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Abstract

We analyze an interdiction scenario where an interceptor attempts to catch an in-
truder as the intruder moves through the area of interest. A motivating example is
the detection and interdiction of drug smuggling vessels in the Eastern Pacific and
Caribbean. We study two models in this paper. The first considers a non-strategic
target that moves through the area without taking evasive action to avoid the interdic-
tor. We determine the optimal location the interceptor should position itself to best
respond when a target arrives. The second model analyzes the strategic interaction
between the interceptor and intruder using a Blotto approach. The intruder chooses a
route to travel on and the interceptor chooses a route to patrol. We model the inter-
action as a two-player game with a bilinear payoff function. We compute the optimal
strategy for both players and examine several extensions.

1 Introduction

We study a situation where a defender attempts to intercept a moving intruder. This situation
is motivated by the continuous effort of law-enforcement agencies to interdict drug-carrying
vessels, which are sent from South America, in the Caribbean Sea and Eastern Pacific [1].

We consider two basic scenarios. In the first scenario the defender executes a detection
and interdiction operation. A search asset (e.g., sonobuoys or a surveillance aircraft) collects
information in the area where the intruder may travel (e.g., certain sea-lanes in the ocean)
and the interceptor (e.g. a surface ship) attempts to physically capture the intruder based on
the information obtained from the search asset. We assume, in this scenario, that the intruder
is non-strategic – it neither affects the interceptor’s actions nor responds to them. It simply
schedules and routes its travel based on its own objectives and constraints. The defender
only has some probabilistic information, based on past experience or exogenous sources of
intelligence, regarding the schedule and route of the intruder’s travel in the area of interest.
This information is used for deploying the interceptor. The interceptor’s assets, typically over
the horizon boats or helicopters, are fast. However, these assets have limited endurance and
are based on relatively slow ships such as Coast Guard Cutters or Navy Frigates. Therefore
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properly staging the interceptor in the area crucially affects how long it takes to successfully
interdict the intruder. In the first scenario we seek to determine the optimal staging point
for the interceptor.

In the second scenario the intruder is strategic and it tries to “outsmart” the defender.
To simplify the modeling and analysis – without sacrificing too much realism – we discretize
the area and assume that the intruder moves in one of a finite number of routes. Similarly
to Scenario 1, the interceptor has to determine where to locate its interceptor, but this time
absent a detector. Both the intruder and the interceptor are moving and therefore it is not
enough that the two routes just intersect – timing is crucial and thus interception could
occur only if the intruder and interceptor select the same route. In that case, there is a
positive, route-dependent, probability that the interceptor interdicts the intruder. Otherwise
the intruder traverses the route undetected.

The search, detection and tracking problem of a moving target has been treated quite
extensively in the literature [2], [3], [4], [5]. In particular, the general problem of searching
for a target that follows a conditionally deterministic target motion – a situation similar to
the one considered in the first scenario – is discussed in detail in [6]. However, the focus
of the modeling and analysis in the aforementioned references is on search and detection –
not on the physical interdiction of the target. A detection-interdiction situation involving a
moving target is studied in [7, 8]. In these papers all intruders head towards the same known
location, whereas in our first model a target traverses through the area of interest with an
unknown destination. Another detection-interdiction model appears in [9] where multiple
targets, blended among benign objects, are searched and then interdicted. A crucial simpli-
fying assumption in that model was that once detected, the target becomes stationary until it
is interdicted. Time and space were discretized, and a stochastic optimization model dynam-
ically determined which cell to search next. The exact model turned out to be intractable for
practical scenarios and therefore a heuristic algorithm was proposed. The main changes in
the first scenario studied here, compared to [9], are: (a) time and space are continuous, (b)
the scenario is continuously dynamic, (c) the environmental setting is such that the detection
and interdiction occur in a constrained region called a channel and the detection occurs at a
horizontal position in the channel. Our primary contribution appears in Proposition 4, which
specifies the optimal location to stage the interceptor so it can best-respond to an intruder.

The second, strategic, scenario is a variant of the well known Blotto Game (see e.g., [10]).
However, unlike the original Blotto model, routes are associated with different rewards to the
intruder and different interception capabilities of the defender. The base model for the second
scenario is a type of logistics game, which was first introduced in [12] and also appears in
[11]. Our main result for this scenario is Proposition 5, which presents the optimal strategies
for both players and the value of the game.

The rest of the paper is organized as follows: in Section 2 we consider the non-strategic
case and in Section 3 we analyze the 1-on-1 game between the intruder and the defender. We
present concluding remarks in Section 4. Proofs of propositions appear in the Appendix. In
the rest of the paper we refer to the intruder as the target.
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2 Scenario 1: Non-Strategic Target

Consider the two-dimensional Euclidean space R2. A target, traveling on a straight line in the
general positive direction of y, is detected at time 0 at location (x, 0). The detection location,
along with the direction of the movement, is passed on to an interceptor, which is tasked
to physically meet the target and interdict it. We do not model the detection mechanism;
it could occur, for example, via deployed sonobuoys or a patrol by a surveillance aircraft.
The target travels at a constant heading α away from the y axis where α ∈ (−90◦,+90◦).
The interceptor positions itself at a location (b,D), waiting for detection information. Upon
receiving information regarding the location (x, 0) and heading α of the target, the interceptor
immediately begins its pursuit of the target. We assume that the target, unaware of being
detected, does not take evasive actions but continues along the same heading. See Figure 1
for the illustration of the scenario.

