
Near-Shortest and K-Shortest Simple Paths

W. Matthew Carlyle, R. Kevin Wood
Department of Operations Research, Naval Postgraduate School, Monterey, California 93943

We present a new algorithm for enumerating all
near-shortest simple (loopless) s-t paths in a graph
G = (V , E) with nonnegative edge lengths. Letting
n = |V | and m = |E |, the time per path enu-
merated is O(nS(n, m)) given a user-selected short-
est-path subroutine with complexity O(S(n, m)). When
coupled with binary search, this algorithm solves the
corresponding K -shortest paths problem (KSPR) in
O(KnS(n, m)(log n + log cmax)) time, where cmax is the
largest edge length. This time complexity is inferior to
some other algorithms, but the space complexity is the
best available at O(m). Both algorithms are easy to
describe, to implement and to extend to more general
classes of graphs. In computational tests on grid and
road networks, our best polynomial-time algorithm for
KSPR appears to be at least an order of magnitude faster
than the best algorithm from the literature. However, we
devise a simpler algorithm, with exponential worst-case
complexity, that is several orders of magnitude faster
yet on those test problems. A minor variant on this
algorithm also solves “KSPU,” which is analogous to
KSPR but with loops allowed. © 2005 Wiley Periodicals, Inc.
NETWORKS, Vol. 46(2), 98–109 2005

Keywords: K-shortest paths; near-shortest paths; path enumer-
ation

1. INTRODUCTION

The problem of enumerating the K-shortest paths in
a graph, denoted KSP here, has a long history in oper-
ations research and computer science. Eppstein [8] and
Hadjiconstantinou and Christofides [11] provide excel-
lent reviews, and Eppstein maintains an online bibliog-
raphy at http://liinwww.ira.uka.de/bibliography/Theory/k-
path.html. This article describes a new algorithm to solve
a version of KSP efficiently, in both time and space, through
the solution of another problem that has received less atten-
tion, the “near-shortest paths problem” (NSP); see [5]. NSP

Received February 2003; accepted May 2005
Correspondence to: W.M. Carlyle; e-mail: mcarlyle@nps.edu
DOI 10.1002/net.20077
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2005 Wiley Periodicals, Inc.

requires enumeration of each path whose length is within
a factor of 1 + ε of the shortest path length for some
user-specified ε ≥ 0.

For simplicity, we focus on directed graphs G = (V , E)

with integer edge lengths ce ≥ 0 for all e ∈ E, and make
various extensions later. Throughout, we let n = |V | and m =
|E| and assume that m ≥ n. We focus on enumerating simple
(loopless) paths, and use “NSPR” and “KSPR” to denote NSP
and KSP, respectively, when restricted to enumerating only
simple paths. For clarity, “NSPU” and “KSPU” will denote
the respective unrestricted problems.

KSPR may be more difficult than KSPU [11], but our
applications and thus interests lie with simple paths (e.g.,
[14, 17]). Nonetheless, a simple variation of our algorithm
for KSPR leads to a new algorithm for KSPU, so we do
briefly cover the latter problem.

Byers and Waterman [5] employ dynamic-programming
ideas to solve NSPU, using what we shall call the “B&W
algorithm.” The advantages of solving NSPU with the B&W
algorithm, compared to solving KSPU, are that (i) it is
much simpler to implement than algorithms for KSPU, (ii)
it requires only O(m) work per path enumerated if the num-
ber of loops in any path is bounded by a constant, and (iii)
it requires only O(m) space to implement under the same
conditions. (We ignore the work associated with a single
shortest-path problem solved at the beginning of this algo-
rithm and, for all enumeration algorithms, we ignore the
space required to write out the enumerated paths.) We cre-
ate a new algorithm, ANSPR1, which extends the B&W
approach to NSPR while giving up only a little in simplic-
ity and efficiency. To our knowledge, ANSPR1 is the first
algorithm specifically designed to solve NSPR. Importantly,
this algorithm maintains O(m) space complexity, and its time
complexity increases only to O(nS(n, m)) per path enumer-
ated, where O(S(n, m)) represents the worst-case complexity
of the user’s shortest-path subroutine.

Of course, there is a disadvantage to solving NSPR rather
than KSPR. A user might prefer to prespecify K and solve
KSPR, rather than guessing an appropriate value of ε and
solving NSPR, perhaps obtaining too few or too many paths
for the ultimate application. But one pays a price to use the
best-known algorithm for KSPR: (i) the algorithm requires
O(K) space, (ii) it requires special data structures, and (iii)

NETWORKS—2005

it is difficult to implement, requiring complicated operations
to join paths together; however, it does require only O(n2)

work per path enumerated [11].
To overcome the difficulties listed above, we show how

our extension of the B&W algorithm can be coupled with a
binary search on ε to solve KSPR. The amount of work per
path enumerated increases over ANSPR1 only by a factor
of log cmax + log n, and space requirements remain O(m).
The simplicity of the approach remains, and computational
results are excellent.

Section 2 describes the B&W algorithm for NSPU and
provides two modifications for solving NSPR: The first
modification is extremely simple but does not yield poly-
nomial complexity (per path enumerated); the second is only
slightly more complicated, and does yield polynomial com-
plexity. Section 3 describes some practical improvements
to the second, theoretically efficient algorithm. Section 4
then describes how to use any efficient algorithm for NSPR
as a subroutine in an algorithm to solve KSPR efficiently.
Section 5 presents computational results for implementa-
tions of the basic algorithms and their variants. We also
describe modifications of one algorithm to solve KSPU
and present brief computational results. Section 6 provides
conclusions.

2. SOLVING THE NEAR-SHORTEST-PATHS
PROBLEM

Let G = (V , E) denote a directed graph with vertex set V
and edge set E ⊆ V × V . Each edge e = (u, v) ∈ E has an
integer edge length ce ≥ 0; equivalent notation is c(u, v) ≥ 0.
A source vertex s and sink vertex t �= s are specified, along
with a parameter ε ≥ 0. The (unrestricted) near-shortest-
paths problem (NSPU) requires enumeration of all (simple
and nonsimple) s-t paths that are no longer than (1 + ε)Lmin,
where Lmin denotes the length of a shortest s-t path; Lmin > 0
is assumed.

Byers and Waterman [5] give a simple algorithm for
solving NSP, which can be summarized as follows:

1. For all v ∈ V , find d′(v), the shortest-path length from
v to t. All of these values can be computed by solving a
single shortest-path problem starting at t and traversing
edges backwards.

2. Run a straightforward s-t path-enumeration algorithm,
but allow loops and extend an s-u subpath to v along the
edge e = (u, v) if and only if L(u) + c(u, v) + d′(v) ≤
(1 + ε)Lmin, where L(u) is the length of the current s-u
subpath.

3. Whenever an s-t path is found using the above rule, print
(output) it.

The correctness of the approach follows from the obvious
dynamic-programming interpretation of Step 2.

The B&W algorithm for NSPU is specified below with
several dummy statements and other features that facilitate
discussion of modifications to solve NSPR. We assume that

no vertex will ever appear on a given path more than T
times. For simplicity, the algorithm just outputs vertices on
the enumerated paths. This would be inappropriate in graphs
with parallel edges, but modifications for such instances are
straightforward.

