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Abstract

The constrained shortest-path problem (CSPP) generalizes the standard shortest-path
problem by adding one or more path-weight side constraints. We present a new algorithm
for CSPP that Lagrangianizes those constraints, optimizes the resulting Lagrangian func-
tion, identifies a feasible solution, and then closes any optimality gap by enumerating near-
shortest paths, measured with respect to the Lagrangianized length. “Near-shortest” implies
ε-optimal, with a varying ε that equals the current optimality gap. The algorithm exploits a
new path-enumeration method, aggregate constraints, preprocessing to eliminate edges that
cannot form part of an optimal solution, “reprocessing” that reapplies preprocessing steps as
improved solutions are found and, when needed, a “phase-I procedure” to identify a feasible
solution before searching for an optimal one.

The new algorithm is often an order of magnitude faster than a state-of-the-art label-
setting algorithm on singly constrained randomly-generated grid networks. On multi-constrained
grid networks, road networks, and networks for aircraft routing the advantage varies, but,
overall, the new algorithm is competitive with the label-setting algorithm.

1 Introduction

Algorithms for shortest-path problems in networks with non-negative edge lengths (or with

some negative-length edges, but no negative-length cycles) are both practically and theo-

retically efficient (e.g. Ahuja et al. [1], pp. 93-157). However, if each edge possesses a

non-negative weight in addition to its length, and if a single side constraint is placed on

the optimal path’s total weight, the problem becomes NP-complete (Garey and Johnson

[16], p. 214). When multiple side constraints are included, the general problem is known
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as the constrained shortest-path problem (CSPP). This paper develops a new algorithm for

solving this problem, applies it to several classes of CSPPs, and compares its computational

efficiency with a state-of-the-art alternative, the label-setting algorithm of Dumitrescu and

Boland [12].

CSPP is NP-complete in the weak sense for a fixed number of side constraints and admits

a dynamic-programming solution procedure (Joksch [20]). However, dynamic programming

(DP) can be unacceptably slow in practice even with a single side constraint; consequently,

label-setting algorithms based on DP have supplanted straightforward DP implementations

(e.g., Aneja et al. [2], Desrochers and Soumis [9], and Dumitrescu and Boland [12]). Other

potentially useful techniques include branch and bound using a Lagrangian-based bound

(Beasley and Christofides [3]), Lagrangian relaxation coupled with K-shortest-paths enu-

meration (Handler and Zang [18], Juttner et al. [21]), K-shortest-paths enumeration com-

bined with dominance checks (De Neve and Van Mieghem [8], Van Mieghem et al. [33]), and

heuristic algorithms (Korkmaz and Krunz [24, 23]); see also the review by Van Mieghem et

al. [34].

CSPP arises in a number of real-world contexts. One well-known application is column-

generation for generalized set-partitioning models of crew-scheduling and crew-rostering

problems, especially in the airline industry (e.g., Gamache et al. [15], Day and Ryan [7],

Vance et al. [31]). Other important applications include minimum-risk routing of military

vehicles and aircraft (e.g., Boerman [4], Latourell, et al. [25], Lee [26], Zabarankin et al.

[36]), signal routing in communications networks having quality-of-service guarantees (see

Van Mieghem et al. [34] and the references therein), signal compression (Nygaard et al. [29])

and numerous transportation problems (e.g., Nachtigall [28], Kaufman and Smith [22]).

Dumitrescu and Boland [12] describe a label-setting algorithm, combined with several pre-

processing techniques, that may be the most efficient technique currently available for CSPP.

We present an alternative approach, which we call Lagrangian relaxation with near-shortest-

paths enumeration (LRE). This approach Lagrangianizes the side constraints, optimizes the

Lagrangian function, identifies a feasible solution (often while optimizing the Lagrangian
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function), and closes any optimality gap by enumerating near-shortest paths. Path length

is measured with respect to the Lagrangianized edge lengths, and “near shortest” means

ε-optimal, with ε set to the value of the (current) optimality gap.

LRE resembles the algorithm of Handler and Zang [18], but with a near-shortest-paths

(NSP) algorithm replacing their K-shortest-paths algorithm. The LRE approach seems par-

ticularly attractive because we (Carlyle and Wood [6]) have recently developed an extremely

fast near-shortest-paths algorithm, and “near-shortest paths” proves to be a more appro-

priate paradigm than “K-shortest paths” for the enumerative phase of the algorithm. We

discuss this issue in more detail later. LRE is also similar to the branch-and-bound algorithm

of Beasley and Christofides [3]), but LRE does not reoptimize the Lagrangian lower bound

at each node of the branch-and-bound enumeration tree.

Our LRE algorithm also exploits preprocessing, as in [12], to eliminate edges, a priori,

that can be proven not to lie on any optimal path. However, we add a number of aggregate

constraints to improve the efficiency of that preprocessing, as well as to reduce subsequent

enumeration effort. We also describe an auxiliary, “phase-I procedure” for finding a feasible

solution when none is identified while initially optimizing the Lagrangian function. This

feasibility problem is an NP-complete problem in and of itself when multiple side constraints

are involved (Garey and Johnson [16], p. 214).

In addition to the theoretical development, we present a computational study of the LRE

algorithm applied to CSSPs, on artificial and real-world networks, with between one and

ten side constraints. This study includes a direct comparison to our implementation of the

label-setting algorithm of Dumitrescu and Boland [12].

The remainder of the paper begins by defining CSPP precisely, and by then describing

the basic LRE solution approach. We then provide an overview of the NSP algorithm

that makes the LRE algorithm viable. (The appendix contains the pseudo-code for this

procedure. We include this for completeness because our application of NSP requires features

not presented in [6].) We do not discuss optimizing the Lagrangian function in any detail

because the relevant techniques are well known. We do refine the basic LRE approach by
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adding aggregate constraints to the preprocessing procedure and the NSP algorithm as well

as incorporating a phase-I routine for finding initial feasible solutions when none is apparent.