Figure 1: Interceptor located at position (b,D) pursues target who leaves from position (x, 0)
on heading α

While the interceptor starts the pursuit knowing (x, 0) and α, the decision regarding
its staging location (b,D) must be made in advance, before knowing this information. The
objective of the interceptor is to minimize the expected time until interdiction. The target
travels at speed u and the interceptor travels at speed v. For simplicity we assume that
the interceptor travels faster than the target (v > u), which is realistic in many real-life
law-enforcement applications (e.g., drug trafficking).

To determine when the interceptor will capture the target, we solve the following quadratic
equation (see Figure 1).√

(x+ ut sinα− b)2 + (D − ut cosα)2 = vt,
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which has solution

t =
−u(D cosα− (x− b) sinα) +

√
u2(D cosα− (x− b) sinα)2 + (D2 + (x− b)2)(v2 − u2)

v2 − u2
.

If α and x are independent random variables having uniform distributions on [−ᾱ,+ᾱ] and
[−W,+W ], respectively, then the optimal horizontal location of the interceptor is uniquely
determined, as shown in the following proposition.

Proposition 1. If the target’s detection location and heading are independent uniform ran-
dom variables, each symmetrically distributed around 0, then the optimal horizontal location
is at b = 0.

This result follows from the symmetry of the problem and its formal proof appears in
Appendix A.1. The optimal vertical position D is determined by the shortest expected time
to interception. This expected time g(D) is given by

g(D) =
1

4Wᾱ

ˆ W

−W

ˆ ᾱ

−ᾱ

−u(D cosα− x sinα) +
√
u2(D cosα− x sinα)2 + (D2 + x2)(v2 − u2)

v2 − u2
dαdx,

(1)

and thus the optimal vertical position isD∗ = arg minD g(D). We assume thatW > 0 because
otherwise the interceptor knows with certainty the target location at detection and thus
D∗ = 0. Solving forD∗ analytically is not possible, but a numerical solution is straightforward
as g(D) is convex, as stated in the next proposition, which is proved in Appendix A.2.

Proposition 2. If the target’s detection location and heading are independent uniform ran-
dom variables, each symmetrically distributed around 0, then the expected interception time,
g(D), is convex in D.

Before turning to analyze the behavior of D∗, we present two propositions. The first
states that the optimal position is never on the x-axis. The second proposition states that
D∗ scales linearly with W . We prove these in Appendices A.3 and A.4, respectively.

Proposition 3. If the target’s detection location and heading are independent uniform ran-
dom variables, each symmetrically distributed around 0, then the optimal vertical position
D∗ > 0.

Proposition 4. If the target’s detection location and heading are independent uniform ran-
dom variables, each symmetrically distributed around 0, then the optimal interceptor location
is a linear function of W : D∗(W, v, u, ᾱ) = β(v, u, ᾱ)W .

The exact form of β(v, u, ᾱ) in Proposition 4 is quite complicated; it is an implicit function
and involves integration over α. It can be shown however that the optimal D∗ depends on
the relative speed. For details see Appendix A.4.

Figure 2 plots the optimal position D∗ as a (linear) function of W for various values of
ᾱ and v/u. The first general conclusion from observing the six graphs that comprise Figure
2 is that the optimal staging position D∗ gets closer to the detection point as the relative
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velocity of the interceptor increases compared to the target. This general trend is true for all
values of W and ᾱ. However, it is interesting to note that ᾱ has a significant impact on this
relationship, as observed from the changes in the ordering of the curves for different values
of ᾱ. For a relatively slow interceptor, the interceptor positions itself closer to the detection
point for small ᾱ, and farther away for large ᾱ. This tendency is reversed for higher interceptor
velocities. This non-monotone behavior is further demonstrated in Figures 3 and 4. Note
that the curves in Figure 3 intersect for low velocity ratio v/u but then they uniformly merge
for larger values of v/u. This non-monotonicity is well demonstrated in Figure 4 where D∗ is
plotted against ᾱ for various values of v/u.

To explain this counterintuitive non-monotonic behavior it would be helpful to roughly
categorize the interdiction process as either approach or chase. Figure 5 illustrates the ap-
proach and chase concepts. From a mathematical perspective, an approach scenario corre-
sponds to a negative inner product between the target heading and interceptor heading, and
the chase scenario corresponds to a positive inner product. In an approach scenario, the
target and interceptor are generally heading toward each other and the time until interdic-
tion scales roughly according to D/(v + u). For the chase scenarios, the target heads away
from the interceptor and the time until interdiction scales roughly according to D/(v − u).
The interceptor obviously prefers an approach scenario to a chase one. In order to enhance
the probability of a desired approach scenario, the staging position D must be relatively far
from the detection point. Thus, the interceptor faces a tradeoff; on the one hand it prefers
a smaller D so that the initial distance to the target is smaller. On the other hand it would
like to choose a large value of D to enhance the likelihood of an approach scenario. As ᾱ
increases from 0, the target may take more extreme headings, which increases the likelihood
of chase scenarios. For a fast interceptor (v � u), the interdiction process will be quick, even
when chasing, therefore a small D is preferred to minimize distance. For a smaller value of
v the chase situations can significantly increase the expected interdiction time (recall time
scales ∼ D/(v − u)). As ᾱ increases, D∗ must also increase to ensure most combinations of
(x, α) lead to approach scenarios. Hence we see that D∗ rises rapidly for v = 1.01 in Figure
4. However, the curve eventually reaches a maximum and decreases as ᾱ approaches π/2.
For targets with large value of α, the interdiction is likely to be a chase scenario regardless
of the value of D as the target heads in nearly a horizontal heading. Therefore, the optimal
location D∗ decreases slightly for ᾱ close to π/2 so the interceptor can better react to those
types of targets.