B&W Algorithm [5]
DESCRIPTION: An algorithm to solve NSPU.
INPUT: A directed graph G = (V , E) in adjacency list

format, T , s, t, c ≥ 0, and ε ≥ 0.
“firstEdge(v)” points to the first edge in a linked list of
edges directed out of v.

OUTPUT: All s-t paths (may include loops), whose lengths
are within a factor of 1 + ε of being shortest.

{
/* A single shortest-path calculation evaluates all d′(v) in

the next step. */
for(all v ∈ V)

{ d′(v) ← shortest-path distance from v to t; }
d̄ ← (1 + ε)d′(s);
for(all v ∈ V and τ = 1, . . . , T)

{ nextEdge(v, t) ← firstEdge(v); }
theStack ← s; L(s) ← 0;
/* τ(v) denotes the number of times vertex v appears on

the current subpath. */
/* It is not used in the basic version of this algorithm. */
τ (s) ← 1; for(all v ∈ V − s){ τ (v) ← 0; }
while(theStack is not empty){

u ← vertex at the top of theStack;
if(nextEdge(u, τ(v)) �= ∅) {

(u, v) ← the edge pointed to by nextEdge(u);
increment nextEdge(u, τ(u));
if(L(u) + c(u, v) + d′(v) ≤ d̄){ /* Step (i) */

if(v = t){
print(theStack ∪ t);

} else {
push v on theStack;
τ (v) ← τ (v)+1;
L(v) ← L(u) + c(u, v);
Dummy Step (ii);

}
}

} else {
Pop u from theStack;
τ (u) ← τ (u)−1;
nextEdge(u, τ(u)) ← firstEdge(u);
Dummy Step (iii);

}
}

}

A straightforward modification of the B&W algorithm
stops it from enumerating paths with loops so that it solves
NSPR: if a vertex is already on the “current subpath,” that is,
on the s-u path currently represented by the stack, do not allow

NETWORKS—2005 99

FIG. 1. A graph that demonstrates ANSPR0’s exponential worst-case com-
plexity. Suppose ε = 1.0, ce = 1 for all unmarked edges, but c(n−1, t) = 2n
and c(3, t) = n, as marked. Then, there is only one near-shortest path
(s → 2 → 3 → t), but the algorithm will investigate all 2n−3 partial
paths starting at vertex 3 and ending at vertex 2, in addition to the 2n−4

partial paths traversing edge (n − 1, t).

it to go onto that subpath again. This can be accomplished by
replacing the if-statement at Step (i) with

if(τ (v) = 0 and L(u) + c(u, v)

+ d′(v) ≤ d̄){/∗ Step (i) modified ∗/

Also, nextEdge(u) replaces nextEdge(u, τ(u)) because τ can
only equal 1 when examining edges directed out of u in the
modified algorithm. We denote this modification of the B&W
algorithm as ANSPR0.

Unfortunately, ANSPR0 has exponential complexity
because it may waste time extending subpaths that have no
feasible completions. This is true because d′(v) gives the
length of a shortest path from v to t, but every shortest path
might require the traversal of vertices already in the subpath
represented by the stack; see Figure 1. However, ANSPR0
can be faster than our polynomial-time algorithms, in prac-
tice, because only a single shortest-path problem is solved,
and little effort seems to be wasted in “going down blind
alleys.” We investigate this version of the algorithm in more
detail later.

The exponential complexity of ANSPR0 can be remedied
by redefining d′(v) to be the shortest-path distance from v to
t that does not use any vertex of the current subpath. This
definition requires us, in the worst case, to solve a shortest-
path problem each time the current subpath is extended or
retracted by one vertex. (We discuss simplifications later.)
Therefore, the new algorithm, denoted ANSPR1,

1. Uses Step (i) modified, and
2. At Steps (ii) and (iii), uses:

for(all v ∈ V){ d′(v) ← shortest-path distance from v
to t in which no vertices v′ with τ (v′) = 1 are traversed; }.

Of course, each for-loop above represents a single call to a
shortest-path subroutine, which is modified trivially to avoid
vertices on the stack, which represent the current subpath.

The argument for ANSPR1’s correctness is nearly iden-
tical to the argument for the B&W algorithm: ANSPR1 is
a modified path-enumeration algorithm for simple s-t paths,
which adds an edge to the end of the current subpath if and
only the resulting subpath is, or can be extended to, a sim-
ple s-t path whose length does not exceed the cutoff value of
d̄ = (1+ε)Lmin. Specifically, if a vertex v is added to the cur-
rent s-u subpath, then it must have received a distance label
d′(v) ≤ d̄ − L(u) − c(u, v). This label came from a v-t path
containing only “unused” vertices, and, therefore, appending
this entire path to u, including edge (u, v), is a feasible com-
pletion with the desired properties. Conversely, no feasible
completion of the path can result if v were added to the stack
when d′(v) > d̄ − L(u) − c(u, v).

Theorem 1. The amount of work per enumerated path in
ANSPR1 is O(nS(n, m)) if the algorithm uses a shortest-path
subroutine with worst-case complexity O(S(n, m)).

Proof. Each path has at most n − 1 edges, so at most
O(nS(n, m)) work is involved in solving shortest-path prob-
lems before generating the first path. The path-enumeration
process, apart from solving shortest-path problems, scans at
most all of the edges in G before finding that first path, so
the work there is at most O(m) and can be ignored. Now,
the number of shortest-path problems to be solved before the
next path is enumerated (or until the algorithm backtracks all
the way to s and discovers that there are no more paths to
enumerate) is at most 2n: At most n−1 problems arise while
backtracking (perhaps as far as s), and at most n−1 problems
arise while extending the path back to t. Again, overhead is
at most O(m), and can be ignored. The argument holds for
all subsequent paths enumerated. ■

For a detailed description of what O(S(n, m)) can be, we
refer the reader to the extensive coverage of shortest paths in
([1], pp. 93–165). For graphs with nonnegative edge lengths,
Dijkstra’s “label-setting algorithm” is the classic approach
[7]. For fully dense graphs, where m = �(n2), the basic
implementation of Dijkstra’s algorithm has the best worst-
case complexity of O(n2). For less dense graphs, Dijkstra’s
algorithm implemented with a binary heap [15] is one of the
simplest efficient algorithms, with a run time of O(m log n).
Other modifications to Dijkstra’s algorithm reduce this to
O(m + n log n) [10], and, theoretically, to O(m) for dense
graphs [15].

For shortest-path problems on graphs with arbitrary edge
lengths but no negative-length cycles, the algorithm with
the best, provable, worst-case performance, O(mn), is a
“label-correcting algorithm” implemented with a first-in first-
out queue [4]. Both polynomial-time and exponential-time
versions of label-correcting algorithms can be very fast in
practice [6].

3. PRACTICAL IMPROVEMENTS IN EFFICIENCY

Here we investigate four modifications of ANSPR1,
denoted A, B, C, and D, for improving the basic algorithm’s

100 NETWORKS—2005

practical efficiency. The first three modifications maintain the
polynomial complexity of the algorithm; modification D does
not, however, except under certain conditions.