Finally, we present the computational study.

2 Problem Definition and Basic Approach

Let G = (V,E) be a directed graph with vertex set V and edge set E. Each (directed) edge

e = (u, v) ∈ E connects distinct vertices u, v ∈ V , and it possesses length ce ≥ 0 and one or

more weights fie ≥ 0 for i ∈ I, where I indexes a set of side constraints. Each side constraint

i has a weight limit gi ≥ 0 defined.

A directed s-t path EP is an ordered set of edges of the form EP = {(s, v1), (v1, v2), . . . ,

(vk−1, t)}. The path is simple if no vertices are repeated. Given two distinct vertices s, t ∈ V ,

the constrained shortest-path problem (CSPP) seeks a directed, simple, s-t path EP such that

∑
e∈EP

fie ≤ gi for all i ∈ I, and such that
∑

e∈EP
ce is minimized.

Let A denote the |V | × |E| vertex-edge incidence matrix for G such that if e = (u, v),

then Aue = 1, Ave = −1 and Awe = 0 for any w 6= u, v. Also, let bs = 1, bt = −1 and bv = 0

for all v ∈ V \{s, t}, and let g denote the vector (g1g2 · · · g|I|)T . For each i ∈ I, we collect

the edge weights fie, e ∈ E, in the row vector fi. Finally, we define F as the |I| × |E|-matrix

having vectors fi as its rows. Then, CSPP may be written as this integer program (Ahuja

et al. [1], p. 599):

CSPIP z∗ ≡ min
x

cx (1)

s.t. Ax = b (2)

Fx ≤ g (3)

x ≥ 0 and integer, (4)

where x∗
e = 1 if edge e is in the optimal path, and x∗

e = 0, otherwise. Note that the

problem’s structure leads to binary solutions without explicit constraints x ≤ 1. Equations

(3) are CSPP’s side constraints. We refer to x̂ as a “path” when it satisfies all constraints

of CSPIP except possibly the side constraints. Strictly speaking, a path x̂ could have
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x̂e = 1 for all edges e around one or more cycles. However, there always exists an optimal

solution without cycles because we assume c ≥ 0 and fi ≥ 0 for all i. Furthermore, our LRE

algorithm cannot generate any solutions to CSPP that have cycles in them, and thus this

point can be safely ignored.

CSPIP would define an easy-to-solve shortest-path problem if not for the side constraints.

We expect to have only a few such constraints, say one to ten, and it therefore seems

reasonable to base a solution procedure on relaxing them. Using the standard theory of

Lagrangian relaxation (e.g., Ahuja et al. [1], pp. 598-648), we know that for any appropriately

dimensioned row vector λ ≥ 0,

z∗ ≥ z(λ) ≡ min
x

cx + λ(Fx− g) (5)

s.t. Ax = b (6)

x ≥ 0 and integer. (7)

We then rewrite the objective function, and optimize the Lagrangian lower bound z(λ)

through

CSPLR z∗ ≡ max
λ≥0

z(λ) (8)

= max
λ≥0

min
x

(c + λF )x− λg (9)

s.t. Ax = b (10)

x ≥ 0 and integer. (11)

For any fixed λ ≥ 0, computing z(λ) simply requires the solution of a shortest-path problem

with Lagrangian-modified edge lengths.

The solution to the linear-programming (LP) relaxation of the inner minimization of

CSPLR is intrinsically integer, so we know that z∗ equals the optimal objective value of the

LP relaxation of CSPIP (e.g., Fisher [13]). And, it is easy to construct examples in which

this bound is not very close to z∗. Thus, the success of the LRE approach will sometimes

depend on the ability to close a large duality gap quickly.

The outer maximization over λ can be solved in several ways, depending on the dimension
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of λ, i.e., on the number of side constraints. Beasley and Christofides [3] describe the use of

subgradient optimization for CSPPs with up to ten side constraints. A constraint-generation

algorithm analogous to Benders decomposition could also be used (e.g., Wolsey [35], pp. 172-

173). But, bisection search works well for a single side constraint (Fox and Landi [14]), as

does bisection search applied in the coordinate directions for a few side constraints (e.g.,

DeWolfe et al. [10]): That is the approach we use.

In the process of optimizing z(λ), we may find a path x̂ that is feasible with respect

to the relaxed side constraints (3). Such a solution provides an upper bound for CSPP,

z̄ = cx̂ ≥ z∗. Indeed, if a feasible instance of CSPIP possesses only a single side constraint,

then for sufficiently large λ every optimal solution of CSPLR satisfies (3). Unfortunately, as

the number of side constraints grows, finding a feasible solution to CSPIP while optimizing

z(λ) becomes less and less likely. To overcome this difficulty, we develop and apply the

phase-I routine described in Section 4.3. Note that even without this subroutine, a (weak)

upper bound for a feasible CSPIP is always z̄ = (|V | − 1)cmax where cmax ≡ maxe∈E ce.

Now, given z̄, and given an optimal or near-optimal Lagrangian vector λ, the following

theorem and corollary show that we may view the problem of identifying x∗, an optimal

solution to CSPIP, as one of simple enumeration. (The theorem is implicit in Handler and

Zang [18].)

Theorem 1 Let X̂(λ, z̄) denote the set of feasible solutions x̂ to CSPLR with the property

that cx̂ + λ(F x̂− g) ≤ z̄. Then, x∗ ∈ X̂(λ, z̄).

