
Draft, 2 June 2003 1

Near-Shortest and K-Shortest Simple Paths

W. Matthew Carlyle
R. Kevin Wood

Operations Research Dept.
Naval Postgraduate School
Monterey, CA 93943

2 June 2003

Abstract

We describe a new algorithm for solving the problem of enumerating all near-
shortest simple (loopless) s-t paths in a graph G = (V,E) with non-negative edge
lengths. Letting n = |V | and m = |E|, the time per path enumerated is O(nS(n,m))
given a user-selected shortest-path subroutine with complexity O(S(n,m)). When
coupled with binary search, this algorithm solves the corresponding K-shortest simple
paths problem (KSPR) in O(KnS(n,m)(log n + log cmax)) time, where cmax is the
largest edge length. This time complexity is inferior to some other algorithms, but the
space complexity is the best available at O(m). Both algorithms are easy to describe, to
implement and to extend to more general classes of graphs. In computational tests on
grid and road networks, our best polynomial-time algorithm for KSPR appears to be at
least an order of magnitude faster than the best algorithm from the literature. However,
we devise a simpler algorithm with exponential worst-case complexity, which is orders
of magnitude faster yet on the test problems. A minor variant on this algorithm also
solves “KSPU,” which is analogous to KSPR but with loops allowed.

1 Introduction

The problem of enumerating the K shortest paths in a graph, denoted KSP here, has a long

history in operations research and computer science. Eppstein (1998) and Hadjiconstantinou

and Christofides (1999) provide excellent reviews, and Eppstein maintains an online bibliog-

raphy at http://liinwww.ira.uka.de/bibliography/Theory/k-path.html. This paper describes

a new algorithm to solve a version of KSP efficiently, in both time and space, through the

solution of another problem that has received less attention, the “near-shortest-paths prob-

lem” (NSP); see Byers and Waterman (1984). NSP requires enumeration of each path whose

length is within a factor of 1 + 6 of the shortest-path length for some user-specified 6 ≥ 0.
For simplicity, we focus on directed graphs G = (V,E) with integer edge lengths ce ≥ 0

for all e ∈ E, and make various extensions later. Throughout, we let n = |V | and m = |E|

Draft, 2 June 2003 2

and assume that m ≥ n. We also focus on enumerating simple paths, i.e., paths that contain
no loops. NSPR and KSPR will denote the restrictions of NSP and KSP, respectively, to

enumerating only simple paths. For clarity, we let NSPU and KSPU denote the respective

unrestricted problems, i.e., with loops allowed.

KSPR may be more difficult than KSPU (Hadjicontantinou and Christofides 1999), but

our applications and thus interests lie with simple paths (e.g., Wevley 1999, Israeli and Wood

2002). Nonetheless, a simple variation of our algorithm for KSPR leads to a new algorithm

for KSPU, so we do briefly cover the latter problem.

Byers and Waterman (1984) use dynamic-programming ideas to solve NSPU, with what

we shall call the “B&W algorithm.” The advantages of solving NSPU with the B&W al-

gorithm, compared to solving KSPU, are that (i) it is much simpler to implement than

algorithms for KSPU, (ii) it requires only O(m) work per path enumerated if the number of

loops in any path is bounded by a constant, and (iii) it requires only O(m) space to imple-

ment under the same conditions. (We ignore the work associated with a single shortest-path

problem solved at the beginning of this algorithm and, for all algorithms, we ignore the

space required to write out the enumerated paths.) We create a new algorithm, ANSPR1,

which extends the B&W approach to NSPR while giving up only a little in simplicity and

efficiency. To our knowledge, ANSPR1 is the first algorithm specifically designed to solve

NSPR. Importantly, this algorithm maintains O(m) space complexity, and its time complex-

ity increases only to O(nS(n,m)) per path enumerated, where O(S(n,m)) is the worst-case

complexity of the user’s shortest-path subroutine.

Of course, there is a disadvantage to solving NSPR rather than KSPR: A user might

prefer to prespecify K and solve KSPR, rather than guessing an appropriate value of 6 and

solving NSPR, perhaps obtaining too few or too many paths for the ultimate application.

But one pays a price to use the best known algorithm for KSPR: (i) the algorithm requires

O(K) space, (ii) it requires special data structures, and (iii) it is difficult to implement,

requiring complicated operations to join paths together; however, it does require only O(n2)

Draft, 2 June 2003 3

work per path enumerated (Hadjiconstantinou and Christofides 1999).

To overcome the difficulties above, we show how our extension of the B&W algorithm

can be coupled with a binary search on 6 to solve KSPR. The amount of work per path

enumerated increases over ANSPR1 by only a factor of log cmax+ log n, and space require-

ments remain O(m). The simplicity of the approach remains, and computational results are

excellent.

Section 2 describes the B&W algorithm for NSPU and provides two modifications for

solving NSPR: The first modification is very simple but does not yield polynomial com-

plexity (per path enumerated); the second is only slightly more complicated and does yield

polynomial complexity. Section 3 describes some practical improvements to the second, the-

oretically efficient algorithm. Section 4 then describes how to use any efficient algorithm

for NSPR as a subroutine in an algorithm to solve KSPR efficiently. Section 5 gives com-

putational results for implementations of the basic algorithms and their variants. We also

describe modifications of one of our algorithms to solve KSPU and give some brief compu-

tational results. Section 6 provides conclusions.