3 Scenario 2: Strategic Target

In this section we consider a simple, Blotto-type, game-theoretic model. In a Blotto game,
two players distribute their forces simultaneously across n sectors of a battlefield. In the
simplest variant, each sector is won by the player that allocates the largest force level to the
sector, and the overall payoff is the fraction of sectors won by a player. For more details on
Blotto games see [10]. The target and interceptor are strategic and both attempt to optimize
their objectives; the target wishes to safely complete its travel while the interceptor attempts
to catch the target before it completes its travel. To simplify the modeling and analysis –
without sacrificing too much realism – we discretize the area and assume that the target
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(a) v/u = 1.1 (b) v/u = 1.2

(c) v/u = 1.3 (d) v/u = 1.4

(e) v/u = 2 (f) v/u = 4

Figure 2: Optimal interdiction location as a function of the target support W and target
heading ᾱ
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Figure 3: Optimal interdiction location as a function v/u for various target headings ᾱ and
W = 5

Figure 4: Optimal interdiction location as a function of ᾱ for various interdictor velocities v
and W = 5
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Figure 5: The interceptor approaches the target if the interceptor and target are roughly
traveling toward each other, otherwise the interceptor chases the target.

travels along one of a finite number of routes (say, sea lanes) known to the interceptor.

3.1 Basic Model

There are I routes available to the target. Each route i is associated with a reward ri for
the target, i = 1, 2, . . . , I. The reward is the difference between the expected revenue at the
destination and the costs of travel on that route – costs that are determined by the length of
the route, its physical characteristics and its transportation requirements. The target chooses
to travel on route i with probability pi. The interceptor selects patrol route i with probability
qi and intercepts the target with probability ci if the latter travels on the same route as the
interceptor. The probabilities pi and qi, i = 1, 2, . . . , I, are the decision variables, or the
strategies, for the target and interceptor, respectively,

∑I
i=1 pi =

∑I
i=1 qi = 1.

The target wishes to maximize its expected reward, while the interceptor wishes to min-
imize it. The expected reward for the target, if it chooses route i, is ri(1− ciqi).

We assume that both the intruder and the interceptor have information about past inter-
ceptions and therefore they know the values of ci and ri, i = 1, 2, . . . , I. Given the strategy
profile q = (q1, q2, . . . , qI) of the interceptor and p = (p1, p2, . . . , pI) of the target, the ex-
pected reward for the target is:

V (p, q) =
I∑
i=1

ripi(1− ciqi). (2)

We assume a simultaneous interaction between the interceptor and target. While, as in
any two-player zero-sum game, the problem may be formulated as primal and dual linear
optimization problems, we adopt here a more direct approach that results in a closed-form
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analytic solution. The optimal strategies p∗ and q∗ satisfy the standard Nash equilibrium
condition:

V (p∗, q∗) ≥ V (p̂, q∗), ∀p̂ s.t. p̂i ≥ 0, for i = 1, 2, . . . , I and
I∑
i=1

p̂i = 1,

V (p∗, q∗) ≤ V (p∗, q̂), ∀q̂ s.t. q̂i ≥ 0, for i = 1, 2, . . . , I and
I∑
i=1

q̂i = 1.

To solve for p∗ and q∗, we note the interaction can be modeled as a concave-convex game
(see in Section 5.2 in [11]) as V (·, ·) in (2) is a concave function of p for every fixed q, and
a convex function of q for every fixed p. Concave-convex games always have a saddle point
[11] so we can determine the simultaneous game solution by considering the two sequential
game variants.

As with many games, our solution has both sides choosing a strategy such that the
opponent is indifferent among its own options. Before stating the formal solution, we label the
routes in descending order of ri and introduce new variables θ and kl. Suppose r1(1−c1) ≥ r2

then obviously both the target and interceptor will only focus on route 1 because this is
the best expected reward for the target and best hedging for the interceptor. In this case
k1 = r1(1 − c1) and θ = 1. Otherwise, the interceptor chooses q1 and q2, q1+ q2 = 1,
such that r1(1 − q1c1) = r2(1 − q2c2) ≡ k2. If k2 ≥ r3 then θ = 2, q∗i = qi, i = 1, 2 and
q∗i = 0, i = 3, 4, . . . , I. If k2 < r3, the interceptor chooses q1, q2 and q3, q1+ q2 + q3 = 1, and
so on. Thus, the parameter kl is the expected reward to the target along routes 1 through
l when the interceptor chooses q according to this equalization procedure across the first l
routes. The parameter θ is an index specifying the set of routes 1, 2, . . . , θ the target and
interceptor should assign positive probability to in the optimal solution. In general we have:

kl =
−1 +

∑l
i=1 c

−1
i∑l

i=1(ciri)−1
, l = 1, 2, . . . , I.

θ =

I if kI−1 < rI

min {i : ki ≥ ri+1} otherwise,

We now state the main result of this section, which specifies the optimal strategies for
both players and the value of the game. The proof appears in Appendix B.1.