Proof: Since Fx∗ ≤ g and λ ≥ 0, the result follows from the facts that (i) cx∗+λ(Fx∗−g) ≤

z∗, and (ii) z∗ ≤ z̄.

Corollary 1 If CSPIP is feasible, an optimal solution x∗ can be identified by enumerating

X̂(λ, z̄), and by then selecting

x∗ ∈ argmin
x ∈ X̂(λ, z̄)

{cx | Fx ≤ g}. (12)
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Theorem 1 and Corollary 1 are valid for any λ ≥ 0, but it is easy to devise examples that

show how an optimal or near-optimal λ for CSPLR can exponentially reduce the size of

X̂(λ, z̄), and reduce the computational workload correspondingly.

Theorem 1 and Corollary 1 imply that we may need to enumerate each path x̂ satisfying

(c + λF )x̂− λg ≤ z̄. That is, if x∗
λ solves the shortest-path problem given the edge-length

vector c + λF and z(λ) = (c + λF )x̂∗
λ − λg, then CSPP is solved by enumerating all paths

x̂ such that z(λ) ≤ (c + λF )x̂ − λg ≤ z̄. Therefore, given edge-length vector c + λF , and

including the Lagrangian constant term −λg in the length of any path, we wish to find all

ε-optimal (near-shortest) paths for ε ≡ z̄ − z(λ). Of course, as path-enumeration proceeds,

better feasible solutions may be found, z̄ and thus ε will improve, and that may in turn

reduce the necessary enumeration.

From the above discussion, it appears that an NSP algorithm, which identifies ε-optimal

paths, is a natural choice for path enumeration in the LRE solution approach to CSPP. A

typical K-shortest-paths (KSP) algorithm could be used, however (e.g., Hadjiconstantinou

and Christofides [17]). Such an algorithm is meant to enumerate the K shortest paths in a

network for a pre-specified integer K. But, because it enumerates paths in order of increasing

length, it could be halted when path length exceeds (c + λF )x∗
λ + ε. However, enumerating

paths in order of length requires unnecessary computational work, storage and algorithmic

complexity. The NSP algorithm developed by Carlyle and Wood [6] is much simpler and

faster.

3 The LRE Algorithm for CSPP

This section outlines the basic LRE algorithm for CSPP.

LRE Algorithm for CSPP (Outline)

1. Find λ that optimizes, or approximately optimizes, the Lagrangian lower bound z(λ).

2. Let X̂ denote the set of feasible paths identified while optimizing z(λ). If X̂ 6= ∅, set
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upper bound z̄ = minx̂∈X̂ cx̂, else set z̄ = (|V | − 1)cmax + γ for some γ > 0.

3. Using the NSP algorithm from [6], begin enumerating all paths x̂ such that (c+λF )x̂−

λg ≤ z̄, with the following modifications:

(a) Use z̄ and the side constraints to limit the enumeration when it can be projected

that the current path cannot be extended to one whose (true) length improves upon

z̄ or which does not violate a side constraint.

(b) Whenever the algorithm identifies a feasible path x̂ that is shorter than the incum-

bent, update the incumbent to x̂ and update the upper bound to z̄ = cx̂.

4. If no x̂ is found in Step 3, the problem is infeasible; otherwise the best solution x̂ is

optimal.

The NSP algorithm upon which we base this procedure (see the Appendix) begins by

1. Computing the minimum “Lagrangian distance” d(v) from each v ∈ V back to t by

solving a single, backwards, shortest-path problem starting from t, using Lagrangianized

edge lengths c′ ≡ c + λF ,

2. Computing analogous minimum v-to-t distances d0(v) for all v ∈ V with respect to edge

lengths c, and

3. For each i ∈ I, computing analogous minimum v-to-t distances di(v) for all v ∈ V with

respect to edge weights fi.

This first phase requires the solution of only |I|+2 shortest-path problems. We note that

several other authors have proposed similar, backward shortest-path calculations within other

solution approaches; for example, see Korkmaz and Krunz [24], Liu and Ramakrishnan [27],

and Dumitrescu and Boland [12].

Let EP (u) = {(s, v1), (v1, v2), . . . , (vk−1, u)} denote a directed s-u subpath. In the sec-

ond phase of the algorithm, a path-enumeration procedure commences from s, but extends

subpath EP (u) along edge e = (u, v) if and only if the following conditions hold:
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1. EP (u)∪{e} can be extended to a path whose Lagrangianized length does not exceed z̄,

i.e., L(u) + (ce +
∑

i∈I λifie) + d(v) ≤ z̄, where L(u) denotes the Lagrangianized length

of EP (u) and where, by convention, we define L(s) = −λg.

2. EP (u) ∪ {e} can be extended to a path whose true length is strictly less than z̄, i.e.,

L0(u) + ce + d0(v) < z̄, where L0(u) denotes the length of EP (u).

3. For all i ∈ I, EP (u)∪{e} can be extended to a path whose i-th weight does not exceed

gi, i.e., Li(u) + fie + di(v) ≤ gi, where Li(u) denotes the i-th total weight of EP (u).

4. The path does not loop back on itself.

Computer scientists will recognize this algorithm as a non-heuristic version of “A* search”

(e.g., Russell and Norvig [32], pp. 92-107). We also note that Liu and Ramakrishnan [27]

use a version of A* search to identify multiple feasible solutions to CSPPs.

It is easy to see that the conditions above are necessary for existence of a feasible path

better than z̄, because (i) the label d0(v) represents a lower bound on the true length of any

subpath from v to t that is required to complete the subpath EP (u) ∪ {e}, and (ii) because

d(v) and di(v) represent similar lower bounds for the Lagrangianized path length and ith

path weight, respectively. Each label represents a lower bound, rather than an exact value,

because each is computed independently, and because the v-t subpath any label represents

may include one or more vertices already on EP (u). In the latter case, the complete path

would have at least one cycle, we have ruled out cycles in our definition of CSPP, and thus

the label corresponds to a relaxation of CSPP.