2 Solving the Near-Shortest-Paths Problem

We are given a directed graph G = (V,E) with vertex set V and edge set E ⊆ V × V . Each
edge e = (u, v) ∈ E has an integer edge length ce ≥ 0; equivalent notation is c(u, v) ≥ 0.
A source vertex s and sink vertex t W= s are specified, along with a parameter 6 ≥ 0. The
(unrestricted) near-shortest-paths problem (NSPU) requires enumeration of all (simple and

non-simple) s-t paths that are no longer than (1 + 6)Lmin, where Lmin denotes the length of

a shortest s-t path; Lmin > 0 is assumed.

Byers and Waterman (1984) give a simple algorithm for solving NSP, which can be

summarized as follows:

1. For all v ∈ V , find the shortest-path length from v to t, which we denote as dI(v) in this
paper. All of these values can be computed by solving a single shortest-path problem

Draft, 2 June 2003 4

starting at t and traversing edges backwards.

2. Run a straightforward s-t path-enumeration algorithm, but allow loops and extend

an s-u subpath to v along the edge e = (u, v) if and only if L(u) + c(u, v) + dI(v) ≤
(1 + 6)Lmin, where L(u) is the length of the current s-u subpath.

3. Whenever an s-t path is found using the above rule, print (output) it.

The correctness of the approach follows from the obvious dynamic-programming interpreta-

tion of Step 2.

The B&W algorithm for NSPU is specified below with several dummy statements and

other features that facilitate discussion of modifications to solve NSPR. We assume that no

vertex will every appear on a given path more than T times. For simplicity, the algorithm

just outputs vertices on the enumerated paths. This would be inappropriate in graphs with

parallel edges, but modifications for such instances are straightforward.

B&W Algorithm (Byers and Waterman 1984)

DESCRIPTION: An algorithm to solve NSPU.

INPUT: A directed graph G = (V,E) in adjacency list format, s, t, c ≥ 0, and 6 ≥ 0.
“firstEdge(v)” points to the first edge in a linked list of edges directed out of v.

OUTPUT: All s-t paths (may include loops), whose lengths are within

a factor of 1 + 6 of being shortest.

{
/* The following requires the solution of only a single shortest-path problem */

for(all v ∈ V){ dI(v)← shortest-path distance from v to t; }
d̄← (1 + 6)dI(s);
for(all v ∈ V and τ = 1, . . . , T) { nextEdge(v, t) ← firstEdge(v); }
theStack ← s; L(s)← 0;

/* τ(v) denotes the number of times vertex v appears on the current subpath */

/* It is not used in the basic version of this algorithm */

τ(s) ← 1; for(all v ∈ V − s){ τ(v) ← 0; }
while(theStack is not empty){

u ← vertex at the top of theStack;

if(nextEdge(u, τ (v)) W= ∅) {
(u, v) ← the edge pointed to by nextEdge(u);

increment nextEdge(u, τ (u));

Draft, 2 June 2003 5

if(L(u) + c(u, v) + dI(v) ≤ d̄){ /* Step (i) */

if(v = t){
print(theStack ∪ t);

} else {
push v on theStack;

τ (v) ← τ(v)+1;

L(v)← L(u) + c(u, v);

Dummy Step (ii);

}
}

} else {
Pop u from theStack;

τ (u) ← τ(u)−1;
nextEdge(u, τ(u)) ← firstEdge(u);

Dummy Step (iii);

}
}

}

A straightforward modification of the B&W algorithm stops it from enumerating paths

with loops so that it solves NSPR: If a vertex is already on the “current subpath,” i.e., on

the s-u path currently represented by the stack, do not allow it to go onto that subpath

again. This can be accomplished by replacing the if-statement at Step (i) with

if(τ(v) = 0 and L(u) + c(u, v) + dI(v) ≤ d̄) { /* Step (i) modified */

Also, nextEdge(u) replaces nextEdge(u, τ (u)) because τ can only equal 1 when examining

edges directed out of u in the modified algorithm. We denote this modification of the B&W

algorithm as ANSPR0.

Unfortunately, ANSPR0 has exponential complexity because it may waste time extend-

ing subpaths that have no feasible completions. This is true because dI(v) gives the length

of shortest path from v to t, but such a shortest path might require the traversal of vertices

already in the subpath represented by the stack; see Figure 1. However, ANSPR0 can be

faster than our polynomial-time algorithms, in practice, because only a single shortest-path

Draft, 2 June 2003 6

problem is solved, and because it turns out that not much effort is wasted in “going down

blind alleys.” We investigate this version of the algorithm in more detail, later.

… 5

4

n−2

s=1 t=n

n−1

32

2n

n

Figure 1: A graph that demonstrates algorithm ANSPR0’s exponential worst-case com-
plexity. Suppose 6 = 1.0, ce = 1 for all unmarked edges, and c(n− 1, t) = 2n and c(3, t) = n,
as marked. Then, there is only one near-shortest path (s→ 2→ 3→ t), but the algorithm
will investigate all 2n−3 partial paths starting at vertex 3 and ending at vertex 2, in addition
to the 2n−4 partial paths traversing edge (n− 1, t).

