
representation for P�

i11 at the end of this sec-
tion.

Before turning to the proof, we make a few
observations and introduce additional notation.
The ith dip begins at time Ti at location Pi. The
datum is determined at time 0, and time is mea-
sured since that event.WedefinePiusing amod-
ified polar coordinate system: Pi¼ (Ki, ui), where
Ki ¼ U 3 Ti is the submarine’s distance from
the datum at the ith dip, and ui is the angle,
rooted at the datum, measured clockwise with
respect to the vertical axis. Because the subma-
rine’s velocity is known, the radial component
Ki11 ofPi11 is uniquely determined, and therefore,

Figure A.1. Illustration of coverage angle a. Figure A.2. Optimal next dipping location P�
i11.
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to determine the next dipping location Pi11 (not
necessarily optimal), we only need to specify ui11

(or, equivalently, ui11 – ui). Once we know ui11,
we can use velocity/distance/time calculations
to determine when the helicopter will reach
a valid Pi11 along the ray defined by ui11 from
the current dipping point Pi. This calculation
yields Ti11 and hence Ki11 ¼ U 3 Ti11. Conse-
quently, specifying ui11 determines the actual
next dipping point. More rigorous mathematical
details appear in the next section.

Since we only need to determine the angle
of the next dip, we first define vi11 ¼ ui11 – ui,
which is the angle created by the previous dip,
the datum, and the new dip, as illustrated in
Figure A.3. We next define f(v) as the effective
coverage of a dip with angular difference v.

If vi11 ¼ 0, then the helicopter’s next loca-
tion Pi11 lies on the same ray as Pi. Pi11 does
not equal Pi even when vi11 ¼ 0 because there
is a positive dipping time tD. Consequently,
f(0) ¼ 0 because dipping along the same ray as
the previous dip will produce no additional
coverage relative to the previous dip.

In most realistic scenarios, the helicopter
does not arrive to the datum fast enough to find
the submarine with one dip at the datum, i.e.,
R , K1 ¼ T1 3 U, where K1 is the distance of
the first dip from the datum and u1 ¼ 0 is its an-
gle measured clockwise from the vertical axis.
Subsequent dips occur in a clockwise fashion
and hence the angles ui form amonotonically in-
creasing series. The duration of a dip is tD and

its location remains stationary throughout; the
helicopter hovers over the dipping point.

We conclude this section by presenting the
formulas we use to compute the optimal loca-
tion of the next dip P�

i11 5 K�
i11; u

�
i11

� �
given cur-

rent dip location Pi ¼ (Ki, ui). These two
equations simultaneously solve for displacement
angle v�

i1 1 and the time of dipping T�
i1 1, which

yields K�
i1 1 5U3T�

i11 and u�i11 5 ui 1v�
i11.

v
�
i11 5 cos21

U3Tið Þ2 1 U3T
�
i11

� �2

2 V3 T
�
i11 2Ti 2 tD

� �� �2

23U
2 3Ti 3T

�
i11

0

BBBBB@

1

CCCCCA

(A.1)

v
�
i11 5 sin

21 R

Ti 3U

� �
1 sin

21 R

T
�
i11 3U

� �

(A.2)

Equation (A.1) relates to time/distance calcula-
tions to ensure the searcher’s next dip location is
consistent with the submarine’s radial location.
Equation (A.2) guarantees that there is no over-
lap between dip i1 1 and dip i: the two dips are
disjoint. More details and the proof of optimal-
ity appear in the next section.

Proof of the Optimal Dipping Pattern
Our proof follows three steps:

1. Show that equations (A.1) and (A.2) mathe-
matically define our desired next dipping
point P�

i11: the closest disjoint dip.
2. Show that the effective coverage function f(v)

is continuous.
3. Show that P�

i11 is the optimal next dip via
contradiction.

We first relate the current position Pi to
the next dip position Pi11 (not necessarily op-
timal) using the Law of Cosines as illustrated
in Figure A.4.