The values d(v), d0(v) and di(v) could be made sharper if, every time we extend or retract

the current subpath, we recompute “shortest” paths, subject to the condition that no vertex

currently on EP (u) is used. This could reduce enumeration. Indeed, when enumerating

near-shortest paths with respect to a single distance measure, this recomputation ensures

that only polynomial work need be expended for each path enumerated; otherwise, that work

can be exponential (Carlyle and Wood [6]).
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On the other hand, solving the shortest-path problems required to maintain precise dis-

tance labels can add tremendously to the computational workload. This workload need not

be as great as one shortest-path calculation for each type of distance label, for every exten-

sion or retraction of the current subpath, but it can still be prohibitive. In fact, Carlyle and

Wood show empirically that, when enumerating near-shortest paths, an algorithm that does

not recompute distances can be orders of magnitude faster than one that does. This holds

true over a wide range of problem classes, even though the theoretical complexity is worse.

Consequently, we do not recompute distance labels in our LRE algorithm as the current s-u

subpath extends or contracts.

The reader will probably recognize that the LRE algorithm actually defines a branch-

and-bound procedure that incorporates a depth-first enumeration mechanism along with

feasibility checks. Branching consists of extending the current subpath by one edge. An

LP-based algorithm would update the lower-bounding problem to account for the restriction

imposed by a branch and would then reoptimize the lower bound. LRE updates the bound,

but does not reoptimize it. Reoptimization would require a new search over λ, and the solu-

tion of numerous shortest-path problems which, as indicated above, is too computationally

expensive.

As with any branch-and-bound procedure, allowing a small but acceptable optimality gap

in LRE can substantially reduce the amount of enumeration required. The pseudo-code for

the NSP algorithm, given in the Appendix, does include an “absolute-gap parameter” for

this purpose, δ ≥ 0.

4 Algorithmic Enhancements

The basic LRE algorithm can solve many problems quickly, as we will see in Section 5.

However, three enhancements to the basic algorithm, described here, prove useful for solving

more difficult problems.
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4.1 Preprocessing

A preprocessing procedure for CSPP may be able to identify numerous vertices and edges

that cannot lie on any optimal path, and remove them prior to optimization. The resulting,

smaller network should require less effort to solve, simply because there are fewer vertices

and edges that must be processed (e.g., Aneja et al. [2], Dumitrescu and Boland [12]).

Importantly, a smaller network may also yield a tighter Lagrangian bound. We use the

following preprocessing procedure originally proposed by Aneja et al. [2]:

1. For all i ∈ I, and for all v ∈ V , compute a minimum-weight s-v subpath length Di(v)

and a minimum-weight v-t subpath length di(v) with respect to weight vector fi.

2. Delete any edge e = (u, v) ∈ E such that Di(u) + fie + di(v) > gi for any i ∈ I.

3. Repeat steps 1 and 2 until no new edges can be deleted.

A similar procedure for eliminating vertices can also be constructed ([2], [12]), but the edge-

elimination procedure subsumes it. (Preprocessing first with respect to vertices and then

with respect to edges could be more efficient, on average, than preprocessing with respect to

edges alone. But, either way, computational effort is negligible.)

By its construction, our NSP algorithm automatically performs many of the checks that

a preprocessing procedure carries out. However, empirically, we find that the preprocessing

procedure described above does reduce computation times. In an attempt to eliminate

additional edges from the network, we can also preprocess with respect to the aggregate

weight constraint

πFx ≤ πg (13)

for any row vector π ≥ 0 of dimension |I|. Because the aggregate constraint (13) considers

all the weights for each edge along subpaths simultaneously, it has the potential to eliminate

additional edges as the following example illustrates: Consider a three-vertex network with

edges a = (s, 2), b = (2, t), and c = (2, t); weights f1a = f2a = f1b = f2c = 1, f1c = f2b = 2;

weight limits g1 = g2 = 2; and π1 = π2 = 1, so that the aggregate weight limit is 4. Edge a
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cannot be removed by tests based on weight limits g1 or g2 separately, because a low-weight

2-t subpath exists for each (i.e., f1a + min{f1b, f1c} ≤ g1, and f2a + min{f2b, f2c} ≤ g2).

However, all 2-t subpaths have an aggregate weight of 3; the aggregate weight for edge a is

2; 2+ 3 > 4; and hence edge a can be deleted (i.e., π1f1a +π2f2a +min{π1f1b +π2f2b, π1f1c +

π2f2c} > π1g1 + π2g2). We note that this constraint-composition technique is related to

“Jaffe’s approximation” (Jaffe [19]).

“LRE-P” will denote a version of the LRE algorithm that incorporates preprocessing

Steps 1-3 with respect to individual side constraints and the aggregate constraint; we use

only π = 1. If a preprocessing scan of all edges leads to the removal of at least one edge, it

is possible that a subsequent scan may lead to further reductions. In practice, we let LRE-P

repeat preprocessing scans until no reductions are identified, or until a maximum of 10 scans

is reached.

If a feasible solution is found for CSPP, it yields upper bound z̄, and we can add the

following constraints to the problem:

cx < z̄ (14)

−λg + (c + λF ) ≤ z̄ for any λ ≥ 0. (15)

(Recall that we include the Lagrangian constant term −λg in the Lagrangian path length.)

We do not normally preprocess with respect to these constraints, however, because their

effect tends to be limited unless z̄ is close to z∗. However, as demonstrated in Section 5.4,

this extra preprocessing can be useful on difficult problems.

