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On the Use of Ordinal Data in
Data Envelopment Analysis

WADE D. COOK', MOSHE KRESS? and LAWRENCE M. SEIFORD?
York University, Canada, 2CEMA, Israel and 3University of Massachusetts, USA

In many problems involving efficiency analysis using DEA, certain factors may be measurable only on
an ordinal scale. Specifically, it may be possible only to rank order the DMUs according to a factor, rather
than being able to assign a specific numerical value of that factor to each DMU. To illustrate this, we
examine a problem involving the evaluation of new technology installations. The presence of qualitative
factors in such an environment motivates the need to investigate how such factors can be incorporated
into existing efficiency measurement models. In particular, a procedure is presented for incorporating an
ordinal factor into the DEA structure, with the resulting formulation being a particular form of cone ratio
model. The model is then applied to the technology installation efficiency problem.
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INTRODUCTION

The Data Envelopment Analysis (DEA) methodology developed by Charnes efal.! has been
utilized to evaluate efficiency in a wide variety of applications. The usual setting for such
applications involves a set of similar decision making units (DMUs), for each of which there is an
observable and measurable set of inputs and outputs.

One case application, for example, is discussed in Cook et al.2 where the DMUs are a set of
(246) maintenance crews located throughout a Canadian province. To evaluate the relative
efficiency with which the crews perform, a set of measures were selected for study. These measures
are of two types —outputs or measures of accomplishment, and inputs or measures representing
resources available to the crews and circumstances within which the crews operated. Typical output
measures used are total surface area of pavement maintained and average performance rating
received by the pavements. Input measures include maintenance budget spent in a given analysis
year and the climatic conditions existing in that year.

Numerous applications of the DEA technique are reported in the literature. These include
analysis of courts, school districts, airforce maintenance units, power plants, and so on. A complete
bibliography is available in Seiford?.

A distinguishing feature of all applications of DEA reported to date is the specific assumption
that all input and output factors involve measurable, i.e. cardinal data. In some applications of
DEA, however, one or more factors believed to be relevant to the analysis may be measurable only
on an ordinal scale. Specifically, it may only be possible to rank the DMU s relative to such factors.
Consider the problem of analysing the relative efficiency of a set of possible new technology
installations for factories. Each installation can be considered as a DMU. Suppose the factors
believed to be relevant measures of output are:

e time to install the technology;
e % of time the finished product is serviceable;
e a management satisfaction score.
The factors considered to be strong influences (inputs) on these outputs are:
e complexity of the installation;
e previous experience of project team;
¢ novelty of the application;
e urgency of the technology.
Suppose that all factors except for urgency are observable and measurable. Specifically, assume
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that urgency is expressible only in terms of a ranking of the projects. That is, we can provide only
a prioritization of the DMUs (project No 1 is more urgent than project No 2 which is more urgent
than project No 3, and so on). The problem to be addressed is how to incorporate properly such
a factor into the DEA structure.

The presence of ordinal factors in efficiency evaluation and project prioritization settings is a
common phenomenon. That is certainly the case, for example, in R&D settings. Here, important
but often intangible factors such as the contribution of a project to national profile, are critical
to the priority setting exercise. Such a factor could generally only be measured on an ordinal scale.
Ordinal factors have been present in other studies, but have either been only implicitly included
or have been guantified whether quantification was practical or not. A strong argument can be
made, however, that only those factors that are truly measurable should be quantified. Factors that
are qualitative, i.e. that appear in preference format, should be dealt with as such.

In the present paper an approach is presented for incorporating ordinal data into the DEA
structure. Specifically, a factor is incorporated relative to which the DMUs have been rank ordered.
To motivate the presentation, the next section presents a brief description of a case application
where ordinal data appears in a natural setting. The section after develops an appropriate
representation in terms of worth vectors for ordinal data in the DEA framework. In the presence
of this representation it is necessary to define the restrictions which must be imposed on the
resulting worth vectors. This is given in the fourth section. Conclusions and discussion follow.

IMPLEMENTATION EFFICIENCY IN NEW TECHNOLOGY ADOPTION

The impact of new technology in the manufacturing environment has been a subject of
considerable interest and investigation over the past decade. This interest is due in large part to the
globalization of markets, and the need to compete in the international arena. Significant effort has
been expended on investigating those factors which influence adoption, and the successful usage
of new technology. Better knowledge of such influences can assist implementors/management in
understanding which types of technology work well, what forms of supplier commitments are most
efficient, . . ., etc.