3.1. Modification A

ANSPR1 never extends a path to a vertex v with distance
label d′(v) > (1 + ε)Lmin − Lp, where Lp is the length of the
current subpath p, represented by the stack. Also, distance
labels cannot decrease as the algorithm extends that subpath.
Consequently, we can simplify the shortest-path calculations
by never updating a vertex label that exceed the current “cut-
off” of (1+ε)Lmin −LP. This is “modification A.” For typical
values of ε and in typical, sparse graphs, this modification
can prevent the shortest-path algorithm from investigating a
huge number of vertices. In fact, as LP approaches Lmin, the
number of vertices not investigated approaches n.

3.2. Modification B

Suppose that when a path is extended to a new vertex
v, we update the n d′() values as usual, push them onto a
stack, and require the algorithm to use the n topmost values
in its computations. Then, when the algorithm backtracks at
Step (iii), it need not solve another shortest-path problem.
Instead, it simply pops the n values of d′() from the top of
the stack and makes the now-top n values current again. This
“modification B” replaces O(S(n, m)) work with O(n) work,
which is undoubtedly a savings, although worst-case storage
requirements increase to O(n2). (Note: it is also necessary
to maintain a parallel stack of the same size containing the
predecessors of each vertex in the corresponding shortest-
path tree. We assume the reader is familiar with the concept
of a “shortest-path tree;” otherwise, see Ahuja, Magnanti and
Orlin, [1], pp. 106–107.)

3.3. Modification C

Suppose that ANSPR1 is about to extend the current path
from u to v, and suppose that v is a leaf of the shortest-path
tree computed (or implied) at Step (ii) when u was added
to the subpath. Then, none of the values d′() change, except
that d′(v) is, essentially, no longer defined. The total work
involved in handling such a case is at most O(n). Thus, we
would again exchange O(S(n, m)) work for the undoubtedly
smaller quantity O(n).

This idea generalizes. Suppose we have just computed the
current shortest-path tree T , then immediately extend the cur-
rent subpath to some vertex v, and then discover that all of
the vertices u that have v as a predecessor in T are now “too
far” from t, in that d′(u) + L(v) > (1 + ε)Lmin. The distance
labels d′(u) are nondecreasing as a subpath is extended, and
therefore none of these vertices u can ever join the current
subpath. In fact, because edge lengths are nonnegative, none
of the vertices in the subtree of T rooted at v can ever join
the current subpath. Thus, we can avoid recomputing shortest
paths entirely in the upcoming iteration. We implement this

“modification C” in a single for-loop over the edges directed
into v. Note that when there is no vertex u having v as its pre-
decessor, this modification specializes to the “leaf-checking
modification” described in the previous paragraph.

When the algorithm extends the current subpath to a vertex
v that is not a leaf, it would be possible to recompute shortest-
path distances only to those vertices in the shortest-path tree
that are “cut off” by adding v, that is, to only those vertices
u that had v as a direct or indirect predecessor. (Of course,
no calculations would be necessary for vertices in a subtree
rooted at u which is “too far” from t, as in modification C.) A
label-correcting shortest-path algorithm could be arranged to
accomplish this task. However, the complexity of ANSPR1
would increase substantially and new data structures would
be necessitated. We wish to keep ANSPR1 simple, so we
have not implemented this modification.

3.4. Modification D

If we modify ANSPR1 to never recompute shortest-path
lengths to t, we end up with ANSPR0, which has exponential
worst-case complexity. However, if the algorithm recomputes
those path lengths only after it (i) extends the current path by a
fixed number of edges � to some vertex v, or (ii) it backtracks
from v, the work saved may offset the extra work incurred
by following paths in error. Rather than recomputing the
path lengths when backtracking from v, however, we main-
tain valid distance labels by using the distance-label stack of
Modification B, described above.

If the maximum degree in G is bounded by a constant d,
then the maximum number of edges the modified algorithm
can follow in error is bounded by �d�, which may not be too
large. Of course, we only claim that this “modification D” has
polynomial complexity for graphs with bounded degree. “D�”
denotes this modification when shortest paths are recalculated
after every � extensions of the subpath. ABCD� denotes all
four modifications. “D∞” appears by itself because none of
the other modifications are of any consequence when � = ∞.
Indeed, D∞ simply represents ANSPR0.

Results for the basic algorithm, with and without the mod-
ifications described above, are presented in Section 5. Before
presenting those results, however, we show how to solve the
KSPR using an algorithm for NSPR as a subroutine.

4. SOLVING THE K-SHORTEST-PATHS PROBLEM

Our approach to solving KSPR solves NSPR, using
ANSPR1 as a subroutine, within a binary search on the
value of ε. To simplify the presentiation here, we modify the
notation slightly: because edge lengths are integral, all path
lengths will be integral; therefore, requiring that path lengths
be less than (1 + ε)Lmin is equivalent to requiring that path
lengths be less than Lmin + δ, where δ = εLmin�. Conse-
quently, we can and do perform binary search on (integer)
values of δ (and use ε = δ/Lmin in ANSPR1).

NETWORKS—2005 101

4.1. Directed Graphs with Nonnegative Edge Lengths

When δ is set to a particular value, it leads to the enu-
meration of some number of paths denoted here by κ(δ); we
assume without loss of generality that κ(0) < K . The longest
(simple) path length is bounded by ncmax, so the only relevant
values of δ are contained in {0, 1, . . . , ncmax}. (The largest
value can be shrunk somewhat, but this bound suffices for
our purposes.) Because κ(δ) is nondecreasing, we can solve
KSPR by using binary search on δ, starting with an interval
of uncertainty of [0, ncmax] and ending with [δ′, δ′′] such that
δ′′ −δ′ = 1, κ(δ′) ≤ K and κ(δ′′) > K . (We abuse the phrase
“interval of uncertainty” slightly.) After identifying δ′ and δ′′,
the solution to KSPR is simple:

1. Enumerate κ(δ′) paths using ε = δ′/Lmin in ANSPR1.
Let the set enumerated be P . If κ(δ′) = K , go to Step 3.

2. Otherwise, begin ANSPR1 with ε = δ′′/Lmin, add any
path with (exact) length Lmin + δ′′ to P , and halt the
enumeration when |P| = K ;

3. The set P solves KSPR for the given K .

Applying Theorem 1, we can see that the amount of work
involved above (i.e., given δ′′ and δ′ such that δ′ = δ′′ − 1)
is O(KnS(n, m)).

The binary search algorithm will require O(log n +
log cmax) iterations to reduce the interval of uncertainty on
δ to 1. If we modify ANSPR1 to always halt after it gen-
erates at most K + 1 paths, then the total work involved in
the binary search becomes O(KnS(n, m)(log n + log cmax));
the work performed in steps 1 and 2 is therefore dominated.
Because we are using ANSPR1 as a subroutine, the total
amount of storage required never exceeds O(m). Hence, we
have proven:

Theorem 2 (ANSPR1). coupled with binary search solves
KSPR in O(KnS(n, m)(log n + log cmax)) time and O(m)

space.