The distance from the datum to the current
dipping point,Pi, isKi¼U3Ti, and the distance
from the datum to the next dipping point, Pi11,
is Ki11 ¼ U 3 Ti11. The helicopter departs from
Pi at timeTi 1 tD after finishing thedip andarrives
to Pi11 at time Ti11, and therefore the distanceFigure A.3. Definition of v.
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between Pi and Pi11 is V3 Ti11 2 Ti 1 tDð Þð Þ,
where V is the helicopter’s velocity. Using the
Law of Cosines (assuming vi11,180�), we have
the following relationship:

V3 Ti112Ti2tDð Þð Þ2 5 U3Tið Þ2

1 U3Ti11ð Þ2

2 23U
2 3Ti

3Ti11cos vi1 1ð Þ:
(A.3)

Equation (A.3) defines an implicit function
of Ti11 with respect to vi11. Ti11 is a continu-
ous function of vi11 by the Implicit Function
Theorem (see Chapter 7.2 of Marsden and
Hoffman [1993]). The only conditions we need
are Ti, Ti11. 0, which follow by assumption,
and then Ti11 is continuous in vi11 for all 0 ,
vi11 , 180. Solving equation (A.3) for vi11 pro-
duces equation (A.1).

vi11 5 cos21

U3Tið Þ2 1 U3Ti11ð Þ2

2 V3 Ti11 2Ti 2 tDð Þð Þ2
23U

2 3Ti 3Ti11

0

BBBB@

1

CCCCA
:

Thus using equation (A.3) (or (A.1)), the
angle differential vi11, uniquely determines
the time of the next dip such that the radial po-
sition of the helicopter corresponds to the radial
position of the submarine.

Next we derive an explicit expression for the
effective coverage function f(v). If g(vi11) denotes
the overlap between the two dips, then

f vi11ð Þ5 a2 gðvi11Þ

5 23 sin21 R

Ti11 3U

� �
2 g vi11ð Þ

(A.4)

Recall that the overlap is the angle between
the left tangent to DPi11

and the right tangent to
DPi

, as shown in Figure A.5.
The angle between the vertical axis and the

right tangent to DPi
can be expressed as

ui 1
ai

2
5 ui 1 sin21 R

Ti 3U

� �
;

and the angle between the vertical axis to the left
tangent to DPi11

is

ui11 2
ai11

2
5 ui11 2 sin21 R

Ti11 3U

� �
:

The overlap is the difference between these two
angles, that is,

g vi11ð Þ5 ui 1 sin21 R

Ti 3U

� �
2 ui11

1 sin21 R

Ti11 3U

� �

5 ui 2 ui11 1 sin21 R

Ti 3U

� �

1 sin21 R

Ti11 3U

� �
;

Figure A.4. Relating vi11 to Ti11.

Figure A.5. Overlap calculation.
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which simplifies to

g vi11ð Þ52vi11 1 sin21 R

Ti 3U

� �

1 sin21 R

Ti11 3U

� �
: (A.5)

Our candidate for the optimal next position
P�
i11 is the closest dip to Pi with no overlap, and

hence g v
�
i11

� �
5 0. Therefore, to derive condition

(A.2), we set (A.5) to 0. Examination of (A.4)
and (A.5) reveals that f(vi11) is a continuous func-
tion. Both R/(Ti 3 U) and R/(Ti11 3 U) are pos-
itive and less than 1 by assumption. Furthermore,
Ti11 is a continuous function of vi11 (see dis-
cussion following (A.3) above). Consequently,
f(vi11) is continuous by the continuity of function
composition (see Chapter 4.3 of Marsden and
Hoffman [1993]).

Now that we have derived conditions (A.1)
and (A.2), and showed that f(vi11) is continu-
ous, we proceed to prove the result in Theorem
1 by contradiction. Suppose location ~Pi11 is a
better location for the next dip than our pro-
posed location P�

i11, which satisfies equations
(A.1) and (A.2). That is ~Pi11 produces a higher
effective coverage than P�

i11. P
�
i11‘‘shares’’ a tan-

gent with the current location Pi (see Figure
A.2). Therefore, ~Pi11 must be closer to the datum
than P�

i11 because a location farther away will
obviously have a smaller coverage. We claim
that ~vi11 ,v�

i11 must hold. Because ~Pi11 lies
closer to the datum than P�

i11, it follows that
~Ki11 ,K�

i110
~Ti11 ,T�

i11 (see Figure A.4). Con-
dition (A.1) ensures that pairs of (vi11, Ti11)
produce valid dipping points Pi11. Inspection
of (A.1) reveals that vi11 is an increasing func-
tion in Ti11 as long as Ti11 .Ti 1 tD. Therefore,
~Ti11 ,T�

i11 implies ~vi11 ,v�
i11 .