The following subsection describes a second use of aggregate constraints, to limit enu-

meration. To avoid confusion, the word “aggregate” will henceforth be used in this second

context, except where specifically noted.

4.2 Aggregate Constraints to Limit Enumeration

Once λ has been optimized, the path-enumeration portion of LRE repeatedly asks: Given

that xe must equal 1 for every edge e on the current s-u subpath, can this subpath be
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extended to a complete path x such that

[A] cx < z̄, and
[B] −λg + (c + λF )x ≤ z, and
[C] Fx ≤ g?

We do not extend the path along an edge, say e′ = (u, v), if setting xe′ = 1 would force x to

violate any of constraints [A], [B], and [C].

Aggregate versions of constraints [A], [B], and [C] may further limit path enumeration.

Using empirically determined multipliers π, we aggregate [C], each pair of [A], [B], and [C],

and all three:

π1[C] (16)

π2[A] + π2[B] (17)

π3[A] + π1[C] (18)

π3[B] + π1[C] (19)

π3[A] + π3[B] + π1[C], (20)

where π1 = (1/g1 . . .1/g|I|), π2 = 1 and π3 = 1/z(λ). For instance, checking π3[B] + π1[C]

corresponds to checking whether or not

−π3λg + (π3c + π3λF + π1F )x < π3z̄ + |I|. (21)

All of these checks are carried out within the LRE algorithm by defining additional edge

lengths that incorporate the aggregate coefficients. (Clearly, we may view the various versions

of π as Lagrangian multipliers that differ from λ.)

Checking the aggregate constraints while enumerating paths in LRE does add overhead,

of course, but empirical results typically show the tradeoff in reduced enumeration to be

worthwhile. When reporting computational results in Section 5, “LRE-A” denotes the LRE

algorithm with aggregate constraints used to limit enumeration, and “LRE-PA” will denote

the use of that along with the preprocessing described in Section 4.1.
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4.3 Identifying a Feasible Solution

When CSPP contains multiple side constraints, a feasible solution may not be found while

optimizing z(λ). When this happens, the basic LRE algorithm begins its path-enumeration

phase with the weak upper bound z = (|V | − 1)cmax + γ, and this can lead to excessive

enumeration. An alternative approach, described here, first seeks to find a feasible solution

and thereby a more useful upper bound.

If a feasible path exists, one can be identified by selecting an arbitrary side constraint

indexed i′, and by then solving this “phase-I feasibility integer program”:

FIP min
x

fi′x

s.t. Ax = b

fix ≤ gi ∀i ∈ I\{i′}

x ≥ 0 and integer.

Any feasible solution of FIP with objective value no greater than gi′ is feasible for CSPIP

and hence the corresponding path yields an upper bound for CSPIP. We solve FIP using

LRE as if the problem were just a CSPP, but terminate as soon as a feasible solution to the

original problem is found (if one exists).

We include this phase-I subroutine in all our “enhanced” LRE algorithms, i.e., LRE-P,

LRE-A, and LRE-PA. However, this enhancement only comes into play for problems with

more than one side constraint where a feasible solution is not found during the optimization

of z(λ).

FIP has only one fewer side constraint compared to the original CSPP. This is a significant

reduction only for small |I| and cannot account for the improvements seen in testing. The

benefit of using FIP, in tightly constrained problems, clearly derives from the fact that gi′

tends to be a fairly tight upper bound on the optimal objective value for FIP if that problem

is feasible: After all, it is difficult to find a feasible solution to the original CSPP because the

gi are rather small. In contrast, the crude upper bound, z̄ = (|V | − 1)cmax + γ, is extremely
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weak for the original CSPP. (More refined, generic bounds can be used such as γ plus the

sum of the |V | − 1 shortest edge lengths, but such bounds are still unacceptably weak.)

5 Computational Results

This section reports computational experiments with the LRE algorithm and the label-

setting algorithm (LS) of Dumitrescu and Boland [12] applied to problem instances defined

on four classes of networks. We have implemented the LS algorithm using a two-heap data

structure for labels. And, to facilitate accurate comparison between the two algorithm,

we have implemented LS using the same subroutines for preprocessing (see Section 4.1),

solving the dual problem z(λ), and determining an initial feasible solution (see Section

4.3). We let “LS-P” denote the label-setting algorithm with all these enhancements. All

information available from the preliminary calculations are made available to the label-

setting and path-enumeration stages of LS and LRE, respectively. Note that LS-P applies

aggregate constraints only in its preprocessing stage, as we have not found such constraints

to be of value within the main algorithm.

We solve instances of CSPP with at most ten side constraints, so repeated bisection

searches in the coordinate directions (Fox and Landi [14], DeWolfe et al. [10]) suffice to

maximize z(λ) adequately and quickly: We have verified “adequately” by solving the LP

relaxation of a number of instances of CSPP using an interior-point algorithm; reported

solution times verify “quickly.” All versions of LRE employ the shortest-path algorithm

of Pape [30] as a subroutine. This algorithm has exponential worst-case complexity, but

performs consistently well on all problem classes studied here.

We carry out computational experiments on a desktop computer with a 3.8 GHz Intel

Pentium IV processor, 3 gigabyte of RAM, the Microsoft Windows XP Professional operating

system. Both LRE and LS programs are written and compiled using Microsoft Visual C++

Version 6.0.
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5.1 Small-Scale Problem Instances

The first class of test problems consists of the 24 problem instances first investigated by

Beasley and Christofides [3], and subsequently by Dumitrescu and Boland [12]. Our purpose

is to demonstrate the efficiency of the “basic LRE algorithm,” which does not use prepro-

cessing (Section 4.1), aggregate constraints (Section 4.2), or the phase-I subroutine (Section

4.3). Each problem instance has either one or ten side constraints and is solved to optimality

using the basic LRE algorithm. Table 1 displays problem and solution statistics.