4.2. Extensions

The algorithms described above extend trivially to undi-
rected graphs with nonnegative edge lengths. Simply replace
each undirected edge with two directed, antiparallel edges
both having the undirected edge’s length. The algorithms also
extend to directed graphs with negative edge lengths as long
as there are no negative-length cycles. Solve all shortest-path
problems with a label-correcting shortest-path algorithm that
handles such situations (e.g., Ahuja et al. [1], pp. 136–144).
Of course, modification A does not apply to such problems.

The B&W algorithm, without modification, solves NSPR
in directed acyclic graphs because paths in such graphs can
never contain loops. Hence, the B&W algorithm can be used
within the binary-search procedure to solve KSPR (as well
as KSPU) in such graphs. Because the initial shortest-path
computation of d′(v) need not be repeated at each iteration,
the overall complexity of the algorithm will be O(Km(log n+
log cmax)). The multiplicative term m appears here, instead

of n, because the work associated with scanning edges while
searching for a path is not dominated by repeated shortest-
path calculations, and because m ≥ n is assumed; refer to the
proof of Theorem 1.

When G contains parallel edges, we may wish to enu-
merate paths that contain repeated vertices but no repeated
edges. The new algorithms for NSPR and KSPR easily extend
to handle this situation:

1. Keep track of which edges are on the current s-u path
and ignore τ (),

2. Do not allow edge e = (u, v) to extend the current
subpath at Step (i) if it is already on that subpath, and

3. Modify the shortest-path subroutine that computes d′(v)
so that it does not traverse any edges that are on the
current s-u subpath.

5. COMPUTATIONAL RESULTS

We have implemented algorithm ANSPR1 in the C pro-
gramming language, along with certain combinations of
modifications A–D. This section describes tests of the basic
algorithm and its variants for directly solving NSPR and for
solving KSPR when used as a subroutine within a binary
search. We refer to the latter algorithm as AKSPR1. All
shortest-path problems are solved with the label-correcting
algorithm described by Pape [16]. This algorithm is typically
very fast, but does have exponential worst-case complexity,
and its run times can vary widely across different problem
classes [6]. However, we like this algorithm’s ease of imple-
mentation, and it behaves adequately for this article’s test
problems.

Initial computations are carried out on a personal com-
puter with an Intel 2.5-GHz Pentium IV processor, 1 GB of
RAM, the Microsoft Windows 2000 operating system, and
with programs written and compiled using Microsoft Visual
C++ Version 6.0. Run times do not include the time required
to write the paths to a text file. This time is roughly pro-
portional to ēK , where ē represents the average number of
edges in the paths enumerated. As an example, our computer
requires about 100 seconds to write K = 106 paths from
AKSPR1 when paths average 100–200 edges.

5.1. Test Problems and Environment

We test our algorithms on four different directed graphs:

• “Grid 40×25” is based on a rectangular grid, 25 vertices tall
and 40 vertices wide, with a separate source vertex s and sink
vertex t external to the grid. The source s is connected to all 25
vertices in the leftmost column of the grid, and all 25 vertices
in the rightmost column are connect to t. Each vertex u within
the grid has (up to) four edges (u, v) directed out of it, up,
down, to the left and to the right, as long as the vertex v exists
in the grid. Edge lengths are integers drawn independently
from the discrete uniform distribution on [1,10]. This graph
has n = 1002 and m = 3920. Cherkassky et al. [6] use similar
graphs for some of their tests on shortest-path algorithms.

102 NETWORKS—2005

TABLE 1. Run times, in CPU seconds, for variants of ANSPR1 solving NSPR.

Run Times for Variants of ANSPR1

Paths Basic A AB ABC ABCD10 ABCD50 D∞
Graph δ (no.) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds)

Grid 0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40×25 1 16 0.1 0.0 0.0 0.0 0.0 0.0 0.0

2 56 0.1 0.1 0.0 0.0 0.0 0.0 0.0
3 139 0.3 0.1 0.1 0.0 0.0 0.0 0.0
4 334 0.6 0.2 0.1 0.1 0.0 0.0 0.0
5 770 1.3 0.5 0.3 0.1 0.0 0.0 0.0
6 1, 633 2.5 1.0 0.5 0.2 0.1 0.0 0.0

Grid 0 6 0.2 0.1 0.1 0.0 0.0 0.0 0.0
100×50 1 44 0.9 0.4 0.2 0.1 0.0 0.0 0.0

2 218 3.7 1.2 0.8 0.4 0.1 0.0 0.0
3 894 12.8 3.9 2.5 1.2 0.2 0.1 0.0
4 3, 210 39.8 11.1 7.1 3.8 0.7 0.2 0.0
5 10, 320 113.5 30.0 19.3 10.8 1.7 0.4 0.0
6 30, 632 303.5 76.4 48.9 29.4 4.3 0.9 0.1

Road 1 0 1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
10 21 0.4 0.1 0.1 0.0 0.0 0.0 0.0
20 42 0.5 0.1 0.1 0.0 0.0 0.0 0.0
30 98 1.4 0.3 0.2 0.1 0.0 0.0 0.0
40 210 2.9 0.6 0.4 0.2 0.0 0.0 0.0
50 554 8.0 1.8 1.1 0.4 0.1 0.0 0.0
60 1, 229 16.0 3.3 2.0 0.9 0.2 0.0 0.0

Road 2 0 1 32.3 1.3 0.8 0.6 0.3 0.2 0.0
10 22 176.6 4.7 2.6 1.9 0.4 0.2 0.0
20 65 347.7 7.9 4.2 3.7 0.6 0.2 0.0
30 179 18.3 9.5 9.2 1.2 0.3 0.0
40 484 42.6 21.9 22.4 2.5 0.6 0.0
50 1, 126 88.2 44.8 47.3 4.9 0.8 0.0
60 2, 437 180.8 92.6 97.9 9.8 1.7 0.2

The last variant, which is essentially the exponential algorithm ANSPR0, is evidently superior for these problems. Note that “paths” specifies the number of
paths found for the given value of δ. (Computations performed on a 2.5-GHz laptop computer.)

• “Grid 100×50” has the same basic structure as Grid 40×25,
but uses a 100×50 graph of vertices. This graph has n = 5002
and m = 19, 800.

• “Road 1” represents the major highways and thoroughfares
in the road network of a metropolitan area in the northeastern
United States. It covers an area of about 500 square miles,
and its integer edge lengths measure 100ths of miles. This
graph has n = 3670 and m = 9876.

• “Road 2” depicts the same network as Road 1, but represents
a much higher level of resolution, containing many smaller
streets and intersections. This graph has n = 112, 556 and
m = 274, 510.

The largest graph on which Hadjiconstantinou and
Christofides [11] test their algorithm for KSPR has n = 1000
and m = 10, 000. In terms of n + m, this is about twice as
large as our smallest test problem, but about 40 times smaller
than our largest. The largest value of K they test is 103; the
largest we test is 107. Their computer is a 100 MHz Silicon
Graphics Indigo workstation.