If indeed ~Pi11 covers a larger angular section
than P�

i11, we next argue that there must exist
a valid dipping point Pj that is reachable by
the helicopter in time to dip and has the same ef-
fective coverage as P�

i11, as shown by themiddle
circle in Figure A.6.

We prove the existence of point Pj using
the Intermediate Value Theorem (see Chapter
4.5 of Marsden and Hoffman [1993]). As argued
earlier, the effective coverage function f(vi11)
is continuous. We discussed earlier that
f 0ð Þ5 0# f v�

i11

� �
(coverage cannot be negative),

and by definition, if location ~Pi11 is a better lo-
cation to dip than P�

i11, then f ~vi11ð Þ. f v�
i11

� �
.

Finally, we showed ~vi11 ,v�
i11 in the previ-

ous paragraph. Putting these pieces together
with the Intermediate Value Theorem, there
is an vj (and therefore Pj) for which
f vj

� �
5 f v�

i11

� �
and 0,vj , ~vi11 ,v�

i11. This
implies that Pj is closer to the current dipping
point than P�

i11 and produces the same effec-
tive coverage. Figure A.7 illustrates the logic
graphically.

The angular coverage of DPj
overlaps with

the angular coverage ofDPi
becauseDPj

is closer
to DPi

than DP�
i11
(see Figure A.6). Consequently,

to generate the same effective coverage, DP�
i11

andDPj
must both be tangent (on the right-hand

side) to the same ray from the datum. This fol-
lows because the effective coverage is the angle
created by the right tangent to DPi

and the right
tangent to both DP�

i11
and DPj

. We call the later
ray the ‘‘ray of coverage’’ (see Figure A.6). From
the geometry displayed in Figure A.6 it follows
that the line through P�

i11 and Pj (dotted line in

Figure A.6. Illustration of the contradiction.

Figure A.7. Intermediate value theorem.
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Figure A.6) is parallel to the ‘‘ray of coverage’’ at
a distance R from the ray.

We now show that the existence of Pj leads
to a contradiction. We first reintroduce the pa-
rameter K, which is the distance from the datum
to the dipping point of interest. We next define
Disti,i11 as the distance between Pi and P�

i11.
We note that

Disti;i11 5V3
K
�
i112Ki

U
2 tD

� �

is the distance the helicopter travels while the
submarine moves between the two radii Ki

and K�
i11. Similarly, we define

Disti;j 5V3
Kj 2Ki

U
2 tD

� �

as the distance between Pi and Pj. The distance
Distj,i11 between Pj and P�

i11 can be found by
considering the dotted line in Figure A.6, which
is parallel to the ‘‘ray of coverage.’’ That is,
Distj;i11 5K�

i11 2Kj.
We now observe that

Disti;j 1Distj;i11 5 V3
Kj 2Ki

U
2 tD

� �

1 K
�
i11 2Kj

� �

,V3
Kj 2Ki

U

1V3
K
�
i11 2Kj

� �

U
2VtD

5
V

U
½ Kj 2Ki

� �
1 K

�
i11 2Kj

� ��
2VtD

5
V

U
K
�
i11 2Ki

� �
2VtD

5V3
K
�
i11 2Ki

U
2 tD

� �

5Disti;i11

The inequality part of the above expression
follows from the fact that V . U; the helicopter
moves faster than the submarine. The inequality
implies that we found a path from Pi to P

�
i11 that

is shorter than Disti,i11, contradicting the fact
that Disti,i11 is the shortest distance from Pi to
P
�
i11. We conclude that there is no location ~Pi11

that provides higher effective coverage than
P
�
i11, and the theorem is proved.

u
�
i11 5 ui 1v

�
i11

APPENDIX B: PROOF OF THEOREM 2
We assume the searcher makes two dips.

The searcher arrives at time T1 and, without loss
of generality, dips at the position defined by an-
gular component u1 ¼ 0 and radial component
K1 ¼ U 3 T1. As in Appendix A, we measure
the angular component ui clockwise from the
vertical axis.