To illustrate the application of DEA in this area, and more specifically to demonstrate the use
of ordinal variables, consider the installation of 31 robotics systems of various types in
manufacturing plants. The installations involved a wide range of plant sizes, system complexity
levels, and outcomes in the form of installation time and performance level when in operation.
Although arc welding applications and vehicle component manufacturing dominated the sample,
these categories included widely varying types of installations. The vehicle component installations
ranged from light stamping to heavy welding on military vehicles.

In a previous study (Cook etal.*) a full description of the factors used to carry out a DEA
analysis is given. There, ordinal inputs such as urgency were not explicitly incorporated into the
DEA structure but, rather, were treated as control parameters. To facilitate discussion of the
application, the description of the variables is recreated here. The data for these factors were
collected through on-site interviews with engineering managers, and reflect a consensus of opinions
within the organizations examined.

While many different parameters were collected, for analysis purposes three output variables and
four input variables are of interest.

Outputs

Time to install the technology —this was the number of weeks required to take the technology
from physical installation to the point where it was in full operation within the production process.

Uptime — an estimated percentage of the total time (when production could take place) when the
technology was in service.

Management satisfaction (MSAT)—this is a measure on a five-point scale representing the degree
to which the project met management expectations.
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Inputs

System complexity —this measure is a combination (sum) of four factors pertaining to robotic
systems; namely (a) number of machines controlled by the system; (b) the number of part numbers
requiring programming; (c) the number of robots, and (d) the number of operations performed by
the robots.

Previous experience with technology (PREVEX)—this measure is also a sum of four factors:
(a) the number of years that programmable equipment has been operated; (b) maintenance
capability with programmable equipment; (c) the number of years of experience with systems
powered by the same methods; and (d) maintenance expertise with similar mechanical systems.

Novelty of the application (NEQPT)—this is based on a five-point scale for each major
component, with each scale representing the component’s innovativeness ranging from the
purchase of standardized off-the-shelf equipment to customized components.

Urgency —this measure is on a four-point scale, based on the reporting managers assessment of
the urgency connected with the project.

While much of the data is cardinal in nature, certain factors which could have a strong influence
on implementation are ordinal. One of these measures, urgency of the project, was given only on
a four-point scale. Specifically, each installation was classified as having an urgency ‘rating’ of 1,
2, 3 or 4 (1-low urgency, 4-high urgency). Table 1 displays the data for the seven factors across
the 31 sites.

In the previous study by Cook eral.* only those factors whose data were considered as being
numerically reliable were used directly in the DEA analysis. (Arguably, management satisfaction
should be treated as an ordinal variable in the same way urgency is treated. The MSAT variable
was, however, seen as more immediately observable, i.e. a more direct declaration of satisfaction
was available than was true of urgency.) Urgency was treated in Reference 4 as a control parameter.
In order to incorporate classification or rank order factors such as urgency directly into the DEA
structure, an appropriate representation must be developed. This is the subject of the following
sections.

TABLE 1. List of factors for sites

Site No TIME UPTIME MSAT COMPLEX PREVEX NEQPT URGENCY
1 197 78 4 39 11 11 2
2 184 95 2 27 20 4 3
3 175 85 4 39 6 14 2
4 150 78 4 33 18 13 1
5 188 90 5 38 4 11 3
6 176 78 4 40 9 11 1
7 194 85 3 42 16 16 1
8 180 97 3 36 9 10 2
9 188 80 4 34 12 8 4

10 176 78 3.5 34 19 9 3
11 176 100 5 39 18 5 2
12 144 78 4 14 I 4 3
13 176 95 5 34 18 11 3
14 199 99 4 38 16 13 1
15 188 78 3 42 13 16 1
16 184 65 1 38 11 15 3
17 188 78 3 28 11 15 3
18 188 90 4 31 11 2 1
19 196 78 4 42 14 17 2
20 190 78 2 36 12 9 1
21 185 78 4 22 11 2 2
22 135 78 2 2 16 8 1
23 100 78 3 34 4 19 1
24 195 80 3 38 4 11 2
25 152 65 4 25 6 5 1
26 189 83 2 35 14 15 2
27 179 80 3 34 11 3 1
28 198 78 5 25 4 10 2
29 145 78 4 36 18 5 2
30 165 78 2 32 16 10 1
31 174 40 4 28 4 9 3
135
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REPRESENTATION OF ORDINAL DATA IN DEA
The DEA Structure