The exponential complexity of ANSPR0 can be remedied by redefining dI(v) to be the

shortest-path distance from v to t that does not use any vertex of the current subpath. This

definition requires us, in the worst case, to solve a shortest-path problem each time the

current subpath is extended or retracted by one vertex. (We discuss simplifications later.)

Therefore, the new algorithm, denoted ANSPR1,

1. Uses Step (i) modified, and

2. At Steps (ii) and (iii) uses:

for(all v ∈ V){ dI(v)← shortest-path distance from v to t where no vertices vI with

τ(vI) = 1 may be traversed; }.

Of course, each for-loop above represents a single call to a shortest-path subroutine which is

modified trivially to avoid vertices on the stack.

Draft, 2 June 2003 7

The argument for ANSPR1’s correctness is nearly identical to the argument for the

B&W algorithm: ANSPR1 is a modified path-enumeration algorithm for simple s-t paths

which adds an edge to the end of the current subpath if and only if the resulting extended

subpath has a feasible completion using only vertices that are not already on the current

path, and whose total length does not exceed the cutoff value of d̄ = (1+6)Lmin. Specifically,

if a vertex v is added to the current s-u subpath, then it must have received a distance label

dI(v) ≤ d̄ − L(u) − c(u, v). This label came from a v-t path containing only “unused”

vertices, and, therefore, appending this entire path to u, including edge (u, v), is a feasible

completion with the desired properties. Conversely, if a vertex v has distance label dI(v) >

d̄− L(u)− c(u, v), then clearly there can be no feasible completion of the path once vertex
v is added to the stack.

Theorem 1 The amount of work per enumerated path in ANSPR1 is O(nS(n,m)) if the

algorithm uses a shortest-path subroutine with worst-case complexity O(S(n,m)).

Proof: Each path has at most n− 1 edges, so at most O(nS(n,m)) work is involved in solv-
ing shortest-path problems before generating the first path. The path-enumeration process,

apart from solving shortest-path problems, scans at most all of the edges in G before finding

that first path, so the work there is at most O(m) and can be ignored. Now, the number of

shortest-path problems to be solved before the next path is enumerated (or until the algo-

rithm backtracks all the way to s and discovers that there are no more paths to enumerate)

is at most 2n: At most n− 1 problems arise while backtracking (perhaps as far as s), and at
most n − 1 problems arise while extending the path back to t. Again, overhead is at most
O(m) and can be ignored. The argument holds for all subsequent paths enumerated.

Shortest-path algorithms are covered extensively in Ahuja et al. (1993, pp. 93-165). For

graphs with non-negative edge lengths, Dijkstra’s “label-setting algorithm” is the classic ap-

proach (Dijkstra 1959). For fully dense graphs, where m = Ω(n2), the basic implementation

of Dijkstra’s algorithm has the best worst-case complexity of O(n2). For less dense graphs,

Dijkstra’s algorithm implemented with a binary heap (Johnson 1977) is one of the simplest

Draft, 2 June 2003 8

efficient algorithms, with a run time of O(m logn). Other modifications to Dijkstra’s algo-

rithm reduce this to O(m+ n log n) (Fredman and Tarjan 1984) and, theoretically, to O(m)

for dense graphs (Johnson 1977).

For shortest-path problems on graphs with arbitrary edge lengths but no negative-length

cycles, the algorithm with the best, provable, worst-case performance, O(mn), is a “label-

correcting algorithm” implemented with a first-in first-out queue (Bellman 1958). Both

polynomial-time and exponential-time versions of label-correcting algorithms can be very

fast in practice (Cherkassky et al. 1994).

3 Practical Improvements in Efficiency

Here we investigate four modifications, denoted A, B, C and D, for improving the practical

efficiency of ANSPR1. The first three modifications maintain the polynomial complexity

of the algorithm, although modification D will not except under certain conditions.

3.1 Modification A

The algorithm never extends a path to include a vertex v with distance label dI(v) > (1 +

6)Lmin − LP , where LP is the length of the current subpath P , represented by the stack.
In the shortest-path calculations, since all edge lengths are non-negative, we can obtain a

significant speedup by not updating a label on a vertex if that label exceeds the cutoff. This

is “modification A.” For typical values of 6 and in typical, sparse graphs, this modification

can prevent the shortest-path algorithm from investigating a huge number of vertices. In

fact, as LP approaches Lmin, the number of vertices not investigated approaches n.

3.2 Modification B

Suppose that when a path is extended to a new vertex v, we push all of the newly computed

dI() values onto a stack: We always use the n topmost values in computations. Then, when

the algorithm backtracks at Step (iii), it need not solve another shortest-path problem;

Draft, 2 June 2003 9

instead, it simply pops the n values of dI() from the top of the stack and makes the now-

top n values current again. This “modification B” replaces O(S(n,m)) work with O(n)

work which is undoubtedly a savings, although worst-case storage requirements increase to

O(n2). (Note: It is also necessary to maintain a parallel stack of the same size containing the

predecessors of each vertex in the corresponding shortest-path tree. We assume the reader

is familiar with the concept of a “shortest-path tree;” otherwise, see Ahuja, Magnanti and

Orlin 1993, pp. 106-107. Of course, our tree is rooted at t and corresponds to traversing

edges backwards, rather than starting at s and traversing edges in their nominal directions.)