For the second dip, the closest disjoint dip-
ping location is defined by KD

2 5U3TD
2 and

uD2 5 u1 1vD
2 , where TD

2 andvD
2 are the solutions

to the set of simultaneous equations defined by
(A.1) and (A.2). Given these parameters, the
overall detection probability for this disjoint
2-dip pattern is

Pdisjoint½detect�5
a1 1 a

D
2

� �
q

360
;

where

a15 2 sin21 R

T1 3U

� �
; a

D
2 5 2 sin21 R

TD
2 3U

 !

:

We contrast the disjoint 2-dip pattern with
the other extreme: a complete overlap 2-dip pat-
tern. If the second dip completely overlaps the
first, the searcher wants the second dip to occur
as quickly as possible (to maximize the size of
the overlap). We define TO

2 and vO
2 to represent

the position of the closest overlap dipping loca-
tion. This overlap position occurs when uO2 5
u1 5 0 and vO

2 5 0 (see Figure A.4 for reference).
In this case we have a closed form expression
for the time of the second dip as equation (A.1)

simplifies considerably: TO
2 5T1 1

V

V�U
tD. The

detection probability using this complete overlap
2-dip pattern is

Poverlap½detect�5
a1 2a

O
2

� �
q1a

O
2 12 12 q

� �2� �

360
;

where
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a1 5 2 sin21 R

T1 3U

� �
; a

O
2 5 2 sin21 R

T
O
2 3U

 !

:

Comparing Poverlap[detect] to Pdisjoint[detect],
the searcher should implement an overlap
strategy if aO

2 12 qð Þ.aD
2 . Next we present

a numerical example where this condition
holds and hence the disjoint dipping strategy
is suboptimal.

• V ¼ 7 kts
• U ¼ 6 kts
• R ¼ 4.5 nm
• T1 ¼ 1 hour
• tD ¼ 1 minute
• q ¼ 0.4

For the above parameters Poverlap[detect] ¼
0.164 and Pdisjoint[detect] ¼ 0.129. This is not
a realistic scenario as the searcher velocity V
will likely be much higher than the target
velocity U.

APPENDIX C: PROOF OF THEOREM 3
In the first section we derive the formulas

for computing the overlap and detection proba-
bilities of two successive dips. In the second sec-
tion we present examples where overlapping
dips are optimal.

Overlap Between Two Successive
Dips

Since we only need to show a counterexam-
ple to prove disjoint dips are not necessarily op-
timal, we assume that the helicopter makes just
two dips. The helicopter executes its first dip at
time T1 at distance r1 from the datum, with r1 #
r(T1) ¼ UmaxT1. Without loss of generality we
assume that the first dip location lies on the ver-
tical axis at (0, r1). To avoid cumbersome
bookkeeping, we further assume that T1 and
r1 satisfy R # r1 # (r(T1) – R). That is, the first
dip is entirely contained within the upper part
of the containment circle (see Figure C.1 for an
illustration). The solid 2s2 circle in Figure
C.1 represents the footprint of the first dip at

time T1, and the dotted ���s��� circle is the
boundary of the containment circle: a circle
of radius r(T1). Because the heading and ve-
locity are uniformly distributed within the
speed circle of radius Umax kts, the location
of the submarine at time T1 is uniformly dis-
tributed within the circle of containment of
radius r(T1) nm. Therefore, the detection proba-
bility of the first dip is R2/r2(T1).

The second dip occurs at time T2 5T1 1�t.
The first dip ‘‘clears’’ from the speed circle all ve-
locity/heading combinations that liewithin a cir-
cle centered at 0; r1=T1ð Þ with radius R=T1(units
in speed circle are in kts). Because the submarine
does not change heading or velocity, the veloc-
ity/heading combinations in the cleared circle
can be eliminated from future consideration (as-
suming the first dip does not detect the target).
Any additional search of those combinations
produces overlap and redundant search effort.

In real-space, the cleared circle at time T1

has center (0, r1) and radius R. At time T2 ¼ T1 1
�t, this cleared circle has expanded in real-
space to a radius of R(1 1 �t/T1), centered
at point

0; r1 11
�t

T1

� �� �
:

See Figure C.1 for an illustration of the cleared
circle shifting and expanding in real-space and
time. The solid 2s2 circle is the first dip foot-
print at time T1 and represents the cleared circle
at time T1. As time progresses to time T2, the
cleared circle expands north to the dashed
2 2 3 2 2 circle. The solid 2 3 2 circle is
the second dip footprint at time T2. The second
dip is disjoint from the first if the solid 2 3 2
circle and dashed 2 2 3 2 2 circle do not
overlap.