The original Data Envelopment Analysis model of Charnes et al.! (denoted CCR) presented a
method for evaluating the relative efficiency of each member of a set of » decision making units.
Letting Y,, denote the amount of output of type r produced by DMU £, and X, the amount of
input of type i used by k, the ratio DEA model is designed to determine for each DMU ‘0’ the best
positive set of input multipliers {v;,}/_, and output multipliers {u,,}%_, such that the ratio of
total weighted outputs to total weighted inputs is maximized. This is done subject to the constraints
that the corresponding ratio for each DMU £k (including the one in question) does not exceed 1 or
100%. Stated in mathematical programming terms, one solves for each DMU ‘o’ the fractional
linear programming problem

eo = max Z uro Yro/ Z vio)(io
subject to: Z u, Y,k/z VX <1 forall k 6))

u,=2¢€ U,=2¢ forallr, i

As shown by Charnes and Cooper,’ this fractional problem can be reduced to a linear
programming problem by way of a change of variables. Specifically, (1) is equivalent to the linear
problem (in vector notation)

e, = maxuY,

subject to: ».X, = 1
wY, —vX, <0 forall k (2
u=¢&v,=2¢ forallr,i

Thus, the original problem of maximizing the ratio of weighted outputs to inputs can be viewed
as a problem of maximizing weighted outputs in the presence of normalized weighted inputs. We
now turn to the problem of representing ordinal data within this DEA structure.

Ordinal data

For purposes of exposition, consider the example cited in the second section in which the ordinal
input urgency is presented in the form of a ranking of the » DMUs. With no loss of generality,
let DMU No 1 (technology installation No 1) have the highest urgency, No 2 the second highest, . . .
etc. More particularly, let the DMUSs be ranked according to L ( <n) rank positions (ties at the same
rank position are possible).

Define the variable w, to be the value or worth associated with the /th rank position. This will
be discussed later. Further, for each DMU £k define the L-dimensional unit vector §, = (§,,) where

5. = 1 if DMU k is ranked in the /th position
™ 10 otherwise.

Zero data values can, in general, present a technical complication in DEA. However, several
ways have been suggested in the literature for handling such values (see, for example, Ali and
Seiford® and Charnes et al.”). In solving the example presented at the end of this paper, the Os in
the 8, vectors were replaced by small non-zero values.

The CCR model (in the primal LP format) incorporating the rank order input can now be written
in the form:

max uY,
subject to: vX, + W5, =1
wY, —vX, — W5, <0 forall K 3)
136

This content downloaded from 132.68.239.10 on Fri, 18 Oct 2019 08:53:59 UTC
All use subject to https://about.jstor.org/terms



Wade D. Cook et al. —On the Use of Ordinal Data in Data Envelopment Analysis

u =€ for all r
v, 2 € for all i
WeV,

where W = (w,, w,, ..., w,), and ¥ is the permissible set of worth vectors with ¥ = 2% . It is
noted that if DMU £ is ranked /th, then W5, = w,.

In the section to follow, we examine appropriate structures for the permissible set ¥. For the
structures examined, it is shown that (3) is reducible to the standard CCR format, and hence is
solvable by existing software.

THE PERMISSIBLE SET OF WORTH VECTORS W

Strict ordinal relations on the w,

The worth variables {w,}r_, associated with the L rank positions should satisfy certain
regularity conditions. At a minimum the /th rank position must be deemed to be worth at least as
much as the (/ + 1)th position. In the context of the above example of technology urgency, rank
position No 1 would pertain to the most urgent installation, rank position No 2 to the second level
of urgency, etc.

Consider, then, the case where ¥ is defined as

Y={W=(w)|lw-w, =>¢ [=1,..,L—1 and w, > ¢} 4

Theorem 1

Problem (3) with ¥ defined by (4) can be converted to standard CCR format.