Proposition 5. The interceptor’s optimal strategy q∗ is given by

q∗i =

{
1
ci

(
1− kθ

ri

)
if i = 1, 2, . . . , θ

0 if i = θ + 1, θ + 2, . . . , I.
(3)

The target’s optimal strategy p∗ is given by

p∗i =

{
(rici)

−1∑θ
j=1(rjcj)−1

if i = 1, 2, . . . , θ

0 if i = θ + 1, θ + 2, . . . , I.
(4)

The expected reward for the target, and value of the game, equals kθ.
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Routes that do not yield a (relatively) large reward to the target receive no effort from
the interceptor or target. Large changes in ri can change θ and hence the final strategies
substantially. If we only consider small changes in ri and ci so that θ remains fixed, then (3)
and (4) provide insight into the solution. As the probability of interdiction ci increases, the
target decreases its probability of taking that route. As a result the interceptor also decreases
its probability of using the route, even though the interceptor is more effective on the route.
An increase in the reward to the target ri causes the interceptor to increase its probability of
selecting that route to deny the target the larger reward, which causes the target to decrease
its probability of using the more lucrative route.

We specialize the above result along three lines. First, we find that for ri roughly constant
across i = 1, 2, . . . , I, both the interceptor and target are more likely to choose routes with
small values of ci, which leads to a significant advantage for the target. In the case where
ri = 1 for all i, the interceptor and target have the same optimal strategy: p∗i = q∗i =
c−1
i /

∑I
j=1 c

−1
j for i = 1, 2, . . . , I. The value of the game is easily seen to be

kI =

(
1− 1∑I

j=1 c
−1
j

)
, (5)

which equals the expected reward for the target.
Second, if instead the ci are roughly constant, then the interceptor and target have dif-

fering strategies. The target puts greater weight on routes with lower rewards, and the
interceptor puts more weight on routes with higher rewards. In these situations, the inter-
ceptor effectively concedes the lower reward routes to the target and focuses its efforts on
protecting the higher reward routes to ensure the target has little incentive to use one of the
higher reward routes. In the case where we assume ci = c, with 0 ≤ c ≤ 1 for all i, the
likelihood the interceptor patrols a patrolled route is proportional to the relative decrease in
the reward for the target: (ri − kθ)/ri.

Finally using similar logic, if route j has cj ≈ 0, then the target will use this route with
high probability and the expected reward will be kθ ≈ rj. The interceptor will patrol route j
with very low probability, both because it has little chance of interdicting the target on route
j and because it instead patrols higher reward routes to ensure the target has no incentive
to use those routes and potentially generate larger rewards. In the special case where ri = 1
and ci = 1 for all i, the interdictor and target both choose routes uniformly and the expected
reward is simply (1 − 1/I), which is the probability that the target and interceptor choose
different routes.

We finish with a few numerical illustrations. In all examples we use four routes and
set

∑4
i=1 ri = 10 and

∑4
i=1 ci = 2 to provide some basis for comparison. In the case that

ri = 2.5 and ci = 0.5 for all i, both the target and interceptor choose a route uniformly at
random (p∗i = q∗i = 0.25 for all i) and the expected reward for the target is ri(1 − ci/I) =
2.5(1−0.5/4) = 2.1875. Tables 1–3 present the solution for three other examples. In Table 1
the routes are homogeneous with respect to the reward ri, but it is much easier for the target
to avoid detection on the lower indexed routes. Consequently both players use the same
mixed strategy of putting more weight on the routes with smaller interdiction probabilities.
The rewards vary across the routes in Tables 2–3, which lead the interceptor and target to
ignore certain routes. In the extreme case where the interception probability is low for the
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high reward route both sides choose route 1 with certainty (Table 3). Table 2 illustrates a
constant ci scenario described above, which leads to asymmetric strategies: the target puts
higher weight on the lower reward route and the interceptor puts higher weight on the higher
reward route.

1 2 3 4
ri 2.5 2.5 2.5 2.5
ci 0.2 0.4 0.6 0.8
p∗i 0.48 0.24 0.16 0.12
q∗i 0.48 0.24 0.16 0.12

Table 1: Expected reward for target: 2.26

1 2 3 4
ri 4 3 2 1
ci 0.5 0.5 0.5 0.5
p∗i 0.43 0.57 0 0
q∗i 0.71 0.29 0 0

Table 2: Expected reward for target: 2.57

1 2 3 4
ri 4 3 2 1
ci 0.2 0.4 0.6 0.8
p∗i 1 0 0 0
q∗i 1 0 0 0

Table 3: Expected reward for target: 3.2

3.2 Extensions

We present two possible extensions to the basic one-on-one game. The first extension ad-
dresses the situation where the defender operates more than one interceptor. The second
extension analyzes the case where both the target and the interceptor can affect the inter-
ception probabilities values ci, i = 1, 2, . . . , I by investing resources in stealth and sensors,
respectively. In this section we set the rewards obtained by the target equal to 1 for all routes
(i.e., ri = 1 for all i).

3.2.1 Multiple Interceptors with Time-Dependent Effectiveness

Suppose that the defender can deploy several independent and homogeneous interceptors in
such a way that it can control the length of time each route is patrolled by an interceptor.
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The probability of interception depends on these times. Let ti denote the total patrol time
in route i and

∑I
i=1 ti ≤ T .

We adopt the principle of a random search model where interception occurs, conditioned
on the target choosing route i, with probability 1−exp(−γiti). The parameter γi is a measure
of the interception effectiveness on route i. The random search model is a common model
used in search theory both for its conservative assumptions (i.e., a real searcher should be
able to perform better than randomly searching the area) and its analytic tractability. The
exponential structure of the probability comes from assuming a Bernoulli detection event in
any time interval, and then sending the interval and corresponding Bernoulli probability to
0. For more information on the random search model see chapter 2 of [5].

