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Data Envelopment Analysis in the Presence of Both
Quantitative and Qualitative Factors

WADE D. COOK!, MOSHE KRESS? and LAWRENCE M. SEIFORD?3
1York University, Ontario, Canada, 2CEMA, Haifa Israel and 3The University of Massachusetts, U.S.A.

This paper presents a framework for incorporating ordinal data factors into the standard ratio DEA
model. An application involving the prioritization of R&D projects is presented as a case in point where
such ordinal factors appear in a natural way. Two different models for incorporating ordinal data are
developed; one in which the ordinal factors are ranked and one where they are not. Finally, the issue of
selecting a lower bound ¢ on factors is addressed.
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INTRODUCTION

The Data Envelopment Analysis (DEA) method of Charnes, Cooper and Rhodes! (CCR) has been
applied to a wide range of real world problems as shown in Seiford?. In addition to the standard
applications involving relative efficiency measurement, this analysis tool has also been utilized for
ranking alternatives (for example, projects) and for examining general multiple criteria decision
situations. A distinguishing feature of the DEA methodology is its capability to handle multiple
inputs and outputs. Because of the types of not-for-profit settings to which DEA has been applied,
the corresponding analysis factors are very often non economic in nature. This being the case, the
inputs and outputs often represent qualitative factors, which have been quantified as a conve-
nience to accommodate the DEA structure. In many instances, however, this quantification is
superficial, particularly if the data is actually a categorization or is simply an ordinal ranking of
the DMUs.

In an earlier paper by Cook, Kress and Seiford® a structure was presented which permitted the
inclusion of a single ordinal input within the standard CCR model framework. This input can be
viewed as an ordinal ranking of the DMUs. In the present paper we extend this idea to the more
general case where a mix of qualitative and quantitative inputs and outputs are present.

As a practical setting, the next section briefly discusses an application involving project selection
in the area of research and development. The third section develops a generalization of the CCR
model to include ordinal data. By imposing ratio constraints on the multipliers of such factors, a
model somewhat resembling the cone ratio model of Charnes et al.#, but more properly an assur-
ance region model as per Thompson et al.® arises. In the fourth section we examine the issue of
replacing the infinitesimal ¢ by an actual lower bound, viewing the role of ¢ as a discrimination
parameter. A discussion follows in the final section.

ORDINAL DATA IN R&D PROJECT SELECTION: AN EXAMPLE

Consider the problem of selecting R&D projects in a major public utility corporation with a
large research and development branch. Research activities are housed within several different
divisions, for example, thermal, nuclear, electrical, and so on. In a budget constrained environment
in which such as organization finds itself, it becomes necessary to make choices among a set of
potential research initiatives or projects that are in competition for the limited resources. To
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evaluate the impact of funding (or not funding) any given research initiative, two major consider-
ations generally must be made. First, the initiative must be viewed in terms of more than one
factor or criterion. Second, some or all of the criteria that enter the evaluation may be qualitative
in nature. Even when clearly quantitative factors are involved, such as long term saving to the
organization, it may be extremely difficult to obtain even a crude estimate of the value of that
factor. The most that one can do in many such situations is to classify the project (according to
this factor) on some scale (high/medium/low or say a 5-point scale).

Let us assume that for each qualitative criterion each initiative is rated on a 5-point scale, where
the particular point on the scale is chosen through a consensus on the part of executives within
the organization. Table 1 presents an illustration of how the data might appear for 10 projects, 3
qualitative output criteria (benefits), and 3 qualitative input criteria (cost of resources).

In the actual setting examined, a number of potential benefit and cost criteria were considered
as displayed in Tables 2a and 2b.

It is pointed out that we use the convention that a rating of 1 is ‘best’ and 5 ‘worst’ in the case
of outputs, while for inputs the reverse is true. This convention is needed since ‘more’ is better in
the case of outputs while ‘less’ is better with inputs.