Proof
If (3) is written in the form
max unY,
subject to: vX, + W5, =1
wY, —vX, — W5, <0
—U, < —€ )
Vi < —¢
—W, + Wy < —¢
_wL S —¢&,
its dual becomes
min 6 +0N—2S* — &S — &y
subject to: 00 + Zk)\ky,k —-s} =y, Vr
x,'oe - Zk)\kxik _Si_ = O, Vi
60,0 — Zk)‘kakl -1 =0 6)
0,0 — Zk)‘kakz +y—7.=0
6oL_2k)\k6kL +Y-1— 7 =0
0, Ne,sF,s7,v,=0.
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Now, perform simple row operations on those constraints involving the §,, by replacing the
second constraint by the sum of the first two constraints, the third by the sum of the first three

constraints, ... etc. Problem (6) can then be rewritten as
min 6+0N—ES* — &S — ey
subject to: 060 + Zk)‘erk —s} =Y, VI
X0 — kakxik —s7 =0, Vi
8l — D Neba —y, =0, VI )

0; )\k,S:r,Si_,')’/> Oa

Whel‘e g/(/ = E}:lékj = 6/(] + 6/(2 + ... + 6,(/.
If the primal version of this problem is now set up, one obtains:

max wY,
subject to:  »X, + W8, =1
Y, —vX, — W6, <0
—Wr < —¢& Vr ®
—; < —¢ Vi
—-w, < —¢, V.

Problem (8) is now in the standard CCR format.

Example

Assume there are four DMUs that are ranked according to urgency, with DMU No 1 ranking
highest, No 2 and No 3 in the second rank position and No 4 in the lowest or third rank position.
Thus, the (8,) = (8;)) = (841, d42» 0k3) are given by

8, = (1,0,0) =46 =(1,1,1)
6, =08,=1(0,1,0) =8 =5=1(0,1,1)
54=(0’O’1) =64=(0’0a1)

With ¥ defined according to (4), problem (8) possesses a certain feature which may be undesir-
able in many situations. This feature is pointed out by the following theorem.

Theorem 2

In the solution of (5), DMU ‘0’ is evaluated only against those DMUs k whose rank position /,
is at or above that of ‘0’; i.e. for DMUs k where /, > /.

Proof

From the above example, it is clear that for any DMU £k in rank position /,, the constraint
wY, — vX, — Ws, < 0 takes the form pY, — vX, — LL_ Wi < 0. Therefore, when DMU k&, is
being evaluated, variables w,, w,, ..., w; _, can be set arbitrarily large, without influencing the
constraint »X,_ + ngo = 1. In so doing, however, those DMUs k in rank positions 1, 2, ...,
I, — 1 are prevented from being in the efficient reference set for k.

In this respect, the L rank positions behave as categories in the sense of Banker and Morey’s®
definition. However, in their use of categorical variables, the authors were concerned with DMUs
in any one category being compared only with those DMUs in the same or less advantaged
categories. There, this nesting feature (Theorem 2) was desirable.

In general, however, it is required to make a comparison among all DMUs, without having this
nesting phenomenon present. To facilitate this, it is necessary to restrict the range of W. This aspect
is examined in the following subsection.
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Ratio scale bounds on the w,

The issue of defining appropriate restrictions on the worth variables w, associated with ordinal
data, involves describing the status of any given DMU relative to its peers. Some insight can be
obtained if the relative positions of two DMUs are examined in terms of a cardinal factor.
Specifically, if x, ; denotes the amount of some cardinal input / available to DMU k, ».x, ; is the
credited worth of that input to k. This quantity is analogous to w, for an ordinal factor.
Furthermore, »x, ; and »x, , , ; define the status of DMUs k and k + 1 in terms of input i. A
somewhat trivial, but useful observation is that the ratio r, ; = »,x, ;/v,x; . ; is a fixed quantity.

This statement is true regardless of the size of »;,, and regardless of any scale changes of a
multiple nature (e.g. multiplying x, ; by a constant factor) which one might care to impose*. This
obvious “fixed ratio’ property inherent to cardinal inputs and outputs is absent in the case of an
ordinal factor. The ratio w,/w,,, for an ordinal input or output, (which is analogous to
vix, i/viX, 4 1,; for a cardinal factor), is clearly a variable quantity. It, therefore, seems reasonable
that if restrictions are to be imposed on the w,, these should be specified in terms of this ratio. In
that regard, the restrictions will be in the form of bounds on w,/w, . Specifically, define fixed
limits A,, g, = 1 such that

hyz2w/w. 28,
hence, define
V={(W=(w,...,w):w—gw,, =0
and —w, + Aw,,, =0, [=1,2,..,L—1, w,>¢}. ©))