We implement these variants of ANSPR1, and corre-
sponding variants of AKSPR1:

• The unmodified algorithm, denoted “basic,”
• Modification A (denoted “A”), which modifies shortest-path

calculations to avoid updating distance labels on vertices

that are too far from t to be included in any near-shortest
path,

• Modifications A and B (“AB”), where B maintains a stack of
distance labels to make backtracking in the path enumeration
more efficient,

• Modifications A, B, and C (“ABC”), where C checks the next
vertex to be added to the stack, and does not recompute d′()
if no relevant changes can occur,

• Modifications A, B, C, and D with shortest paths recalculated
after every �th edge is added to the current subpath (denoted
“ABCD� and tested for � = 10 and � = 50), and

• Modification D alone in which shortest paths are never
recalculated (“D∞”). This is essentially ANSPR0.

We have tested other combinations of these modifications,
but believe that the impact that each successive modification
has on run times shows clearly enough the potential value of
each.

5.2. Near-Shortest Simple Paths

Table 1 displays results obtained by solving NSPR with
ANSPR1. For all test problems, each added modification sig-
nificantly improves run times, except in the case of Road 2,
in which the combination ABC is slightly slower than AB.

NETWORKS—2005 103

TABLE 2. A computational example demonstrating ANSPR0’s exponen-
tial worst-case complexity.

n δ D∞ (seconds)

20 22 0.0
25 27 0.3
26 28 0.6
27 29 1.1
28 30 2.2
29 31 4.4
30 32 8.8

Figure 1 displays the structure of the test graphs for any n > 5. The table here
reports, for various values of n, the value of δ that corresponds to ε = 1.0,
and the run time for the D∞ variant of ANSPR1, which is ANSPR0: The
exponential behavior of the algorithm, as a function of n, is apparent. The
ABCD10 variant of ANSPR1 provides an good alternative algorithm, how-
ever, as all its run times are indistinguishable from zero on these problems.
(Computations performed on a 2.5-GHz laptop computer.)

Road 2 has a different general structure than the others tested
in that it contains many degree-2 vertices. (This network’s
level of resolution eliminates many small streets that inter-
sect large streets, but it does not eliminate the vertices that
represent the corresponding intersections.) This may account
for the difference here. However, the difference in run times
is insignificant in these cases, and it seems likely that we
can use the ABC variant with reasonable confidence in most
applications.

ANSPR0, labeled “D∞,” is clearly superior in all
instances. However, as noted in Section 2, there are exam-
ples in which its run time can be exponential in n, and Figure
1 provides such an example. Table 2 clearly demonstrates
this exponential behavior for the graph topology indicated
in that figure. However, the ABCD10 variant of ANSPR1
does solve each of the instances in Table 2 in time that reg-
isters as 0.00 seconds. Thus, this variant may provide a good
backup for ANSPR0 if exponential behavior should ever
become a problem. (For K sufficiently large, this exponen-
tial behavior would begin to appear even in a network like
Road 2. However, K = 107 is apparently too small to cause
difficulties.)

5.3. K-Shortest Simple Paths

Table 3 displays results for the different variants of our new
algorithm AKSPR1 used to solve KSPR. We can call the D∞
variant “AKSPR0” because it is really using ANSPR0 as a
subroutine. Tests are performed on the same four networks
used for testing ANSPR1. For each test graph and for each
algorithmic variant, we solve KSPR for various values of K
between 102 and 107. The column labeled δ′′ represents the
final interval of uncertainty on δ such that [δ′, δ′′] = [δ′′ −
1, δ′′] (and where κ(δ′) ≤ K and κ(δ′′) > K). Empty entries
in the table represent problems that cannot be solved in 1000
seconds by the given algorithm.

Hadjiconstantinou and Christofides ([11], Fig. 6c) indicate
a run time for their KSPR algorithm of over 1400 seconds
when K = 103 for a test graph having 1000 vertices and
an edge-to-vertex density of 4. This graph is of roughly the
same size and structure as our Grid 40 × 25, which we solve
in 0.59 seconds (Table 3) with the polynomial-time variant,
ABC, of AKSPR1; and the D∞ variant (AKSPR0) solves
this problem so quickly that it does not register with the time
functions in the standard C library. Indeed, our best algorithm
produces 107 paths in about one 40th of the time in which
their algorithm produces 103 paths. Even taking our faster
computer into account, it is safe to conclude that our best
algorithms are several orders of magnitude more efficient
than theirs.

The next two subsections provide additional computa-
tional tests, further investigating the potential exponential
behavior of ANSPR0, and looking at different class of
topologies.

5.4. On the Potential Exponential Behavior of ANSPR0

This subsection further explores the computational behav-
ior ANSPR0, and implicitly, AKSPR0. ANSPR0 is attrac-
tive because of its simplicity and empirical speed, but its
worst-case exponential complexity might be of concern to a
user. We investigate this issue by evaluating solution statis-
tics for different edge-length functions, and different values
of δ, on “Grid 100 × 50” described in Section 5.1. A 3-GHz
Pentium IV computer carries out the computations in this
subsection and the next, but RAM size, operating system and
software remain the same.

The example of Figure 1 leads one to believe that a high
variance in edge lengths might induce exponential behavior,
that is, cause searches to follow “blind alleys” and back-
track excessively from “deadends” because d′(v) is never
updated. Following this idea, we randomly set each edge’s
length to 0 with probability q0, and let q0 vary between 0.00
and 0.30. The key statistic we evaluate is the average number
of backtracks per enumerated path, divided by the average
number of edges, or “hops,” in a path. We normalize by hops
because even if the algorithm hits no deadends, the amount
of backtracking must increase as a function of the number of
edges in the paths it enumerates. (We could evaluate dead-
ends directly, but that would ignore the extra work that arises
when multiple backtracks follow the discovery of a deadend.)
We also focus on another statistic, the “longest backtrack
sequence” (LBTS); this specifies the maximum number of
backtracks observed between identification of two consecu-
tive paths. This value must become large if the algorithm hits
large numbers of deadends. Table 4 displays results for these
experiments.

Table 4 shows only modest changes in the two main
statistics except for some potentially significant increases
when (δ, q0) = (5, 0.30), (7, 0.20), and (9, 0.10). However, the
average time spent enumerating each path does not increase
commensurately, so we conclude that ANSPR0 can remain
empirically efficient in grid graphs even as edge-length

104 NETWORKS—2005

TABLE 3. Run times, in CPU seconds, for variants of AKSPR1 solving KSPR.

Run Times for Variants of AKSPR1

Basic A AB ABC ABCD10 ABCD50 D∞
Graph K δ′′ (seconds) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds)

Grid 102 3 0.8 0.4 0.2 0.1 0.0 0.0 0.0
40×25 103 6 6.4 2.5 1.4 0.6 0.1 0.1 0.0

104 9 67.6 23.9 13.2 5.7 1.3 0.5 0.1
105 13 148.8 79.7 38.4 7.6 3.7 0.4
106 17 430.6 80.5 42.0 4.0
107 21 34.0

Grid 102 2 5.3 1.9 1.2 0.5 0.1 0.0 0.0
100×50 103 4 46.4 13.7 8.7 4.4 0.8 0.2 0.0

104 5 132.5 84.8 49.0 7.5 1.7 0.1
105 8 462.1 284.5 41.5 8.3 0.6
106 10 90.7 5.8
107 13 47.7

Road 1 102 31 9.8 2.2 1.4 0.6 0.1 0.0 0.0
103 57 99.8 20.1 12.2 5.4 1.1 0.2 0.0
104 90 153.4 94.1 48.6 8.2 1.6 0.1
105 128 685.1 379.6 59.1 11.3 0.5
106 171 132.3 10.8
107 219 94.1

Road 2 102 25 3,723.5 82.4 46.1 41.5 7.0 3.2 2.8
103 49 315.1 323.6 35.3 7.4 3.2
104 81 2861.6 2971.9 294.0 51.9 3.7
105 120 424.2 4.7
106 167 16.9
107 222 111.2

K is the number of paths generated, and δ′′ is the value of δ such that κ(δ − 1) ≤ K and κ(δ) > K . The variants of AKSPR1 depend on which version of the
ANSPR1 subroutine is used, just as in Table 1. (Computations performed on a 2.5-GHz laptop computer.)

variance and δ increase. The next section examines the
efficiency of ANSPR0 in a network-routing application,
and further investigates the potential for exponential behav-
ior. (We shall also obtain indirect evidence that the largest
increase observed above in “longest backtrack sequence,”
from 144 to 330, is, indeed, insignificant.)