3.3 Modification C

Suppose that ANSPR1 is about to extend the current path from u to v, and suppose that

v is a leaf of the shortest-path tree computed (or implied) at Step (ii) when u was added to

the subpath. Then, none of the values dI() change, except that dI(v) is, essentially, no longer

defined. The total amount of work involved in handling such a case is at most O(n). Thus,

we would again exchange O(S(n,m)) work for the undoubtedly smaller quantity O(n).

This idea generalizes. Suppose we have just computed the current shortest-path tree

T , then immediately extend the current subpath to some vertex v, and then discover that

all of the vertices u that have v as a predecessor in T are now “too far” from t, in that

dI(u)+L(v) > (1+ 6)Lmin. The distance labels dI(u) cannot decrease in subsequent shortest-

path calculations, and therefore none of these vertices u can ever join the current subpath. In

fact, because edge lengths are non-negative, none of the vertices in the subtree of T rooted at

v can ever join the current subpath. Thus, we can avoid recomputing shortest paths entirely

in the upcoming iteration. We implement this “modification C” in a single for-loop over

the edges directed into v. Note that when there is no vertex u having v as its predecessor,

this modification specializes to the “leaf-checking modification” described in the previous

paragraph.

When the algorithm extends the current subpath to a vertex v that is not a leaf, it would

Draft, 2 June 2003 10

be possible to recompute shortest-path distances only to those vertices in the shortest-path

tree that are “cut off” by adding v, i.e., to only those vertices u that had v as a direct or

indirect predecessor. (Of course, no calculations would be necessary for vertices in a subtree

rooted at u which is “too far” from t, as in modification C.) A label-correcting algorithm

could be arranged to accomplish this task. However, the complexity of the algorithm would

increase substantially and new data structures would be necessitated. Our purpose is to

develop a simple algorithm, so we have not implemented this modification.

3.4 Modification D

If we modify ANSPR1 to never recompute shortest-path lengths to t, we end up with

ANSPR0 which has exponential complexity. However, if the algorithm recomputes those

path lengths only after it extends the current path by a fixed number of edges f, the work

saved may offset the extra work involved in following paths in error. Furthermore, if the

maximum degree in G is bounded by a constant d, then the maximum number of edges the

algorithm can follow in error is bounded by fd which may not be too large. Of course,

we only claim this “modification D” has polynomial complexity for graphs with bounded

degree. “D ” denotes this modification when shortest-paths are recalculated after every f

extensions of the subpath. ABCD denotes all four modifications. “D∞” appears by itself

because none of the other modifications are of any consequence when f = ∞. Indeed, D∞
simply represents ANSPR0.

Results for the basic algorithm, with and without the modifications described above, are

presented in Section 5. Before presenting those results, however, we show how to solve the

K-shortest paths problem (KSPR) using an algorithm for NSPR as a subroutine.

4 Solving the K-Shortest-Paths Problem

Our approach to solving KSPR uses ANSPR1 as a subroutine to solve NSPR inside of a

binary search on the value of 6. For this section, we modify the notation slightly to simplify

Draft, 2 June 2003 11

the presentation: Since edge lengths are integral, all path lengths will be integral; therefore,

requiring that path lengths be less than (1 + 6)Lmin is equivalent to requiring that path

lengths be less than Lmin+ δ, where δ = u6LminJ. As a consequence, we can and do perform
binary search on (integer) values of δ (and use 6 = δ/Lmin in ANSPR1).

4.1 Directed Graphs with Non-negative Edge Lengths

When δ is set to a particular value, it leads to the enumeration of some number of paths

denoted here by κ(δ); we assume without loss of generality that κ(0) < K. The longest

(simple) path length is bounded by ncmax, so the only relevant values of δ are contained in

{0, 1, . . . , ncmax}. (The largest value can be shrunk somewhat, but this bound is sufficient
for our purposes.) Since κ(δ) is non-decreasing, we can solve KSPR by using binary search

on δ, starting with an interval of uncertainty of [0, ncmax] and ending with [δ
I, δII] such that

δII − δI = 1, κ(δI) ≤ K and κ(δII) > K. (We abuse the phrase “interval of uncertainty”

slightly.) After identifying δI and δII, the solution to KSPR is simple:

1. Enumerate κ(δI) paths using 6 = δI/Lmin in ANSPR1. Let the set enumerated be P .
If κ(δI) = K, go to Step 3.

2. Otherwise, begin ANSPR1 with 6 = δII/Lmin, adding any path with length Lmin + δII

to P until |P| = K; then halt.