Column five of Table 1 lists the “initial optimality gap” defined as 100%(z̄ − z∗)/z∗,

where z̄ is the upper bound found prior to initiating path enumeration. Similarly, column

six gives the Lagrangian duality gap, defined as 100%(z∗ − z∗)/z∗. For reference, column

eight gives run times from Beasley and Christofides. Those computations were performed

using FORTRAN on a CDC 7600 computer, and hence, a direct comparison of run times is

impossible.

Dumitrescu and Boland do not report run times for their solutions of these problems.

However, they do solve most of them using only their preprocessing routines: Column nine

of Table 1 indicates whether or not the preprocessing routine suffices to solve the instance.

Even though most of these problems have large duality gaps, and may therefore require

substantial path enumeration, the table shows that they present no computational challenge

to LRE, even without enhancements.

5.2 Routing Military Units through a Road Network

Our second class of test problems derives from planning the movement of a military unit

through a road network. Consider a small convoy that must move from junction s in the

network to junction t, in a limited amount of time. Planners wish to select a route that meets

the time limit, but minimizes the risk of an attack (for example, from an ambush by ground

forces or by the detonation of an improvised explosive device). We formulate this problem

as a CSPP with one side constraint and use it to illustrate the effect of preprocessing (see

Section 4.1) and aggregate constraints (see Section 4.2).
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Initial Duality Run Time Presolve
gap gap LRE B&C D&B

Problem |V | |E| |I| (%) (%) (sec.) (sec.)
BC1 100 955 1 60 47 0.00 1.9 yes
BC2 100 955 1 45 34 0.00 0.9 yes
BC3 100 959 1 33 33 0.00 1.9 yes
BC4 100 959 1 0 0 0.00 1.0 yes
BC5 100 990 10 21 21 0.02 4.6 yes
BC6 100 990 10 16 16 0.02 4.6 yes
BC7 100 999 10 142 62 0.02 4.4 yes
BC8 100 999 10 ∞ 227 0.02 6.3 no
BC9 200 2,040 1 18 18 0.00 2.0 yes
BC10 200 2,040 1 0 0 0.00 2.0 yes
BC11 200 1,971 1 0.1 0.1 0.00 4.0 yes
BC12 200 1,971 1 0.1 0.1 0.00 3.9 yes
BC13 200 2,080 10 133 100 0.05 5.2 yes
BC14 200 2,080 10 infeas. infeas. 0.08 9.3 yes
BC15 200 1,960 10 ∞ 61 0.05 9.2 yes
BC16 200 1,960 10 ∞ 120 0.05 12.1 no
BC17 500 4,858 1 41 34 0.00 10.6 yes
BC18 500 4,858 1 32 25 0.00 10.5 yes
BC19 500 4,978 1 0.0 0.0 0.00 11.1 yes
BC20 500 4,978 1 0 0 0.02 6.4 yes
BC21 500 4,847 10 33 33 0.09 13.6 yes
BC22 500 4,847 10 25 25 0.09 13.1 yes
BC23 500 4,868 10 22 22 0.08 26.3 yes
BC24 500 4,868 10 36 36 0.08 26.3 yes

Table 1: Problem statistics and run times for the basic LRE algorithm applied to CSPPs from Beasley and
Christofides [3]. Run times on a 3.8 GHz desktop computer exclude problem-generation time; problems are
solved to optimality. BC14 is infeasible and the time reported there is for proving infeasibility. Columns five
and six report initial optimality gap and duality gap, respectively. (If z̄ denotes the objective value for the first
feasible solution, then the “initial gap” is 100%× (z̄− z∗)/z∗, and the “duality gap” is 100%× (z∗− z∗)/z∗.)
An initial gap of ∞ indicates that no feasible solution is identified while optimizing z(λ), and the crude
upper bound of (|V | − 1)cmax + γ is used.. The second-to-last column lists the run time, on a CDC 7600
computer, reported by Beasley and Christofides (B&C). The last column, labeled “Presolve D&B,” specifies
whether or not Dumitrescu and Boland [12] solve the problem with preprocessing alone.
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Weight Edges pre- Initial gap (%) Duality Gap (%) Run Time (sec.)
Limit processed No pre. Pre. No pre. Pre. LRE LRE-P LRE-A LRE-PA LS-P
240† 100% NA NA NA NA 0.02 0.00 0.02 0.02 0.02
250 92% 2.1 <1.0 2.1 <1.0 0.02 0.00 0.02 0.03 0.75
260 83% 1.7 1.7 <1.0 <1.0 0.02 0.02 0.02 0.02 0.75
270 77% 16.6 16.6 <1.0 <1.0 75.0 75.2 16.1 16.4 0.77
280 73% 15.0 14.2 6.2 5.2 11.9 7.27 3.09 1.86 0.77
290 70% 35.3 11.7 6.5 3.8 3.77 0.25 1.09 0.08 0.77
300 68% 64.4 33.2 9.2 3.3 1775 179 440 42.1 9.16
310 64% <1.0 <1.0 <1.0 <1.0 0.02 0.00 0.02 0.02 0.77
320 59% 12.9 12.9 1.9 1.9 0.45 0.45 0.22 0.24 0.77
330 49% <1.0 <1.0 <1.0 <1.0 0.02 0.00 0.02 0.02 0.77
340 45% 1.1 1.1 <1.0 <1.0 0.03 0.03 0.03 0.03 0.77
350 40% <1.0 <1.0 <1.0 <1.0 0.03 0.03 0.03 0.02 0.78
360 37% 1.2 1.2 <1.0 <1.0 0.81 0.83 0.17 0.19 0.78

Table 2: Computational results for solving CSPPs to plan the movement of a military convoy through a road
network. Problems are solved to optimality. The table reports percentage of edges removed by preprocessing,
initial gap, duality gap, and run times for the various versions of LRE and for LS-P. The instance marked
with “†” is infeasible because the weight limit of 240 is too small.