5.5. Hop-Limited Paths

A hop in a communication network corresponds to a
signal, or packet, traversing a single link along a source-
destination path. Hops should be limited to reduce transmis-
sion delay and network congestion. Consequently, a number
of authors have employed “hop-limited paths” in their pro-
cedures for solving capacity-expansion problems in commu-
nication networks (e.g., Herzberg et al. [12], Iraschko et al.
[13], Yurcik et al. [18]). (Actually, some authors do not limit
the number of hops between an origin-destination pair, per se,
but rather the number of hops exceeding the minimum, a con-
cept analogous to our δ.) The methods developed in the cited
papers all require explicit generation of hop-limited paths,
for which ANSPR0 certainly applies, so this section investi-
gates the empirical efficiency of ANSPR0 for that purpose.
Perhaps ANSPR0 will prove to be a useful tool in this arena.

For testing, we employ randomly generated, scale-free,
undirected graphs [3] as surrogates for communication

networks. Although these scale-free graphs must lack some
of the structure found in real communication networks [2],
they match certain characteristics well, such as the distribu-
tion of vertex degrees, and, importantly, the distribution of
hop distances between vertices [9]. We note that Herzberg et
al. [12] analyze realistically dimensioned test networks with
n = 100 and m = 200, and with a hop limit that corresponds
to δ ≤ 6. These parameter values fall within the boundaries
of the smallest test problems we investigate here.

We follow Barábasi and Albert in generating these graphs:
for given integer parameters a and n, we create a complete
graph on a vertices, and then sequentially add n − a vertices
to the graph, connecting each new vertex to the previous ones
with a edges. The edges are connected to the previously gen-
erated vertices randomly, but with a “preference” for vertices
with higher degree. In particular, a new vertex u is connected
to existing vertex v ∈ V ′ with a probability kv/

∑
v′∈V ′ kv′ ,

where kv denotes the degree of vertex v. For simplicity, we
use a = 3 in all tests. (A similar pattern of results appears
when using other reasonable parameters values a = 2 and
a = 4, or when specified fractions of the vertices are created
with a = 2, a = 3, and a = 4.)

Table 5 displays results for three different graph sizes, and
two choices of the source-sink pair. We select two “extreme”
source-sink pairs, (s, t) = (1, n), and (s, t) = (n − 1, n), i.e.,
the first and last vertices created while generating the graph,

NETWORKS—2005 105

TABLE 4. Statistics for ANSPR0 when enumerating paths in Grid 100 × 50 as q0 and δ vary.

Solution Statistics for ANSPR0

Avg. Avg. Normalized Avg. run Avg. time
paths hops backtracks LBTS time per path

δ q0 (no.) (no.) (no.) (no.) (seconds) (microseconds)

1 0.00 214 132.9 0.31 144 0.1 *
0.10 550 143.3 0.36 160 0.1 *
0.20 1502 164.9 0.28 191 0.1 *
0.30 138,391 190.5 0.16 267 0.4 *

3 0.00 6019 133.2 0.22 143 0.1 *
0.10 15,240 144.3 0.25 160 0.1 *
0.20 76,691 165.3 0.19 198 0.3 *
0.30 10,838,944 157.4 0.28 299 18.4 2.6

5 0.00 80,373 133.4 0.18 144 0.2 *
0.10 211,249 145.0 0.19 162 0.4 *
0.20 1,770,896 165.8 0.16 206 3.4 2.5
0.30 361,783,736 130.9 11.68 330 572.1 1.9

7 0.00 749,961 133.6 0.16 145 1.3 3.2
0.10 2,059,141 145.7 0.16 164 3.1 2.3
0.20 26,712,288 137.1 0.93 206 44.8 1.9

9 0.00 5,627,716 133.8 0.14 146 7.8 1.8
0.10 36,012,890 120.5 0.93 183 54.3 2.0

Legend:
q0 Fraction of edge lengths set to 0.
Normalized backtracks: Avg. backtracks per path enumerated, normalized by avg. path hops.
LBTS: Longest backtrack sequence between two consecutive paths, observed across all ten problem instances.
avg. time per path: Avg. microseconds to enumerate a path; to avoid bias from computational overhead, this is computed only if run time exceeds

0.5 seconds.

Nominal edge lengths are uniformly distributed integers on [1, 10]. Each row in the table represents 10 randomly generated instances. Normalized backtracks
and longest backtrack sequences remain reasonably small, indicating that the algorithm does not spend much time backtracking from dead ends. Potentially
significant increases appear for (δ, q0) = (5, 0.30), (7, 0.20), and (9, 0.10), but the average time required to enumerate a path in those cases does not increase.
We conclude that ANSPR0 exhibits good empirical efficiency for this grid topology, over these parameter values. (Computations performed on a 3-GHz
laptop computer.)

or the last two. Each row corresponds to 10 different randomly
generated instances having the same parameter values. For
both (s, t) options, and for differing values of δ, we list the
minimum and maximum number of paths identified, and the
minimum and maximum run times observed. The run times
for each graph seem to be proportional to the number of paths
generated, and, on average, the algorithm requires only 0.5
to 2.1 microseconds to generate each path. Thus, ANSPR0
appears to be an excellent algorithm for enumerating hop-
limited paths in communication networks.

The scale-free graphs present another opportunity to test
the potentially exponential behavior of ANSPR0 as edge-
length variance increases. For these tests, the nominal edge
lengths remains 1, but each edge has its length set to 0,
independently, with probabiilty q0. The value of q0 ranges
from 0.00 to 0.25 while δ ranges from 0 to 5. The number
of near-shortest paths explodes in these graphs as q0 and δ

increase because no vertex is many hops away from any other
[9], and, presumably, because of the “coarseness” in edge
lengths. Consequently, we run tests only on a small graph
with n = 100. Also, for simplicity, s = 99 and t = 100 in all
instances.