3. The set P solves KSPR for the given K.

Applying Theorem 1, we can see that the amount of work involved above (i.e., given δII

and δI such that δI = δII − 1) is O(KnS(n,m)).
The binary search algorithm will require O(log n + log cmax) iterations to reduce the

interval of uncertainty on δ to 1. If we modify ANSPR1 to always halt after it generates

at most K + 1 paths, except when executing step 2 above, then the total work involved in

the binary search is O(KnS(n,m)(log n + log cmax)); the work involved in steps 1 and 2 is

Draft, 2 June 2003 12

therefore dominated. Since we are using ANSPR1 as a subroutine, the total amount of

storage required never exceeds O(m). Hence, we have proven:

Theorem 2 ANSPR1 coupled with binary search solves KSPR in O(KnS(n,m)(log n +

log cmax)) time and O(m) space.

4.2 Extensions

The algorithms described extend trivially to undirected graphs with non-negative edge

lengths: Simply replace each undirected edge with two directed, anti-parallel edges both

having the undirected edge’s length. The algorithms also extend to directed graphs with

negative edge lengths as long as there are no negative-length cycles: Solve all shortest-path

problems with a label-correcting shortest-path algorithm that handles such situations (e.g.,

Ahuja, et al. 1993, pp. 136-144). It clear, however, that modification A is inapplicable to

such problems.

The B&W algorithm, without modification, solves NSPR in directed acyclic graphs be-

cause paths in such graphs can never contain loops. Hence, the B&W algorithm can be used

within the binary-search procedure to solve KSPU (equivalently, KSPR) in such graphs.

Since the initial shortest-path computation of dI(v) does not need to be repeated at each

iteration, the overall complexity of the algorithm will be O(Km(log n + log cmax)). The

multiplicative term m arises here instead of n, because the work associated with scanning

edges while searching for a path is not dominated by repeated shortest-path calculations,

and because m ≥ n is assumed; refer to the proof of Theorem 1.

When G contains parallel edges, we may wish to enumerate paths that contain repeated

vertices but no repeated edges. The new algorithms for NSPR and KSPR easily extend to

handle this situation:

1. Keep track of which edges are on the current s-u path and ignore τ (),

2. Do not allow edge e = (u, v) to extend the current subpath at Step (i) if it is already

on that subpath, and

Draft, 2 June 2003 13

3. Modify the shortest-path subroutine that computes dI(v) so that it does not traverse

any edges that are on the current s-u subpath.

5 Computational Results

We have implemented algorithm ANSPR1 in the C programming language, along with cer-

tain combinations of modifications A-D. This section describes tests of the basic algorithm

and its variants for directly solving NSPR and for solving KSPR when used as a subroutine

within a binary search. We refer to the latter algorithm as AKSPR1. All shortest-path

problems are solved with the label-correcting algorithm described by Pape (1974). This al-

gorithm is typically very fast, but it has exponential worst-case complexity, and its run times

can vary widely between different classes of problems (Cherkassky et al. 1994). However, we

like this algorithm’s ease of implementation and it behaves adequately for this paper’s test

problems.

All computations are carried out on a personal computer with an Intel 2.5 GHz Pentium

IV processor, 1 GB of RAM, the Microsoft Windows 2000 operating system, and with pro-

grams written and compiled using the Microsoft Visual C++ Version 6.0. Run times do not

include the time required to write the paths to a text file. This time is roughly proportional

to ēK, where ē represents the average number of edges in the paths enumerated. As an

example, about 100 seconds extra are required to write out the paths in AKSPR when

K = 106 and when paths average 100—200 edges.

5.1 Test Problems and Environment

We test our algorithms on four different directed graphs:

• “Grid 40 × 25” is based on a rectangular grid, 25 vertices tall and 40 vertices wide,
with a separate source vertex s and sink vertex t external to the grid. The source s

is connected to all 25 vertices in the leftmost column of the grid, and all 25 vertices

in the rightmost column are connect to t. Each vertex u within the grid has (up to)

Draft, 2 June 2003 14

four edges (u, v) directed out of it, up, down, to the left and to the right, as long as

the vertex v exists in the grid. Edge lengths are independent integers drawn from the

discrete uniform distribution on [1,10]. This graph has n = 1, 002 and m = 3, 920.

Cherkassky et al. (1994) use similar graphs for some of their tests on shortest-path

algorithms.

• “Grid 100 × 50” has the same basic structure as Grid 40 × 25, but uses a 100 × 50
graph of vertices. This graph has n = 5, 002 and m = 19, 800.

• “Road 1” represents the major highways and thoroughfares in the road network of a
metropolitan area in the northeastern United States. It covers an area of about 500

square miles, and its integer edge lengths measure 100ths of miles. This graph has

n = 3, 670 and m = 9, 876.

• “Road 2” depicts the same road network as Road 1, but represents a much higher
level of resolution, containing many smaller streets and intersections. This graph has

n = 112, 556 and m = 274, 510.

The largest graph on which Hadjiconstantinou and Christofides (1999) test their algo-

rithm for KSPR has n = 1, 000 and m = 10, 000. In terms of n+m, this is about twice as

large as our smallest test problem, but about 40 times smaller than our largest. The largest

value of K they test is 103; the largest we test is 107. Their computer is a 100 MHz Silicon

Graphics Indigo workstation.