Regardless of the manner in which such a scale rating is arrived at, the existing DEA model is
capable only of treating the information as if it has cardinal meaning (e.g. something which

TABLE 1. Ratings by criteria

Project No. Outputs Inputs
1 2 3 4 5 6
1 2 4 1 1 4 5
2 1 1 4 3 1 4
3 1 1 1 5 4 5
4 3 3 3 2 3 4
5 4 3 5 1 5 2
6 2 5 1 5 4 4
7 1 4 1 1 2 3
8 1 5 3 3 3 3
9 5 2 4 2 4 1
10 5 4 4 1 1 1
TABLE 2a. Potential benefits
Criteria Subcriteria or Interpretation
1. Enhancement of energy —development of high yield technologies
efficiency —initiatives which will reduce energy demand
—development of technologies for utilizing residues
2. Enhancement of diversification/ —initiatives which provide or strive for new energy sources
alternative energy sources —provide for flexibility in or adaptability of existing and new facilities
3. § Saved internal to organization —cost reduction devices
—new technology to replace obsolete equipment
4. Impact on environment —reduction of emissions into water and atmosphere
—reduction of risk of nuclear accidents
5. Enhancement to internal —provides training and develops expertise
technical capability and —provides technical resources (software, equipment, etc.)
research profile —builds linkages to external research community.
6. Enhancement to research profile as —impact on research status among other utility companies
viewed by the external community —impact on profile abroad
7. Economic impact on —job creation outside organization
external community —§ savings to public and industry created by energy efficiency devices
8. Impact on nuclear performance —influence on nuclear station maintenance, etc.

This content downloaded from 132.68.239.10 on Fri, 18 Oct 2019 08:50:27 UTC
All use subject to https://about.jstor.org/terms



W. D. Cook et al—Data Envelopment Analysis 947

TABLE 2b. Potential costs

Criteria Subcriteria or Interpretation
1. Technical expertise available internally
2. Technical expertise available externally —consultants
—other research centres
3. Technology available —equipment
—software

receives a score of 6 is evaluated as being twice as important as something that scores 3). There
are a number of problems with this approach. First and foremost, the projects’ original data in the
case of some criteria may take the form of an ordinal ranking of the projects. Specifically, the most
that can be said about two projects i and j is that i is preferred to j. In other cases it may only be
possible to classify projects as say ‘high’, ‘medium’ or low’ in importance on certain criteria. When
projects are rated on, say, a 5-point scale, it is generally understood that this scale merely provides
a relative positioning of the projects. In a number of agencies investigated (for example, hydro
electric and telecommunications companies), S-point scales are common for evaluating alterna-
tives in terms of qualitative data, and are often accompanied by interpretations such as

1 = Extremely important
2 = Very important

3 = Important

4 = Low in importance
5 = Not important,

which are easily understood by management. While it is true that market researchers often treat
such scales in a numerical (i.e. cardinal) sense, no one seriously believes that an ‘extremely impor-
tant’ classification for a project should be interpreted literally as meaning that this project rates
three times better than one which is only classified as ‘important’. The key message here is that
many, if not all criteria used to evaluate R&D projects are qualitative in nature, and should be
treated as such. The model presented in the following sections extends the DEA idea to an ordinal
setting, hence accommodating this very practical consideration.

ORDINAL AND CARDINAL FACTORS IN DEA

Representation of ordinal data in the DEA structure

The problem setting of the previous section represents a situation in which the factors involved
are qualitative rather than quantitative. To cast the R&D project selection problem in a general
format, consider the situation in which a set of N projects or DMUs (n =1, 2, ..., N) are to be
evaluated in terms of a mix of numerical (quantitative) and ordinal (qualitative) factors. Specifi-
cally, assume there are R; numerical outputs, R, ordinal outputs, I, numerical inputs, and I,
ordinal inputs. Let the R,-dimensional vector of numerical outputs and the I,-dimensional vector
of numerical inputs for project n be denoted Y, and X,, respectively. In regard to the ordinal
factors, define the L-dimensional unit vectors (y,,(1), ..., Yu(n);, - .., Y.(n) and (§;;(n), ..., d4(n), ...,
0;1(n)) where

(n) = 1 if project n is rated in Ith place on the rth ordinal output
MW =00  otherwise

and

1 if project n is rated in Ith place on the ith ordinal input
Ou(n) = :
0 otherwise.
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For example, if L = 5 and if project 1 is rated in third place (i.e., in the third category among the
five categories), on output criterion 5, then y55(1) = 1 and y5,(1) = 0 for [ = 1, 2, 4, 5. The choice of
L seems to be rather arbitrary in most practical situations. Likert scales used by market
researchers are commonly taken as 5, 7 or 9. The use of a 5 point scale seems to be fairly common
in many settings since particular meanings can be attached to the various levels as indicated
earlier. For purposes herein we assume the use of a common scale for all criteria.