The interceptor chooses t = (t1, t2, . . . , tI) and the target chooses to travel on route
i with probability pi, and we represent it using the same notation as in the base model
p = (p1, p2, . . . , pI). This leads to the following reward function for the target:

V (p, t) =
I∑
i=1

pi exp(−γiti),

This formulation is a variant of a logistics game introduced in [12] and examined in
chapter 5.3 of [11]. As in the base model, we have a concave-convex game and thus we can
determine the optimal strategies by examining sequential interactions. In the min-max game
the interceptor sets t∗i = Tγ−1

i /
∑I

j=1 γ
−1
j , to ensure γktk = γjtj for all 1 ≤ j, k ≤ I. The

min-max value is exp(−T/
∑I

j=1 γ
−1
j ). For the max-min game, given a p, the interceptor

chooses ti to equalize the derivatives of the summands: pkγk exp(−γktk) = pjγj exp(−γjtj)
for all j, k. Inspection reveals that setting p∗i = γ−1

i /
∑I

j=1 γ
−1
j will produce a response by

the interceptor of t∗i and yield a payoff equal to the min-max value, which implies that this
allocation must be the optimal strategy for the target. Consequently, we get the same type
of solution as for the basic model.

3.2.2 Affecting Interception Probabilities

The target and interceptor may affect the probabilities ci by investing resources in the routes.
The target invests in protection and camouflage, and the interceptor invests in detection and
interception capabilities such as sensors and surveillance platforms. Let ci(xi, yi) denote the
interception probability if the target and interceptor invest xi and yi in route i, respectively,
where

∑I
i=1 xi ≤ xmax,

∑I
i=1 yi ≤ ymax. The parameters xmax, ymax are the total resources

available for the intruder and interceptor, respectively. We assume that ci(·, ·) ∈ [0, 1] is
continuously differentiable, decreasing function of xi and increasing function of yi.

Both the target and interceptor are faced with a two-stage decision: (a) a strategic
decision where to invest their resources, and (b) an operational decision where to act once
resources are in place. For example, the interceptor might invest in better sensors and
faster interdiction vessels in the first stage, while the target could invest in quieter engines,
lower profile vessels, and enhanced communication technology. We assume that each side
observes the strategic resource allocation of the other in the first stage, and then the second
stage proceeds in the same simultaneous fashion as in the basic model of Section 3.1. If we
denote the target’s first-stage allocation x = (x1, x2, . . . , xI) and the interceptor’s first-stage
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allocation y = (y1, y2, . . . , yI), then the value function for the target in this two stage game
follows from Equation (5),

W (x,y) = 1− 1∑I
k=1

1
ck(xk,yk)

.

The interceptor chooses its strategic allocation y first. The target observes it and decides
on its own first-stage allocation x, which is then observed by the interceptor. With this
perfect information regarding the first-stage strategic investments, both sides simultaneously
choose their routes in the second stage. It is reasonable to assume that the interceptor’s
first-stage strategic plan will be known by the target before the target makes its first-stage
allocation as the interceptor’s plan involves more effort and resources to implement than
the target’s corresponding plan, which is typically less elaborate. It is also the worst case
scenario for the interceptor. The assumption that the interceptor knows the target’s first-
stage allocation before the interceptor makes its operational second-stage decision is also
reasonable. For example, it will not take the interceptor long to determine that the target
is using stealthier or faster vessels along certain routes. To compute the first-stage resource
allocation we solve miny maxxW (x,y), which is equivalent to

min
y

max
x

I∑
k=1

1

ck(xk, yk)

s.t.
I∑

k=1

xk ≤ xmax

I∑
k=1

yk ≤ ymax

xk, yk ≥ 0 ∀k = 1, 2, . . . , I

Proposition 6 specifies the targets’ optimal allocation strategy under certain restrictions
on the structure of ci(·, ·). We show that the target takes an all-or-nothing approach by
allocating all xmax to one route.

Proposition 6. If 1/ci(·, yi) is increasing and convex for all yi then the optimal strategy for
the target is to invest all its resources in one route. Specifically, the target’s optimal response
to allocation y of the interceptor is to allocate all xmax resources to route j∗(y), where

j∗(y) = arg max
j
Uj(y),

and

Uj(y) =
1

cj(xmax, yj)
+
∑
k 6=j

1

ck(0, yk)
. (6)

The proof of Proposition 6 appears in Appendix B.2. The assumption in Proposition 6
that 1/ci(·, yi) is convex allows for many reasonable possibilities for ci(·, ·). One example is
ci(xi, yi) = αi(yi)e

−βi(xi,yi) for 0 ≤ αi(·) ≤ 1 and βi(·, yi) a non-negative and convex function
for all yi.
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To determine the interceptor’s allocation, we solve

y∗ = min
y

(
max
j
Uj(y)

)
.

While the target’s optimal allocation has a nice all-or-nothing form, there is in general no
intuitive characterization of the interceptor’s allocation.

4 Conclusion and Future Research

In this paper we present two models, which differ in the way the defender views the intruder.
In the first model the intruder is assumed to be non-strategic and the defender has to decide
where to deploy its intercepting force in a continuous area of interest, given some knowledge
regarding the tactical boundaries of the intruder. In the second model the intruder is strategic
and the defender has the additional task of “outsmarting” the intruder. The defender’s best
practices are identified and analyzed for both cases, including some extensions.

This paper is the first part of a two-part paper addressing an intruder-defender problem.
In the current paper we assume a “sterile” environment where the only participants in the
scenario are the intruder (target) and the defender (interceptor). In some situations, such as
insurgencies or drug trafficking, the intruder may attempt to reduce its signature by blending
in a crowd of similarly looking objects (e.g., people, vehicles, boats). The potential effect of
blending affects the strategies of both the intruder and defender, as will be discussed in a
later companion paper.
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APPENDIX

The Appendix contains the proofs of the propositions and other supplementary informa-
tion. Appendix A contains material related to Section 2, and Appendix B contains material
related to Section 3.