Problem (1) can then be written as:

max wY,
subject to: v X, + W5, =1
wY, —vX, — W5, < 0,vk
W, — gW ., >0,/=1,...,L -1 (10)
-w, + hw, =>0,/=1,...,L—-1
W, Z2&u =6V, =€ Vi

Problem (10) is a form of the cone ratio model as described by Charnes et a/.” This form of the
model provides a very natural setting for constraining the worth vector for an ordinal variable, in
view of the fixed ratio arguments made above regarding cardinal data. Furthermore, since ¥ is a
type of polyhedral cone, its negative polar cone can be used to transform (10) into a standard CCR
model (Charnes et al.!).

Referring to the technology adoption problem of the second section, it is clear that an appro-
priate structure for incorporating such factors as urgency is that suggested above. In that regard,
we use the notation w, to denote the importance to be attached to high-urgency projects (rating
level of 4); w, to the next to highest urgency (rating level of 3); and so on. Further, we impose
bounds on the ratios w,/w,, ,, / =1, 2, 3 such that any urgency rating is worth at least 50%
(g, = 1.5) more than the next highest level (larger /), and no more than 300% (A, = 3.0) of the
next lower level.

Each urgency factor was expressed as a vector 6 as described in the third section. Two different
analyses were carried out —one for model (8) where no upper and lower bounds #,, g, are present,
and one for model (10) containing such bounds. Table 2 displays the results.

Clearly, the model (10) efficiency scores are generally lower than those for model (8) (no score
can be higher than in (8)), and provide a more realistic picture of the relative status of the DMUs.
While the choice of 4,, g,, values was arbitrary in this case, an analysis of various combinations
could provide some insights as to the sensitivity of the ratings to these bounds.

As an example of how bounds in model (10) influence ratings, consider the cases of sites 3 and
S. In the case that no ratio bounds are imposed, site No 3 is compared only with other sites of the

*Clearly, although the relative status of two DMUs is well defined in a ratio sense, such is not true if one uses the difference
ViXk,i — ViXk 4 1,i to describe the comparative status of these DMUs.
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TABLE 2. Efficiency scores for models (8) and (10)

Efficiency score Efficiency score
Site No Model (4.5) Model (4.7) Site No Model (4.5) Model (4.7)

1 0.98 0.77 17 0.94 0.68
2 1.00 0.82 18 1.00 1.00
3 0.97 0.91 19 0.97 0.70
4 0.77 0.77 20 0.93 0.93
5 1.00 1.00 21 1.00 1.00
6 1.00 1.00 22 1.00 1.00
7 0.96 0.92 23 1.00 1.00
8 1.00 0.93 24 1.00 1.00
9 0.92 0.67 25 1.00 1.00
10 0.86 0.57 26 0.94 0.74
11 1.00 0.86 27 0.94 0.92
12 1.00 1.00 28 1.00 1.00
13 1.00 0.73 29 0.82 0.72
14 1.00 1.00 30 0.84 0.84
15 0.89 0.89 31 0.82 0.82
16 0.91 0.63

same urgency (level 2) and lower urgency (level 1). That is, in the optimization process sites of
urgency levels 3 and 4 get disqualified in a sense from influencing the standings of sites with urgency
level 2. The rating obtained by site No 3 is 0.97 or 97%. Upon introduction of the ratio bounds
in model (10), the rating of site No 3 drops to 91%. That site is now compared with additional sites
including site No 5. Note that site No 5 completely dominates (has higher outputs and lower inputs
than) site No 3.

CONCLUSIONS AND SUMMARY

This paper has presented an approach for handling ordinal data factors within the DEA
structure. By imposing upper and lower bounds on the ratios w,/w,, , of the worths attached to
rank positions /and / + 1, a form of cone ratio DEA model arises. The approach is illustrated using
data pertaining to new technology installations.

The idea of treating non-quantifiable factors directly as ordinal data, (rather than quantifying
the non-quantifiable) adds an important new dimension to DEA. In this paper, we have examined
only the inclusion of a single ordinal variable, consequently, only part of the problem has been
resolved. Issues involving multiple ordinal factors and the relative importance and/or fuzziness
aspects pertaining to such factors, entail considerations beyond what has been investigated here.
This will be the subject of later research.
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