Define the decision variable or worth w}; associated with being rated Ith relative to the rth
output factor. Similarly, w3 denotes the worth variable associated with being rated Ith relative to
the ith input criterion.

In the usual formulation of the CCR model with only numerical factors, the contribution of the
rth output criterion, say, to the overall efficiency ratio of the nth project, is y, y,,. For an ordinal
output criterion, the contribution will be Y-, w}y,/(n). Using vector notation (e.g. W, is the L-
dimensional vector of variables w,;), we define the mixed numerical/ordinal DEA ratio model (in
the primal LP format) by:

max uY, + Y. W!yfo0) 8)
reORD
subject to:
vX,+ Y W?fo)=1 )
ieORD2
ﬂ},n+ Z W}?r(n)—VXn— z leal(n)soi n=19"-5N9 (3)
reORDj ieORD2
U= e, reCARD, “4)
v; =6, ieCARD, (5)
(W}, Wile¥. (6

The notation Y, and y,(0) are used to signify the particular DMU being considered at the time.
Here, ORD, and ORD, represent the sets of ordinal outputs and inputs, respectively, CARD, and
CARD, are the sets of numerical outputs and inputs. ¥ denotes the set of allowable or admissible
worth vectors. It must be noted that the use of the same ¢ for different input and output factors
within the DEA structure has met with objections from several quarters over the past several
years. Since two inputs might, for example, be ‘labour hours’ and ‘available computer technology’,
the scales for the respective data values x;,, and x;,, might be very different. In this case the likely
sizes of v;, and v;, may similarly differ. Thrall® has suggested a mechanism for correcting for this
scale differential through the use of a penalty vector G which can be used to augment & By
choosing G appropriately one can effectively reduce all factors to a form of common unit. For
simplicity of presentation and notation herein we assume the cardinal scales are similar in dimen-
sion and that G is the unit vector. The more general case would proceed in a similar manner.
We now examine various forms which ¥ might take.

Strict ordinal relations on the components of the worth vectors

While in the case of pure numerical criteria, it may not be necessary to restrict the multiplier
space (for p and v) other than through the normalization constraints (2), ratio bound restrictions
(3), and lower limits (4) and (5), this is not true in the case of an ordinal factor. Because w}, for
example, is meant to represent the weight or worth of being rated Ith on a criterion, at a minimum
we require that w), > w}, ;. That is, it is more important to be rated in the Ith category on a given
criterion than in the [ + 1st category. Imposing a strict ordinal ranking on the components of each
worth vector we therefore define

1 2 1 1 2 2 2 .
W ={(W;, WHIwh —Whi1 =6 Wi =6 Wi — Wiy =6 wi =g forallr, i, I}, (7

where ¢ is a small positive scalar. Defining ¥ in this manner thus ensures that a strictly higher
weight is given to projects that rate in position / than is true of projects rated in position / + 1.
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W. D. Cook et a.—Data Envelopment Analysis 949

& could be made dependent upon ! (i.e. replace ¢ by ¢;), and all results below would still follow in
a similar fashion. For convenience here, we use a common &. in ¥, & could be augmented by an
appropriate penalty vector G since now we are using the same ¢ for both ordinal and cardinal
factors. The choice of an appropriate penalty vector G to ‘standardize’ all factors here should,
however, be no different than in the case where all factors are numerical.

Problem (1)-(6) where ¥ is defined by (7), is then a modification of the usual CCR structure, in
that it contains additional ordinal relations on the worth variables {w}, w?}. The following
theorem shows, however, that this model can be reduced to the standard CCR format.

Theorem 1

Problem (1)-(7) can be expressed in standard CCR format.