Table 6 lists results for these tests. Each row in the table
derives from ten randomly generated instances. The statistics

do show that as δ and q0 increase, ANSPR0 can traverse huge
numbers of edges to reach deadend after deadend. In one case,
the number of backtracks recorded between the identification
of two consecutive paths (“max LBTS”) exceeds 1 million.
It seems that the exponential worst-case complexity of the
algorithm may be making itself known. However, the average
amount of work to generate a path does not increase greatly, so
encountering large backtrack sequences between consecutive
paths is a rare event. Further evidence of this rarity, not shown
in the table, comes from the instances with δ = 5 and q0 =
0.20. There, the instance with over 1 million for “max LBTS”
exhibits a total value for normalized backtracks of 3.2, while
the instance that generates the “min LBTS” value of 992
exhibits only a modestly lower value for this statistic, 1.4.
(The smallest value among the 10 instances is 0.9.)

In summary, we see that not recomputing d′(v) after
extending or retracting a path can cause ANSPR0 to execute
huge sequences of “unnecessary” backtracks. Such events
are rare, however, and do not greatly affect the run time of
the algorithm in these tests. The algorithm remains empir-
ically efficient for the scale-free topology over the range
of parameter values tested. If excessive backtracking does
become a concern, d′(v) can be recomputed periodically
as described by “Modification D” in Section 3.4. However,

106 NETWORKS—2005

TABLE 5. Statistics for ANSPR0 when enumerating hop-limited paths in scale-free graphs.

Solution Statistics for ANSPR0

s = 1, t = n s = n − 1, t = n

Min Max Min Max Min Max Min Max
paths paths time time paths paths time time

Graph δ (no.) (no.) (sec.) (sec.) (no.) (no.) (sec.) (sec.)

n = 100 0 1 11 0.0 0.0 1 5 0.0 0.0
m = 588 1 3 87 0.0 0.0 2 51 0.0 0.0

2 31 524 0.0 0.0 8 336 0.0 0.0
3 201 3042 0.0 0.0 59 2380 0.0 0.0
4 1317 17,103 0.0 0.0 467 16,185 0.0 0.0
5 7988 92,180 0.0 0.1 3353 103,900 0.0 0.0
6 47,386 532,799 0.0 0.3 22,492 642,940 0.0 0.3
7 266,566 3,063,571 0.1 1.5 142,472 3,815,302 0.1 1.8
8 1,433,451 16,832,065 0.6 8.5 868,070 21,727,107 0.4 10.3
9 7,400,343 88,504,052 3.2 44.9 5,066,299 118,863,848 2.6 57.2

n = 1000 0 1 4 0.0 0.0 1 10 0.0 0.0
m = 5988 1 2 44 0.0 0.0 1 76 0.0 0.0

2 19 578 0.0 0.0 9 990 0.0 0.0
3 212 5326 0.0 0.0 82 10,017 0.0 0.0
4 2086 52,455 0.0 0.1 769 99,455 0.0 0.1
5 20,795 495,350 0.0 0.5 7,580 966,532 0.0 1.0
6 201,230 4,559,950 0.3 4.5 74,024 9,199,468 0.1 9.5
7 1,926,665 41,032,044 2.0 39.6 713,747 86,158,514 0.7 96.3

n = 10,000 0 1 12 0.0 0.0 1 12 0.0 0.0
m = 59,988 1 4 207 0.0 0.0 3 163 0.0 0.0

2 35 2890 0.0 0.0 61 2500 0.0 0.0
3 555 39,721 0.0 0.1 905 36,088 0.0 0.1
4 8064 553,387 0.0 1.3 12,582 500,639 0.0 1.3
5 109,859 7,584,949 0.3 17.6 170,211 6,860,350 0.4 16.0
6 1,493,710 102,849,075 3.4 238.3 2,296,49 92,734,583 5.2 197.3

Each row corresponds to 10 randomly generated instances. “Min (max) paths” indicates the minimum (maximum) number paths among the 10 instances, and
“min (max) time” indicates the minimum (maximum) run time in CPU seconds. It turns out that, in all cases, the best run time corresponds to min paths and
the worst corresponds to max paths. Run times for each graph are all roughly proportional to the number paths generated—this is the best one could hope
for with a true enumeration procedure—and, at most 2.1 microseconds are required to generate any path, on average. (Computations performed on a 3-GHz
laptop computer.)

the rarity of long backtrack sequences suggests another
approach. Recompute d′(v) whenever a counter for the cur-
rent backtrack sequence reaches an empirically determined
threshold.

5.6. K-Shortest Paths with Loops Allowed

Our final computational tests investigate the enumeration
of paths with loops. It is a simple matter to convert AKSPR0
to “AKSPU0,” an algorithm to solve KSPU (which allows
loops). Simply use the original Byers and Waterman algo-
rithm for NSPU in lieu of the ANSPR1 subroutine residing
within AKSPR1. That is, we perform a binary search on δ

as in AKSPR0, but for each value of ε = δ/Lmin, we solve
a near-shortest-paths problem with loops allowed instead of
being explicitly disallowed. Apart from instances in which
AKSPR0 demonstrates its exponential worst-case complex-
ity, we expect the run times for AKSPU0 to be similar to
those for AKSPR0, because only one shortest-path problem
need be solved in AKSPU0 for each value of δ. This appears
to be the case, as demonstrated by Table 7, which compares
the two algorithms on the two largest test problems, Grid

100 × 50 and Road 2. (We return to the 2.5-GHz personal
computer for these computations.)

Under the assumption that a path visits any single vertex
a bounded number of times, the worst-case complexity of
AKSPU0 is O(Km(log cmax + log n)). This follows from an
argument that is similar to the one used in Section 4.2 for
establishing the complexity of solving KSPU (equivalently,
KSPR) in directed acyclic graphs. The short run times and
simplicity of the algorithm certainly make it attractive for
practical use, but KSPU is a peripheral issue in this article,
and we make no computational comparisons with alternative
algorithms.

6. CONCLUSIONS

We have described a theoretically efficient and easily
implemented algorithm, ANSPR1, for enumerating all near-
shortest, simple s-t paths in a directed graph G = (V , E).
Near-shortest paths are those that are no longer than (1 +
ε)Lmin where ε ≥ 0 is a user-specified parameter and Lmin

is the shortest s-t path length (assumed to be positive). Let-
ting n = |V | and m = |E|, the amount of work per path

NETWORKS—2005 107

TABLE 6. Statistics for ANSPR0 applied to a scale-free graph as q0 and δ vary.

Solution Statistics for ANSPR0

Avg. Avg. Normalized Avg. run Avg. time
paths hops backtracks Max LBTS Min LBTS time per path

δ q0 (no.) (no.) (no.) (no.) (no.) (seconds) (microseconds)

1 0.00 14 3.2 1.0 6 2 0.1 *
0.05 29 3.8 1.1 11 2 0.1 *
0.10 91 5.3 1.1 15 2 0.1 *
0.15 205 8.6 1.5 232 13 0.1 *
0.20 13,156 10.6 2.8 2624 13 0.1 *
0.25 15,861 13.4 3.2 14,540 2 0.1 *

3 0.00 692 5.4 0.6 29 4 0.1 *
0.05 2484 6.5 0.7 43 7 0.1 *
0.10 13,318 9.1 0.8 284 19 0.1 *
0.15 45,928 12.1 1.0 1424 73 0.2 *
0.20 413,464 14.6 1.8 10,661 136 0.9 4.6
0.25 6,866,719 18.0 2.1 326,982 46 7.4 4.8

5 0.00 28,247 7.4 0.5 53 16 0.1 *
0.05 141,769 8.9 0.6 325 19 0.2 *
0.10 1,045,342 11.9 0.6 3006 33 1.0 1.6
0.15 5,190,267 14.5 0.9 107,534 317 7.6 1.6
0.20 54,907,762 16.2 1.5 1,088,798 992 95.2 3.0
0.25 — — — — — — —

Legend:
q0 Fraction of edge lengths set to 0.
Normalized backtracks: Avg. backtracks per path identified, normalized by avg. hops.
Max longest bt sequence: Maximum value of LBTS across all 10 instances.
Min longest bt sequence: Minimum value of LBTS across all 10 instances.
Avg. time per path: Avg. microseconds per enumerated path, computed only if average run time exceeds 0.5 seconds.