A Proofs for Section 2 Propositions

A.1 Interceptor Position at the Center of the Area

Given the symmetry of the target’s movement, it is intuitive that the optimal horizontal
position lies at b = 0. We now prove this rigorously and thus show that the defender needs
to optimize only one parameter – the vertical location D. We show that, for any value of D,
if the interceptor is located at (b,D), b > 0 then it can reduce the expected interdiction time
by moving to (0, D).

The expected time to capture the target when the interceptor starts at position (b,D) is
a constant multiplication (with respect to b) of
ˆ W

−W

ˆ ᾱ

−ᾱ
−(D cosα−(x−b) sinα)+

√
(D cosα− (x− b) sinα)2 + (D2 + (x− b)2)(v2/u2 − 1)dαdx.

The terms outside the square-root do not affect the optimal value of b because the sin term
integrates to 0. This leaves us to consider

ˆ W

−W

ˆ ᾱ

−ᾱ

√
(D cosα− (x− b) sinα)2 + (D2 + (x− b)2)(v2/u2 − 1)dαdx. (7)

We next define two functions related to the term under the square root in (7):

f1(x, α, b,D) = (D cosα− (x+ b) sinα)2 + (D2 + (x+ b)2)(v2/u2 − 1)

f2(x, α, b,D) = (D cosα + (x+ b) sinα)2 + (D2 + (x+ b)2)(v2/u2 − 1).

We can express the term under the square root in (7) as f1(x, α,−b,D). To complete the
proof we will show thatˆ W

−W

ˆ ᾱ

−ᾱ

√
f1(x, α,−b,D)dαdx ≥

ˆ W

−W

ˆ ᾱ

−ᾱ

√
f1(x, α, 0, D), dαdx, (8)

which implies that the expected time to capture the target is smaller starting at position
(0, D) than it is from position (b,D).

Breaking up the left-hand-side of (8) into the sum of four integrals over separate quadrants
of [−W,W ]× [−ᾱ, ᾱ], and then changing variables such that the limits of integration are all
[0,W ]× [0, ᾱ] yields

ˆ W

−W

ˆ ᾱ

−ᾱ

√
f1(x, α,−b,D)dαdx =

ˆ W

0

ˆ ᾱ

0

√
f1(x, α,−b,D)dαdx+

ˆ W

0

ˆ ᾱ

0

√
f2(x, α,−b,D)dαdx

+

ˆ W

0

ˆ ᾱ

0

√
f2(x, α, b,D)dαdx+

ˆ W

0

ˆ ᾱ

0

√
f1(x, α, b,D)dαdx. (9)
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We now group the f1 terms and f2 terms, respectively:

ˆ W

−W

ˆ ᾱ

−ᾱ

√
f1(x, α,−b,D)dαdx =

ˆ W

0

ˆ ᾱ

0

√
f1(x, α,−b,D) +

√
f1(x, α, b,D)dαdx

+

ˆ W

0

ˆ ᾱ

0

√
f2(x, α,−b,D) +

√
f2(x, α, b,D)dαdx.

To finish the proof we show that
√
f1 and

√
f2 are convex in b. This convexity implies that

ˆ W

−W

ˆ ᾱ

−ᾱ

√
f1(x, α,−b,D)dαdx ≥

ˆ W

0

ˆ ᾱ

0

2
√
f1(x, α, 0, D)dαdx+

ˆ W

0

ˆ ᾱ

0

2
√
f2(x, α, 0, D)dαdx (10)

By a similar change of variable manipulation used to produce (9), we can show that
the right-hand-side of (10) is equivalent to the right-hand-side of (8). This implies that the
condition in (8) holds, which completes the proof.

First we show that the second derivative of
√
f1 is positive. Performing the differentiation,

we see that the second derivative is positive iff 2f1 >
(f ′1)2

f ′′1
. Below are the first and second

derivatives of f1 with respect to b

f ′1(x, α, b,D) = −2 sinα(D cosα− (x+ b) sinα) + 2(x+ b)(v2/u2 − 1)

f ′′1 (x, α, b,D) = 2 sin2 α + 2(v2/u2 − 1)

Thus to show convexity we must show that

(D cosα− (x+ b) sinα)2 + (D2 + (x+ b)2)(v2/u2 − 1)

>

(
− sinα(D cosα− (x+ b) sinα) + (x+ b)(v2/u2 − 1)

)2
sin2 α+ (v2/u2 − 1)

. (11)

We sketch out the details below for why this inequality holds. First

D2 cos2 α +D2(sin2 α + (v2/u2 − 1)) > 0

We next add −2(x + b)(D cosα − (x + b) sinα) sinα to both sides and then multiply both
sides by (v2/u2 − 1). This produces the following inequality

(D cosα− (x+ b) sinα)2(v2/u2 − 1) + (x+ b)2(v2/u2 − 1) sin2 α+D2(v2/u2 − 1)(sin2 α+ (v2/u2 − 1))

> −2(x+ b)(v2/u2 − 1)(D cosα− (x+ b) sinα) sinα

Next add (D cosα− (x+ b) sinα)2 sin2 α + (x+ b)2(v2/u2 − 1)2 to both sides(
(D cosα− (x+ b) sinα)2 + (D2 + (x+ b)2)(v2/u2 − 1)

)
(sin2 α+ (v2/u2 − 1))

>
(
− sinα(D cosα− (x+ b) sinα) + (x+ b)(v2/u2 − 1)