Proof

Writing constraints (4)—(7) in the form

1 1
—Wu + Wiy S —6
2 2

—Wi+ Wis1 S —6

the dual of (1)—(7) becomes

min 8 + 04 —&S* -8~ — Y .- Y & (8)
reORD} iecORD2
subject to:
N
00+ Y AYm— 5 =Yo, forall eCARD; )
n=1
N
Xio0 — Y Ayxy — s =0,  for all eECARD, (10
n=1

<

00 + Y 0=1 Adrs(m) — By = 7,1(0)
00 + Zn=1 A‘n '}’,2(") + ﬁrl - ﬂr2 = yrZ(O) L for all rBORDl (11)

060 + ZIIY=1 An er(n) + ﬂrL—l - ﬂrL = er(O)d

8:1(0)8 — YN_; 2,814(n) — piy =0

_ N . iy — Den =
02(0)0 = Xl-1 40 + Py — P2 =0l 1 eORD, (12)

8:0(0)0 — Y N_y A, 0:(n) + pir,—1 — pi =0
j'n’ S:-’ Sr_a ﬂrl’ Pi > 0 (13)

In (8) S* and S~ are R; and R,-dimensional vectors respectively (e.g. S* = (s{, s3, ..., Sg,)-
Similarly B, and p; are L-dimensional vectors of dual variables.

Here notation such as & denotes the vector € = (s, ¢, .. ., &).

Now perform simple row operations on the first L rows (i.e., for r = 1) of (11), by replacing the
second constraint by the sum of the first two constraints, the third by the sum of the first three
constraints, ..., etc. The resulting set of L constraints becomes

N
00 + 3, A 7ni) = B > 7:(0) (14)
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where

!
T = Y, 1a(1) = 7,4(0) + y,2(1) + ... + (). (15)

k=1

This exercise is then repeated for each r¢ORD,. Doing the same thing with each set of L con-
straints in (3.12) (i.e., for each i), we get the modified constraints

N
6u(0)0 — Y 2,64n) — py =0,  foralll, i, (16)
n=1

where ,(n) is defined in a manner analogous to ,(n) of (15). Replacing (11) and (12) by (14) and
(16), the primal version of the resulting problem is:

max uY, + Y. Wijo0) (17)
reORDy
subject to:
VX, + Y, Wifo)=1 (18)
reORD1
reORD1 ieORD2
U=8 Ve Wh=e Wie (20)

Problem (17)—(20) is now in standard CCR format.

When Model (1)—(6) is applied to the data of Table 1, the efficiency scores obtained are shown
in Table 3.

TABLE 3. Efficiency scores (non-ranked criteria)

Project 1 2 3 4 5 6 7 8 9 10

Score 076 0.73 1.00 067 1.00 082 067 0.67  0.55 0.37

Here, projects 3 and 5 turn out to be ‘efficient’, while all other projects are rated well below
100%. In this particular analysis, ¢ was chosen as 0.03. In another run (not shown here) where
¢ = 0.01 was used, projects 3, 5 and 6 received ratings of 1.00, while all others obtained somewhat
higher scores than those shown in Table 3. When a very small value of ¢(e = 0.001) was used, all
except one of the projects was rated as efficient.

Clearly this example demonstrates the same degree of dependence on the choice of ¢ as is true in
the standard DEA model. See Ali and Seiford”.

From the data in Table 1 it might appear that only project 3 should be efficient since 3 domi-
nates project 5 in all factors except for the second input where project 3 rates fourth while project
5 rates fifth. As is characteristic of the standard ratio DEA model, a single factor can produce such
an outcome. In the present case this situation occurs because w25 = 0.03 while w2, = 0.51. Conse-
quently, project 5 is accorded an ‘efficient’ status by permitting the gap between w3, and w35 to be
(perhaps unfairly) very large. Actually, the set of multipliers which render project 5 efficient also
constitute an optimal solution for project 3.

Criteria importance

There are many decision situations involving multiple criteria where management may wish to
impose an a priori ranking of those criteria. It is particularly true that when the criteria under
consideration are ordinal and are expressed on a common L-point scale, but note that while it
may be desirable to allow different scales for different criteria, this would be problematic if we
want to incorporate criteria importance. In (21) for example some pairs of criteria may be non
comparable. A ranking of those criteria will be provided.
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W. D. Cook et a/—Data Envelopment Analysis 951

The model (1)-(7) of the previous section, as it presently stands, does not contain any provision
for incorporating the relative importance of the various criteria.

To incorporate such a feature here, the admissible set ¥ of worth vectors {W}, W?} must be
redefined. Assume that the output worth variables w} have been prioritized (with no loss of gener-
ality, assume they are already numbered in descending order of importance), specifically,

wh—wl,>e r=1,...,R, —1, foralll (1)

Wiy = & for all 1.

Similarly, let the input worth variables be prioritized

wi—wl i, >e i=1,...,R,—1, foralll (22)

wi,>¢  foralll.