Nominal edge lengths are 1, and n = 100, s = 99, and t = 100 for all problem instances. Each row corresponds to 10 randomly generated instances, except
“-” indicates the total run time exceeded 1 hour and the run was terminated. “Max LBTS” does increase dramatically, indicating that large sequences of
deadends can arise because d′(v) is not updated. Also, the large differences between that value and “min LBTS” show great variance in the algorithm’s
behavior depending on the data. Normalized backtracks and “average time per path” remain small, however, so large values for backtrack sequences must
be relatively rare events. We conclude that ANSPR0 remains empirically efficient for this scale-free graph as edge-length variances increases, at least when
generating 50 million or fewer paths. (Computations performed on a 3-GHz laptop computer.)

TABLE 7. Run times for AKSPU0 solving KSPU (K shortest paths with
loops allowed), compared to run times for AKSPR0 solving KSPR.

AKSPR0 AKSPU0
Graph K δ′′ (seconds) δ′′ (seconds)

Grid 102 3 0.0 2 0.0
100 × 50 103 5 0.0 4 0.0

104 8 0.1 6 0.1
105 11 0.4 9 0.6
106 15 3.1 11 5.2
107 18 40.0 14 41.4

Road 2 102 24 3.2 11 2.8
103 49 3.7 17 3.2
104 81 4.3 25 3.5
105 120 5.8 33 7.4
106 167 24.0 43 31.8
107 222 167.7 53 256.1

Note that AKSPR0 is the D∞ variant of AKSPR1 whose times are
also presented in Table 3. (Computations performed on a 2.5-GHz laptop
computer.)

enumerated is O(nS(n, m)), where S(n, m) corresponds to
the worst-case complexity of the user-selected shortest-path
subroutine. We describe the basic algorithms for directed
graphs with nonnegative edge lengths, but it easily extends
to (i) undirected graphs, (ii) directed graphs with negative-
length edges but no negative-length cycles, and (iii) paths
with repeated vertices but no repeated edges. We also com-
bine ANSPR1 with a binary search, in an algorithm denoted
AKSPR1, to solve the K-shortest-paths problem restricted to
simple paths (KSPR). All polynomial variants of this algo-
rithm have worst-case complexities of O(KnS(n, m)(log n +
log cmax)), where cmax is the largest edge length.

Several different modifications of ANSPR1 achieve sig-
nificant reductions in run time and maintain polynomial
complexity. Interestingly, the last modification studied has
exponential complexity, yet provides the fastest run times
across a wide range of problems. ANSPR1 may be viewed
as a path-enumeration algorithm that checks whether or not
the currently enumerated subpath can be extended to a path
of acceptable length. For this check to be accurate, the
algorithm may need to run a shortest-path algorithm after

108 NETWORKS—2005

each edge is added to or removed from the current sub-
path. The exponential algorithm performs the shortest-path
calculation only once, and hence, may extend a subpath
incorrectly, a mistake that must be corrected later after wast-
ing computational effort. Evidently, that algorithm wastes
little effort in practice.

We finish by reiterating several main points: (i) ANSPR1
and its variants are the first algorithms ever described for
NSPR, (ii) several variants of AKSPR1 appear to be the
fastest algorithms available for KSPR, by a wide margin, and
(iii) all of the algorithms are easy to implement. Our fastest
algorithms for NSPR and KSPR have exponential worst-case
complexity, but exponential behavior may arise only with
pathological data. Certain polynomial-time versions of these
algorithms are fast enough to use as backups should such data
be encountered.

REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows,
Prentice Hall, Englewood Cliffs, NJ.

[2] D. Alderson, J. Doyle, R. Govindan, and W. Willinger,
Toward an optimization-driven framework for designing and
generating realistic internet topologies, ACM SIGCOMM
Comput Commun Rev 33 (2003), 41–46.

[3] A.-L. Barabási and R. Albert, Emergence of scaling in
random networks, Science 286 (1999), 509–512.

[4] R. Bellman, On a routing problem, Q Appl Math 16 (1958),
87–90.

[5] T.H. Byers and M.S. Waterman, Determining all optimal
and near-optimal solutions when solving shortest path prob-
lems by dynamic programming, Operat Res 32 (1984),
1381–1384.

[6] B.V. Cherkassky, A.V. Goldberg, and T. Radzik, “Short-
est path algorithms: Theory and experimental evaluation,”
Proceedings of the Fifth Annual ACM-SIAM Symposium

on Discrete Algorithms, Arlington, Virgina, 23–25 January,
1994, pp. 516–525.

[7] E. Dijkstra, A note on two problems in connexion with
graphs, Num Math 1 (1959), 269–271.

[8] D. Eppstein, Finding the K shortest paths, SIAM J Comput
28 (1998), 652–673.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-
law relationships of the Internet topology, ACM SIGCOMM
Comput Commun Rev 29 (1999), 251–262.

[10] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their
uses in improved network optimization algorithms, J ACM
34 (1987), 338–346.

[11] E. Hadjiconstantinou and N. Christofides, An efficient imple-
mentation of an algorithm for finding K shortest simple paths,
Networks 34 (1999), 88–101.

[12] M. Herzberg, S.J. Bye, and A. Utano, The hop-limit
approach for spare-capacity assignment in survivable net-
works, IEEE/ACM Trans Network 3 (1995), 775–784.

[13] R.R. Iraschko, M.H. MacGregor, and W.D. Grover, Opti-
mal capacity placement for path restoration in STM or ATM
mesh-survivable networks, IEEE/ACM Trans Network 6
(1998), 325–336.

[14] E. Israeli and R.K. Wood, Shortest-path network interdiction,
Networks 40 (2002), 97–111.

[15] D.S. Johnson, Efficient shortest path algorithms, J ACM 24
(1977), 1–13.

[16] U. Pape, Implementation and efficiency of Moore-algorithms
for the shortest route problem, Math Program 7 (1974),
212–222.

[17] C. Wevley, The quickest path network interdiction prob-
lem, Masters Thesis, Operations Research Department, Naval
Postgraduate School, Monterey, California, 1999.

[18] W. Yurcik, D. Tipper, and D. Medhi, “The use of hop-
limits to provide survivable ATM group communications,”
Proceedings of NGC 2000 on Networked Group Com-
munication, Palo Alto, California, 8–10 November, 2000,
pp. 131–140.

NETWORKS—2005 109