We implement these variants of ANSPR1, and corresponding variants of AKSPR1:

• The unmodified algorithm denoted “basic,”

• Modification A (denoted “A”) which modifies shortest-path calculations to avoid up-
dating distance labels on vertices that are too far from t to be included in any near-

shortest path,

Draft, 2 June 2003 15

• Modifications A and B (“AB”), where B maintains a stack of distance labels to make
backtracking in the path enumeration more efficient,

• Modifications A, B and C (“ABC”), where C checks the next vertex to be added to
the stack and does not recompute dI() if no relevant changes can occur,

• Modifications A, B, C and D with shortest paths recalculated after every fth edge is
added to the current subpath (denoted “ABCD and tested for f = 10 and f = 50),

and

• Modification D alone in which shortest paths are never recalculated (“D∞”). This is
essentially ANSPR0.

We have tested other combinations of these modifications, but believe that the clear impact

that each successive modification has on run times shows clearly enough the potential value

of each modification.

5.2 Near-shortest Simple Paths

Table 1 displays results obtained by solving NSPR with ANSPR1. For all test problems,

each added modification significantly improves run times, except in the case of Road 2,

in which the combination ABC is slightly slower than AB. Road 2 has a different general

structure than the others tested in that it contains many degree-2 vertices. (Small streets

have been eliminated in this network’s level of resolution, but the intersections where these

small streets were connected to larger streets remain.) This may account for the difference

here. However, the difference in run times is insignificant in these cases, and therefore we

can probably use the ABC variant with reasonable confidence in most applications.

ANSPR0, labeled “D∞,” is clearly superior in all instances. However, as noted in

Section 2, there are examples in which its run time can be exponential in n, and Figure 1

provides such an example. Table 2 clearly demonstrates this exponential behavior for the

graph topology indicated in that figure. However, the ABCD10 variant of ANSPR1 does

Draft, 2 June 2003 16

Run Times for Variants of ANSPR1

graph δ paths basic A AB ABC ABCD10 ABCD50 D∞
(no.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

Grid 0 2 0.02 0.00 0.02 0.00 0.00 0.00 0.00
40×25 1 16 0.06 0.02 0.02 0.00 0.00 0.00 0.00

2 56 0.14 0.06 0.03 0.02 0.00 0.00 0.00
3 139 0.28 0.13 0.06 0.03 0.00 0.00 0.00
4 334 0.59 0.23 0.13 0.05 0.02 0.00 0.00
5 770 1.27 0.50 0.27 0.09 0.02 0.00 0.00
6 1633 2.45 0.95 0.50 0.19 0.05 0.02 0.00

Grid 0 6 0.20 0.11 0.08 0.03 0.02 0.00 0.00
100×50 1 44 0.94 0.38 0.22 0.09 0.03 0.00 0.00

2 218 3.69 1.23 0.78 0.36 0.08 0.02 0.00
3 894 12.77 3.88 2.45 1.23 0.23 0.06 0.00
4 3210 39.83 11.13 7.13 3.81 0.67 0.16 0.00
5 10320 113.52 30.02 19.25 10.77 1.72 0.39 0.02
6 30632 303.50 76.39 48.89 29.36 4.34 0.95 0.05

Road 1 0 1 0.05 0.02 0.03 0.00 0.00 0.00 0.00
10 21 0.36 0.11 0.06 0.02 0.00 0.00 0.00
20 42 0.52 0.11 0.08 0.03 0.02 0.00 0.00
30 98 1.42 0.31 0.19 0.08 0.02 0.00 0.00
40 210 2.91 0.64 0.39 0.16 0.03 0.00 0.00
50 554 7.95 1.78 1.08 0.42 0.09 0.02 0.00
60 1229 15.97 3.25 1.97 0.86 0.17 0.03 0.02

Road 2 0 1 32.33 1.30 0.84 0.55 0.25 0.20 0.00
10 22 176.64 4.74 2.55 1.89 0.44 0.22 0.00
20 65 347.74 7.94 4.19 3.73 0.63 0.24 0.00
30 179 18.27 9.48 9.17 1.20 0.30 0.00
40 484 42.61 21.94 22.44 2.47 0.47 0.00
50 1126 88.22 44.84 47.31 4.94 0.80 0.00
60 2437 180.81 92.59 97.91 9.81 1.67 0.20

Table 1: Run times, in CPU seconds, for variants of the algorithm ANSPR1 which solves
NSPR. The last variant, which is essentially the exponential algorithm ANSPR0, is evi-
dently superior for these problems. Note that “paths” specifies the number of paths found
for the given value of δ.

Draft, 2 June 2003 17

n δ D∞
(sec.)

20 22 0.00
25 27 0.27
26 28 0.55
27 29 1.09
28 30 2.19
29 31 4.41
30 32 8.75

Table 2: A computational example demonstrating algorithm ANSPR0’s exponential worst-
case complexity. Figure 1 displays the structure of the test graphs for any n > 5. The table
here reports, for various values of n, the value of δ that corresponds to 6 = 1.0, and the
run time for the D∞ variant of ANSPR1, which is ANSPR0: The exponential behavior
of the algorithm, as a function of n, is apparent. The run times for the ABCD10 variant of
ANSPR1 are all indistinguishable from zero on these problems.

solve each of the instances in Table 2 in time that registers as 0.00 seconds, so this variant

may provide a good backup for ANSPR0 if exponential behavior should ever become a

problem. (For K sufficiently large, this exponential behavior would begin to appear even in

a network like Road 2. However, K = 107 is apparently too small to cause difficulties.)