Let the weight fe = f1e associated with edge e = (u, v) represent the time required to

traverse road segment e, and let length ce reflect the risk of being attacked while traversing

e. The convoy will travel with civilian traffic and obey speed limits, so fe equals the physical

length of e divided by its speed limit. We assume that larger roads, which happen to have

higher speed limits, are riskier, and set ce = feβe, where βe = 5.0, 2.0, 1.0, 0.5, and 0.2 when

e is a major highway, a minor highway, a major expressway, a minor expressway, or a local

road, respectively. Clearly, the optimal route will traverse small, slow-speed roads as much

as possible, given the time limit.

Table 2 presents computational results for LRE, with and without various enhancements.

The data represent roads in Maryland, Virginia, and Washington, D.C. with speed limits of

30 miles per hour and higher [6]. The resulting graph has 3,670 vertices and 9,876 edges.

Road segments with speed limits 65, 55, 50, 45, and 30 miles per hour are categorized as

major highways, minor highways, and so on, respectively. Table 2 displays results for a range

of hypothesized time limits. Note that it is impossible for the convoy to reach its destination

in less than 240 minutes, and no reduction in risk accrues beyond 360 minutes.

The second column of Table 2 displays the percentage of edges that preprocessing re-
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moves. Most edges are eliminated by preprocessing in tightly constrained problems, but

even modestly successful preprocessing can tighten the Lagrangian lower bound substan-

tially. Columns 3-6 in the table establish this fact. For g = 300, tightening the lower bound

also reduces run time significantly: Compare run times for LRE to those for LRE-P, and

compare times for LRE-A and LRE-PA.

A similar comparison illustrates the beneficial effect of the aggregate constraints described

in Section 4.2. For the cases g = 270 and g = 300, these constraints reduce run times

significantly: Compare columns seven and nine. We observe similar reductions by comparing

LRE with preprocessing, LRE-P, to the complete algorithm with preprocessing and aggregate

constraints, LRE-PA: Compare columns eight and ten. Overall, Table 2 indicates that

LRE, particularly with enhancements, does solve the CSPP on this real-world network quite

efficiently. For the sake of comparison, column 11 of Table 2 lists the run times for LS-P.

LS-P is usually slower than LRE-PA, except in some cases with large initial gaps. A more

comprehensive comparison between these algorithms follows.

5.3 Grid Networks

Grid networks, with the same structure as those studied by Dumitrescu and Boland [12],

comprise the third set of test problems. Our purpose with this computational study is to

provide a comprehensive comparison of the relative efficiencies of the LRE and LS algorithms

for CSPP. As in other tests, to make comparisons as objective as possible, both algorithms

use identical ancillary routines.

The test networks, denoted “Grid(a, b),” derive from a rectangular grid, a vertices tall

and b vertices wide, with a separate source vertex s and sink vertex t external to the grid.

The source s connects to each vertex in the leftmost column of the grid, and each vertex in

the rightmost column connects to t. Each vertex u within the grid has (up to) three edges

(u, v) directed out of it, up, down, and from left to right, as long as the vertex v exists in the

grid. Edge lengths and weights are uniform, randomly generated integers in the range [1,10]

for vertical edges, and in the range [80,100] for horizontal edges. For each i ∈ I, weight limits
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Run Time (sec.)
Grid Weight |V | |E| LRE-PA LS-P Speedup

Limit (%)
(30, 100) L 3,002 8,830 0.06 0.08 21
(100, 100) L 10,002 29,990 0.08 0.38 79
(200, 200) L 40,002 119,800 0.25 2.39 90
(350, 200) L 70,002 209,950 0.38 4.92 92
(450, 300) L 135,002 404,850 0.99 13.5 93
(30, 100) M 3,002 8,830 0.03 0.14 78
(100, 100) M 10,002 29,990 0.05 0.36 87
(200, 200) M 40,002 119,800 0.20 2.34 91
(350, 200) M 70,002 209,950 0.27 4.84 95
(450, 300) M 135,002 404,850 0.74 13.4 95

Table 3: Comparison of LRE-PA to the label-setting algorithm, LS-P, of Dumitrescu and Boland [12]. Test
problems are singly constrained CSPPs on grid networks of problem class 4-L, Type 2, and problem class
4-M, Type 2 from [12]. Each row represents a single problem instance, solved to optimality. “Speedup” is
the apparent improvement of LRE-PA over LS-P, computed as 100% × (LS-P sec. − LRE-PA sec.) / (LS-P
sec.)

are gi = αgmax,i + (1−α)gmin,i, where gmin,i denotes the total weight of the minimum-weight

path with respect to i, and gmax,i denotes the total weight, with respect to i, of the shortest

path (with respect to c). As in Dumitrescu and Boland, we examine α set to the low (L),

medium (M), and high (H) values of 0.05, 0.50, and 0.95, respectively: The “L-instances”

are tightly constrained, the “H-instances” are loosely constrained, and the “M-instances”

are somewhere in between.

5.3.1 Singly Constrained CSPPs on Grid Networks

Table 3 shows the run times for ten singly constrained problems also solved and reported

by Dumitrescu and Boland [12]. The data for these instances (only) were obtained from

one of those authors who indicates that, for a given setting of a, b and α, each represents

the most computationally challenging instance extracted from a large set of randomly gen-

erated instances (Dumitrescu [11]). The first five come from “problem class 4-L, Type 2” in

Dumitrescu and Boland [12], and the second five come from “problem class 4-M, Type 2.”