)2
Dividing both sides by sin2 α + (v2/u2 − 1) yields (11). A slight modification of the above

steps reveals that
√
f2 is also convex with respect to b.
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A.2 Expected Interdiction Time is Convex in D

The steps to prove convexity are nearly identical to the convexity arguments in Appendix
A.1. We thus only provide a roadmap to the proof here and omit most of the details, which
are very similar to the steps in in Appendix A.1. Define:

g̃(D) =

ˆ W

−W

ˆ ᾱ

−ᾱ

√
(D cosα− x sinα)2 + (D2 + x2)(v2/u2 − 1)dαdx. (12)

It is easily seen that if g̃(D) is convex then so is g(D). Also note that g̃(D) depends on v/u.
As in Appendix A.1, we define two functions related to the term under the square root

f1(x, α,D) = (D cosα− x sinα)2 + (D2 + x2)(v2/u2 − 1) (13)

f2(x, α,D) = (D cosα + x sinα)2 + (D2 + x2)(v2/u2 − 1). (14)

We now write g̃(D) in terms of f1(x, α,D) and f2(x, α,D) so that the limits are all [0,W ]×
[0, ᾱ]

g̃(D) = 2

ˆ W

0

ˆ ᾱ

0

√
f1(x, α,D) +

√
f2(x, α,D)dαdx. (15)

To show that g̃(D) is convex, it suffices to show that both
√
f1(x, α,D) and

√
f2(x, α,D)

are convex in D. As in Appendix A.1, one can go through the brute force differentiation to
show that the 2nd derivatives of

√
f1 and

√
f2 are positive. We omit the details here.

A.3 Proof that D∗ > 0

To prove that the optimal D∗ is positive, we will show that g′(0) < 0. We first write g(D) in
terms of g̃(D) introduced in equation (12) of Appendix A.2:

g(D) = − uD sin ᾱ

ᾱ(v2 − u2)
+

u

4Wᾱ(v2 − u2)
g̃(D). (16)

We next show g̃′(0) = 0, which implies g′(0) = − u sin ᾱ
ᾱ(v2−u2)

< 0 and completes the proof. In

Appendix A.2 we write g̃(D) in terms of two auxiliary functions f1 and f2. See (13)–(15) for
the relationship between g̃(D), f1, and f2.

To differentiate g̃(D) we interchange derivatives and intergrals because
√
f1(x, α,D) and√

f2(x, α,D) are continuous as are their partial derivatives with respect to D. Differentiating
inside the integral:

d

dD

(√
f1(x, α,D) +

√
f2(x, α,D)

)
=

cosα(D cosα− x sinα) +D(v2/u2 − 1)√
f1(x, α,D)

+
cosα(D cosα + x sinα) +D(v2/u2 − 1)√

f2(x, α,D)

Evaluating the right hand side at D = 0 yields

−x cosα sinα√
f1(x, α, 0)

+
x cosα sinα√
f2(x, α, 0)

However f1(x, α, 0) = f2(x, α, 0) and the above simplifies to 0. Consequently, g̃′(0) = 0,
g′(0) < 0, and D∗ > 0.
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A.4 Optimal Interceptor Location is a Linear Function of W

By Propositions 2 and 3, we know there is a unique minimizer D∗ of g(D), such that D∗ > 0.
To solve for D∗, it suffices to find the D∗ such that g′(D∗) = 0. Using the representation
from equation (16) with g̃(D) (see equation (12)) we write g′(D)

g′(D) = − u sin ᾱ

ᾱ(v2 − u2)
+

u

4Wᾱ(v2 − u2)
g̃′(D).

Thus D∗ satisfies
g̃′(D∗) = 4W sin ᾱ.

As discussed in Appendix A.3 we can interchange differentiation and integration to compute
g̃′(D)

g̃′(D) =

ˆ ᾱ

−ᾱ

ˆ W

−W

(D cosα− x sinα) cosα +D(v2/u2 − 1)√
(D cosα− x sinα)2 + (D2 + x2)(v2/u2 − 1)

dxdα.

With the help of Wolfram’s Mathematica Integrator [13] we integrate out the inner integral
with respect to x:

g̃′(D) =

ˆ α
−α

(v2/u2 − 1)(v2/u2)D(
(v2/u2 − 1) + sin2 α

)3/2
× log

 W (v2/u2 − 1) +W sin2 α−D cosα sinα+
√(

(v2/u2 − 1) + sin2 α
)

((D cosα−W sinα)2 + (v2/u2 − 1)(D2 +W 2))

−W (v2/u2 − 1)−W sin2 α−D cosα sinα+
√(

(v2/u2 − 1) +W sin2 α
)

((D cosα+ sinα)2 + (v2/u2 − 1)(D2 +W 2))


+

cosα sinα

(v2/u2 − 1) + sin2 α
×
(√

(D cosα+W sinα)2 + (v2/u2 − 1)(D2 +W 2)−
√

(D cosα−W sinα)2 + (v2/u2 − 1)(D2 +W 2)

)
dα.