5.3 K Shortest Simple Paths

Table 3 displays results for the different variants of our new algorithm AKSPR1 used to

solve KSPR. We can call the D∞ variant “AKSPR0” since it is really using ANSPR0 as

a subroutine. Tests are performed on the same four networks used for testing ANSPR1.

For each test graph and for each algorithmic variant, we solved KSPR for various values of

K between 102 and 107. The column labeled δII represents the final interval of uncertainty

on δ such that [δI, δII] = [δII− 1, δII] (and where κ(δI) ≤ K and κ(δII) > K). Empty entries in

the table represent problems that were too difficult to solve in a reasonable amount of time

(< 1, 000 seconds) for the given algorithm.

Hadjiconstantinou and Christofides (1999, Figure 6(c)) indicate a run time for their KSPR

algorithm of over 1,400 seconds when K = 103 for a test graph having 1,000 vertices and

an edge-to-vertex density of four. This graph is of roughly the same size and structure as

Draft, 2 June 2003 18

Run Times for Variants of AKSPR1

graph K δII basic A AB ABC ABCD10 ABCD50 D∞
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

Grid 102 3 0.81 0.36 0.22 0.08 0.03 0.02 0.00
40×25 103 6 6.39 2.52 1.42 0.59 0.14 0.05 0.00

104 9 67.61 23.92 13.22 5.67 1.27 0.50 0.06
105 13 148.77 79.73 38.41 7.63 3.66 0.36
106 17 430.63 80.531 42.00 4.03
107 21 34.00

Grid 102 2 5.25 1.89 1.23 0.52 0.11 0.02 0.00
100×50 103 4 46.44 13.70 8.72 4.44 0.80 0.19 0.02

104 5 132.53 84.78 48.98 7.50 1.67 0.08
105 8 462.07 284.45 41.48 8.31 0.45
106 10 90.70 5.83
107 13 47.73

Road 1 102 31 9.77 2.19 1.36 0.58 0.13 0.03 0.00
103 57 99.77 20.11 12.20 5.41 1.09 0.20 0.03
104 90 153.36 94.09 48.45 8.16 1.59 0.09
105 128 685.07 379.55 59.14 11.30 0.45
106 171 132.27 10.75
107 219 94.08

Road 2 102 25 3723.51 82.39 46.11 41.45 6.99 3.20 2.80
103 49 315.11 323.61 35.31 7.44 3.19
104 81 2861.55 2971.93 294.03 51.89 3.73
105 120 424.15 4.69
106 167 16.91
107 222 111.20

Table 3: Run times, in CPU seconds, for variants of AKSPR1 which solve KSPR. K is the
number of paths generated, and δII is the value of δ such that κ(δ − 1) ≤ K and κ(δ) > K.
The variants of AKSPR1 depend on which version of the ANSPR1 subroutine is used,
just as in Table 1.

Draft, 2 June 2003 19

our Grid 40× 25 which we solve in 0.59 seconds (Table 3) with the polynomial-time variant,
ABC, of AKSPR1; and the D∞ variant (AKSPR0) solves this problem so quickly that

it does not register with the C library time functions. Indeed, our best algorithm produces

107 paths in about one 40th of the time in which their algorithm produces 103 paths. Even

taking our faster computer into account, it is safe to conclude that our best algorithms are

several orders of magnitude more efficient than theirs.

5.4 K Shortest Paths with Loops Allowed

It is a simple matter to convert AKSPR0 to “AKSPU0,” an algorithm to solve KSPU

(which allows loops): Simply use the original Byers and Waterman algorithm for NSPU in

lieu of the ANSPR1 subroutine inside ofAKSPR1. That is, we perform a binary search on

δ as in AKSPR0, but for each value of 6 = δ/Lmin, we solve a near-shortest paths problem

with loops allowed instead of being explicitly disallowed. Apart from instances in which

AKSPR0 demonstrates its exponential worst-case complexity, we expect the run times for

AKSPU0 to be similar to those forAKSPR0, because only one shortest-path problem need

be solved in AKSPU0 for each value of δ. This appears to be the case, as demonstrated by

Table 4, which compares the two algorithms on the two largest test problems, Grid 100× 50
and Road 2.

Under the assumption that a path visits any single vertex a bounded number of times,

the worst-case complexity of AKSPU0 is O(Km(log cmax + logn). This follows from an

argument that is similar to the one used in Section 4.2 for establishing the complexity of

solving KSPU (equivalently, KSPR) in directed acyclic graphs. The short run times and

simplicity of the algorithm certainly make it attractive for practical use, but KSPU is a

peripheral issue in this paper and we make no computational comparisons with alternative

algorithms.

Draft, 2 June 2003 20

graph K δII AKSPR0 δII AKSPU0
(sec.) (sec.)