If the second dip is disjoint, the detection
probability is R2/r2(T1 1 �t). The best disjoint
strategy corresponds to the smallest�t that pro-
duces a disjoint dip, which occurs when the
helicopter heads due south after the first dip.
To compute this best disjoint time, which we
denote �tD, we determine when the distance
between the center of the cleared circle and
the second dip location (the distance between
the two 3 circle centers in Figure C.1) equals the
sum of the two radii:
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r1 11
�t

D

T1

 !

2 r12V�t
D

� �

5R 11
�t

D

T1

 !

1R

0�t
D 5

2R

V1
r1 2Rð Þ
T1

(C.1)

Any �t , �tD will produce overlap. We
define overlap(�t) as the area of overlap when
the next dip occurs at time �t , �tD. To com-
pute overlap(�t) requires calculating the area

of intersection between the following two
circles:

Cleared circle ðdashed2 2 3 2 2 Þ: center

5 0; r1 11
�t

T1

� �� �
; radius5R 11

�t

T1

� �

Footprint of second dip ðsolid2 3 2 Þ:
center5 0; r1 2 v�tð Þð Þ; radius5R

The formula for this area of intersection ap-
pears in standard geometric references (for ex-
amples, see equation (14) in Weisstein [2017]),
and we provide it below for our context:

Figure C.1. Disjoint dips (left panel) vs. overlapping dips (right panel).

overlap �tð Þ5R
2cos21

d �tð Þð Þ2 2R
2 �t

T1

� �2

2Rd �tð Þ

0

BBB@

1

CCCA

1R
2 11

�t

T1

� �2

cos21
d �tð Þð Þ2 1R

2 �t

T1

� �2

2R 11
�t

T1

� �
d �tð Þ

0

BBB@

1

CCCA

2
1

2



2 d �tð Þ1R 21
�t

T1

� �� �
d �tð Þ2R

�t

T1

� �� �
d �tð Þ1R

�t

T1

� �� �
d �tð Þ1R 21

�t

T1

� �� �s

;
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where

d �tð Þ5 r1
T1

1V

� �
�t

is the distance between the center of the cleared
circle and the center of the second dip. To
show that overlap can be optimal, we must find
a �t , �tD such that

pR
2 2 overlap �tð Þ
pr

2
T1 1�tð Þ .

pR
2

pr
2
T1 1�t

D
� � (C.2)

In the next section we present two such examples.

Examples of Optimal Overlapping
Dips

We set

• V ¼ 11 kts
• U ¼ 7 kts
• R ¼ 3.5 nm
• T1 ¼ 1 hour
• r1 ¼ 3.5 nm

The detection probability on the first dip
is 0.25. Substituting into equation (C.1) yields
�tD ¼ 0.636 hours. The largest detection proba-
bility from a disjoint dip is 0.093 (substitute
into the right-hand side of (C.2)). Numerically
optimizing the left-hand side of (C.2) yields
�t� 5 0:838�tD 5 0:533 hours. This generates

an overlap of overlap(�t*) ¼ 3.25 nm2 and a de-
tection probability of 0.097. The optimal overlap
dip occurs over 15 percent earlier than the dis-
joint dip and produces a detection probability
4 percent greater.

In the previous example, the differences be-
tween the disjoint dip and the optimal overlap
dip are not trivial. However, the parameter
values are not realistic as the helicopter will
travel much faster than 11 kts. Following is
a more realistic example where the disjoint dip
is suboptimal:

• V ¼ 82 kts
• U ¼ 13.8 kts
• R ¼ 3 nm
• T1 ¼ 0.45 hour
• r1 ¼ 3.1 nm

The optimal time of the next dip �t* ¼
0.977�tD ¼ 0.071 is close to the time of the next
disjoint dip and the optimal detection probabil-
ity (0.1732) is only slightly better than the dis-
joint detection probability (0.1728).

The disjoint dip is not optimal when the he-
licopter arrives quickly to the datum. The differ-
ence between the disjoint dip and optimal dip is
larger for slower helicopters. Thus, for realistic
scenarios where the helicopter is much faster
than the submarine, disjoint dips should per-
form near optimally.
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