(17)

Next we write D∗ = β(W, v, u, ᾱ)W . When we substitute this form of D∗ into (17) to solve
g̃′(D∗) = 4W sin ᾱ, a factor of W cancels out. This leaves us with the following implicit
function for β (we have dropped the functional form for β for notational convenience)

4 sin(ᾱ) =

ˆ α
−α

(v2/u2 − 1)(v2/u2)β(
(v2/u2 − 1) + sin2 α

)3/2
× log

 (v2/u2 − 1) + sin2 α− β cosα sinα+
√(

(v2/u2 − 1) + sin2 α
)

((β cosα− sinα)2 + (v2/u2 − 1)(β2 + 1))

−(v2/u2 − 1)− sin2 α− β cosα sinα+
√(

(v2/u2 − 1) + sin2 α
)

((β cosα+ sinα)2 + (v2/u2 − 1)(β2 + 1))


+

cosα sinα

(v2/u2 − 1) + sin2 α
×
(√

(β cosα+ sinα)2 + (v2/u2 − 1)(β2 + 1)−
√

(β cosα− sinα)2 + (v2/u2 − 1)(β2 + 1)

)
dα.

(18)

W does not appear in (18) and thus β does not depend upon it. Consequently we can write
D∗ = β(v, u, ᾱ)W as a linear function of W , where β(v, u, ᾱ) is the value of β that solves
(18).
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B Proofs for Section 3 Propositions

B.1 Solution to Strategic Model from Section 3.1

As our game has a saddle point, to determine the solution we consider the min-max and max-
min sequential games. First, we examine the min-max game where the interceptor chooses
q first and the target observes the decision and responds. Thus, for a given q, the target
chooses a pure strategy where pi = 1 for the route i with largest value of ri(1 − ciqi). The
interceptor, being in a disadvantageous position, selects a strategy that hedges against the
worst case scenario, that is, minimizes (over q) the maximum (over p) value of V (p, q) =∑I

i=1 ripi(1− ciqi).
Obviously, if r1(1 − c1) ≡ k1 ≥ r2 then q∗1 = 1 because this is the best hedging for the

interceptor. Otherwise, the interceptor chooses q1 and q2, q1+ q2 = 1, such that r1(1−q1c1) =
r2(1 − q2c2) ≡ k2. If k2 ≥ r3 then q∗i = qi, i = 1, 2 and q∗i = 0, i = 3, 4, . . . , I. If k2 < r3, we
choose q1, q2 and q3, q1+ q2 +q3 = 1, such that r1(1−q1c1) = r2(1−q2c2) = r3(1−q3c3) ≡ k3.
We check if k3 ≥ r4 to decide whether to stop, in which case q∗i = qi, i = 1, 2, 3 and
q∗i = 0, i = 4, 5, . . . , I, or proceed. The process continues in this fashion. Straightforward
calculations reveal that

kl =
−1 +

∑l
i=1 c

−1
i∑l

i=1(ciri)−1
, l = 1, 2, . . . , I.

This process of optimally allocating q to the routes ends at route θ such that kθ ≥ rθ+1

for the first time; continuing on to the next route will not reduce the maximum reward for
the target and therefore the interceptor will gain nothing. Thus

r1(1− c1q1) = r2(1− c2q2) = · · · = rθ(1− cθqθ) = kθ, (19)

for some θ ∈ {1, 2, . . . I}.
There are two possible scenarios. First, if kI−1 < rI then, following the explanation

above, θ = I, and from (19) it follows that q∗i = 1
ci

(
1− kI

ri

)
, i = 1, 2, . . . , I. We observe that

kI−1 < rI if and only if
I−1∑
j=1

1

cj

(
1− rI

rj

)
< 1. (20)

The second possible scenario is when kθ ≥ rθ+1 for the first time, in which case we stop the
process at route θ ∈ {1, 2, . . . I − 1}. That is,

θ = min

{
i :

i∑
j=1

1

cj

(
1− ri+1

rj

)
≥ 1

}
(21)

is the largest index of the route that is patrolled with positive probability.
It follows from (19)–(21) that (3) is true. the target can achieve an expected reward no

greater than kθ by construction and will achieve that expected reward if the target chooses
any route 1 through θ with certainty. Consequently the min-max value is kθ.
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We next turn to the max-min problem, where the target has to choose its strategy p
before the interceptor. To complete the proof it suffices to show that the strategy p∗ in (4)
will produce a value of kθ. For p∗ the expected reward to the target as a function of q is

θ∑
i=1

rip
∗
i (1− ciqi) =

θ∑
i=1

rip
∗
i −

θ∑
i=1

cirip
∗
i qi

=

∑θ
i=1 ri(rici)

−1∑θ
j=1(rjcj)−1

−
∑θ

i=1 qiciri(rici)
−1∑θ

j=1(rjcj)−1

=

∑θ
i=1 c

−1
i∑θ

j=1(rjcj)−1
−

∑θ
i=1 qi∑θ

j=1(rjcj)−1

≥ −1 +
∑θ

i=1(ci)
−1∑θ

j=1(rjcj)−1

= kθ

The interceptor can achieve a value of kθ for p∗ by choosing any route 1 through θ with
certainty (i.e., qi = 1 for any i ∈ 1, 2, . . . θ.) Since we have found a max-min strategy that
generates the min-max value, p∗ is an optimal strategy for the max-min game and hence of
our simultaneous game. Finally kθ is the value of the simultaneous game.

B.2 Optimal First-stage Allocation for Target

For a fixed interceptor strategy y, the target solves the following problem to determine its
best response

max
x

I∑
k=1

1

ck(xk, yk)
.

By our assumptions 1
cj(·,yj) is monotone increasing and convex for all yj and j, and hence the

target wants to maximize a linear combination of convex functions. As the only constraint
is that the allocation must sum to xmax, the expression is maximized if the target allocates
all xmax to one of the summands. Consequently, the interceptor only need to consider the I
alternatives where the target allocates all xmax to one route. If the target allocates xmax to
route j, the expected reward is Uj(y) in (6), and the proof is complete.
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