Grid 102 3 0.02 2 0.02
100× 50 103 5 0.02 4 0.02

104 8 0.05 6 0.07
105 11 0.41 9 0.62
106 15 3.11 11 5.16
107 18 40.04 14 41.42

Road 2 102 24 3.22 11 2.75
103 49 3.70 17 3.22
104 81 4.34 25 3.50
105 120 5.81 33 7.41
106 167 24.04 43 31.84
107 222 167.74 53 256.10

Table 4: Run times for AKSPU0 solving KSPU, compared to run times for AKSPR0
solving KSPR. Note that AKSPR0 is the D∞ variant of AKSPR1 whose times are also
presented in Table 3.

6 Conclusions

We have described a theoretically efficient and easily implemented algorithm, ANSPR1, for

enumerating all near-shortest, simple s-t paths in a directed graph G = (V,E). Near-shortest

paths are those that are no longer than (1+ 6)Lmin where 6 ≥ 0 is a user-specified parameter
and Lmin is the shortest s-t path length (assumed to be positive). Letting n = |V | and m =

|E|, the amount of work per path enumerated is O(nS(n,m)), where S(n,m) corresponds to
the worst-case complexity of the user-selected shortest-path subroutine. The basic algorithm

is described for directed graphs with non-negative edge lengths, but easily extends to (i)

undirected graphs, (ii) directed graphs with negative-length edges but no negative-length

cycles, and (iii) paths with repeated vertices but no repeated edges. ANSPR1 is also used

as a subroutine, combined with binary search in an algorithm denoted AKSPR1, to solve

the K-shortest-path problem restricted to simple paths (KSPR). All polynomial variants of

this algorithm have worst-case complexities of O(KnS(n,m)(log n + log cmax)), where cmax

is the largest edge length.

Several different modifications ofANSPR1 achieve significant reductions in run time and

Draft, 2 June 2003 21

maintain polynomial complexity. Interestingly, the last modification studied has exponential

complexity, yet provides the fastest run times in practice. ANSPR1 may be viewed as a

path-enumeration algorithm that checks whether or not the currently enumerated subpath

can be extended to a path of acceptable length. For this check to be accurate, the algorithm

may need to run a shortest-path algorithm after each edge is added to or removed from

the current subpath. The exponential algorithm performs the shortest-path calculation only

once and hence may extend a subpath incorrectly, a mistake that must be corrected later

after wasting computational effort. Evidently, in practice, not much effort is wasted.

We finish by reiterating several main points: (i) ANSPR1 and its variants are the first

algorithms ever described for NSPR, (ii) several variants of AKSPR1 appear to be the

fastest algorithms available for KSPR, by a wide margin, and (iii) all of the algorithms are

easy to implement. Our fastest algorithms for NSPR and KSPR have exponential worst-

case complexity, but exponential behavior may only arise only with pathological data. The

polynomial-time versions of these algorithms are fast enough to back these algorithms up if

such behavior should ever arise.

7 References

Ahuja, R.K., Magnanti, T.L. and Orlin, J.B., (1993), Network Flows, Prentice Hall,

Englewood Cliffs, New Jersey.

Bellman, R., (1958), “On a routing problem,” Quarterly of Applied Mathematics, 16,

pp. 87—90.

Byers, T.H. and Waterman, M.S., (1984), “Determining all optimal and near-optimal

solutions when solving shortest path problems by dynamic programming,” Operations

Research, 32, pp. 1381—1384.

Cherkassky, B.V., Goldberg, A.V., and Radzik, T., (1994), “Shortest path algorithms:

theory and experimental evaluation,” Proceedings of the Fifth Annual ACM-SIAM

Draft, 2 June 2003 22

Symposium on Discrete Algorithms, ACM Press, New York, New York, pp. 516-525.

Dijkstra, E., (1959), “A note on two problems in connexion with graphs,” Numerische

Mathematik, 1, pp. 269—271.

Eppstein, D., (1998), “Finding the K Shortest Paths,” SIAM Journal on Computing,

28, pp. 652—673.

Fredman, M. L., and Tarjan, R. E., (1984), “Fibonacci heaps and their uses in im-

proved network optimization algorithms,” Proceedings, 25th Annual IEEE Symposium

on Foundations of Computer Science, pp. 338—346.

Hadjiconstantinou, E. and Christofides, N., (1999), “An efficient implementation of an

algorithm for finding K shortest simple paths,” Networks, 34, pp. 88—101.

Israeli, E. and Wood, R.K., (2002), “Shortest-path network interdiction,” Networks,

40, pp. 97—111.

Johnson, D. S., (1977), “Efficient shortest path algorithms,” Journal of the ACM, 24,

pp. 1—13.

Naor, D. and Brutlag, D.L., (1994), “On near-optimal alignments of biological se-

quences,” Journal of Computational Biology, 1(4), pp. 349—366.

Pape, U., (1974), “Implementation and efficiency of Moore-algorithms for the shortest

route problem,” Mathematical Programming, 7, pp. 212-222.

Wevley, C. (1999), “The Quickest Path Network Interdiction Problem,” Masters The-

sis, Operations Research Department, Naval Postgraduate School, Monterey, Califor-

nia, March.