Now define ¥ by
P = {(W,, WH/wj—Whi1 =6 Wip=e Wi— Wi =6 wWp>s

and satisfying (21) and (22)} (23)

The DEA structure given by (1)-(6), together with (23), is then a modified version of the
original CCR model. It must be pointed out, however, that this structure cannot be reduced to the
standard CCR format as was true of the formulation of the previous subsection. The ranking of
the variables along two separate dimensions prohibits this. This modified model has a structure
somewhat reminiscent of the cone ratio model of Charnes et al.%, although the idea of deriving
factor weights based on pure ordinal data was introduced by Cook and Kress® in the context of a
general multi criteria decision framework. There, issues of discrimination functions in regard to
criteria importance as well as criteria clearness are addressed.

For a full discussion of ordinal data issues see Cook and Kress®.

Applying the revised model (with ¥ defined by (23)), the relative positioning of the projects
changes as shown by the efficiency scores of Table 4.

Here most ratings dropped slightly, yet projects 3 and 5 still retain their efficient status.

TABLE 4. Efficiency scores (ranked criteria)

Project 1 2 3 4 5 6 7 8 9 10

Score 0.71 0.72 1.00  0.60 1.00 080 0.62 0.63 050 035

CHOOSING ¢

As discussed earlier, the value of ¢ selected in the DEA model does influence the sizes of the
multipliers and the efficiency scores that result. See Ali and Seiford”. Arguably, a larger value of ¢
is preferable to a smaller value in that once a set of analysis factors is chosen, it would seem
unreasonable to credit the worth of any factor with negligible importance (¢ ~ 0). Geometrically,
the larger the value of ¢ used, the greater is the distance of the efficient frontier (isoquant) from the
axes, at least in terms of the numerical factors with multipliers ¢ and v. Furthermore, ¢ also plays
the role of a minimum discrimination parameter in ¥ (e.g., it is the minimum difference between
the importance attached to the Ith and (I + 1)st rank positions). It is reasonable to distinguish
between such different rank positions to the greatest extent possible.

Consider the n problems.

&, = max ¢ (24

subject to: 2)—(6) (25)
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TABLE 5. Efficiency scores using &y,
Project 1 2 3 4 5 6 7 8 9 10
Score 0.68 0.69 0.93 0.52 1.00 0.73 0.62 059 052 031

with ¢ being treated now as a variable rather than as a fixed parameter. Define
Emax = min {ét} (26)

i=1,..,n

Proof of the following theorem is straightforward.

Theorem 2

There exists a feasible solution to each of the n problems (24)—(25) if and only if ¢ < &, .

In the sense of Theorem 2, ¢,,,, is the largest feasible value of ¢ for purposes of evaluating the
relative efficiency of the various DMUs (projects). As indicated earlier, any solution found using
€max 18 considered to be the most discriminating in terms of the relative importance attached to
ordinal inputs and outputs. It is argued, therefore, that an appropriate choice for ¢ is ¢,

Using the data provided earlier, ¢,,,, was derived and then problem (1)—(6) was resolved for each
project. The resulting ratings are as shown in Table 5.

Clearly, the values of the various efficiency scores are lower (except for the single efficient
project 5) than was the case above. This is to be expected, given the more restrictive nature of the
optimization problem. It is pointed out that the concept of ¢, is related to g-stable introduced in
Lang et al.®

DISCUSSION

Many DEA applications can involve qualitative or ordinal data factors. Nowhere is this more
prevalent than in problems pertaining to R&D projects, where a major difficulty of quantification
stems from the uncertainty of the outcomes that are likely to flow from research. This fact necessi-
tates an alteration to the standard DEA structure to accommodate such qualitative information.

The ability to be able to model both qualitative and quantitative factors in the DEA structure
extends the usefulness of the tool to a broader range of problems. Moreover, since DEA was
initially developed as an efficiency measurement tool for not-for-profit situations, and since such
situations commonly exhibit ‘soft factors’, the capability to handle such factors becomes a necessi-
ty.

While we have not addressed directly such issues as fuzziness of criteria, it is worth investigating
how this aspect of multicriteria analysis could be incorporated into the DEA structure. Similarly,
it may be useful to examine how discrimination factors can be incorporated to reflect varying
levels of importance of one factor versus another. These and other issues are topics for later
research.
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