Columns five and six of Table 3 shows run times for LRE-PA and LS-P, respectively; all

problems are solved to optimality. On average, LRE-PA solves these problems 82% faster

than LS-P (see column seven).
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Run Time (sec.)
Grid Weight LRE-PA LS-P Average

Limit avg. s.d. avg. s.d. Speedup (%)
(30, 100) L 0.02 0.01 0.04 0.01 50
(100, 100) L 0.04 0.01 0.14 0.02 71
(200, 200) L 0.23 0.14 1.27 0.53 82
(350, 200) L 0.44 0.18 2.65 0.87 83
(450, 300) L 1.18 1.50 8.99 3.65 87
(30, 100) M 0.01 0.01 0.04 0.02 75
(100, 100) M 0.04 0.01 0.17 0.04 76
(200, 200) M 0.35 0.60 1.56 0.34 78
(350, 200) M 0.29 0.19 3.24 1.03 91
(450, 300) M 40.7† 172 10.8 0.06 −277
(30, 100) H 0.01 0.01 0.02 0.02 50
(100, 100) H 0.02 0.01 0.10 0.08 80
(200, 200) H 0.09 0.04 1.00 0.77 91
(350, 200) H 0.13 0.06 1.66 1.74 92
(450, 300) H 0.31 0.14 4.96 5.26 94

Table 4: Comparison of run times for LRE-PA and LS-P when applied to randomly-generated, singly con-
strained CSPPs on grid networks. Problems are solved to optimality. The table reports averages (“avg.”)
and standard devations (“s.d.”), over 20 instances for each problem type. One problem instance in the group
marked by “†” takes 789 seconds to solve.

Table 4 further investigates the behavior of the two algorithms for CSPP by examining

the average and standard deviation of run times over 20 randomly generated instances from

the problem classes used in Table 3’s comparisons. LRE-PA solves all instances to optimality

quickly, with the exception of one instance of Grid(450, 300) with the medium weight limit

(marked with “†” in Table 4). There, the algorithm finds the optimal solution and proves it

to be within 0.5% of optimality in 0.3 seconds, but requires 789 seconds to prove optimality.

Table 4 indicates that, with one exception, average run times for these problem classes

are consistent with the results in Table 3. And, with one exception, standard deviations are

reasonably small. Thus, LRE-PA seems to perform well, with good but imperfect consistency.

5.3.2 Multi-Constrained CSPPs on Grid Networks

Tables 5-9 report results for LS-P and LRE-PA when solving the CSPPs of Table 4, but

with two to ten side constraints instead of one. Other than the small problems from Beasley

and Christofides [3], Dumitrescu and Boland [12] do not solve any multi-constrained CSPPs.

The goal here is simply to explore the behavior of the two algorithms over a wider range of
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problems and optimality tolerances, and to see if one algorithm might be preferred over the

other in some situations.

For each grid size and number of side constraints (|I|) in Table 5, and for both algorithms,

we attempt to solve 20 randomly generated problem instances with medium (M) weight

limits. We report the number of instances solved successfully in less than 30 minutes, along

with the average run time and standard deviation for the successfully solved problems. Since

the averages and standard deviations are computed only over the solved problems, these

statistics must be considered in view of the number of problems actually solved. Table 5

shows that LS-P is faster than LRE-PA when |I|=2. LS-P and LRE-PA solve 100 and 93

of these instances within the time limit of 30 minutes, respectively. However, for |I| > 2,

LRE-PA appears to be at least as fast as LS-P. We note that for |I|=10, both algorithms

have identical run times because all these instances are proven to be infeasible through the

preprocessing and phase-I subroutines, which the algorithms have in common. Table 5 does

show some large standard deviations in run times for both LS-P and LRE-PA, however,

which indicates that neither algorithm is free from data-induced instabilities. Overall, LRE-

PA solves 72% of the problems within the 30-minute time limit, while LS-P solves 65%.

Table 6 displays statistics analogous to those in Table 5, but with problem instances

solved to a 1% optimality tolerance rather than to optimality. Naturally, both LS-P and

LRE-PA can now solve more problems within the time limit: Now, LS-P achieves a small

advantage over LRE-PA by solving 93% of the instances within 30 minutes compared to 91%

for LRE-PA.

Table 7 shows statistics analogous to those in Table 5, but on problems with the high

(H) weight limit instead of medium. We observe that the relaxed weight limit results in

easier problems with improved performance for both algorithms. LS-P is slightly faster than

LRE-PA for |I|=2 and |I| = 3, and this advantage becomes more substantial for |I| = 4 and

|I| = 5. For |I| = 10, however, LRE-PA is faster. Overall, the algorithms exhibit similar

performances, with LS-P solving 90% of the problem instances, and LRE-PA solving 89%.

Table 8 shows statistics analogous to those of Table 7, but with the optimality tolerance
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Grid Statistics |I|=2 |I|=3 |I|=4 |I|=5 |I|=10
LRE LS LRE LS LRE LS LRE LS LRE LS

(30,100) avg. (sec.) 0.68 0.11 0.93 7.54 31.9 256 112 87.6 1.62 1.62
s.d. (sec.) 1.21 0.06 1.46 16.2 100 462 197 193 4.90 4.90
no. solved 20 20 20 20 19 14 15 6 20 20

(100,100) avg. (sec.) 3.08 0.37 24.9 41.4 189 173 97.8 187 0.66 0.66
s.d. (sec.) 9.85 0.10 72.5 134 305 329 175 402 1.93 1.93
no. solved 20 20 19 19 19 15 19 9 20 20

(200,200) avg. (sec.) 135 4.28 214 218 619 - 4.90 4.90 0.10 0.10
s.d. (sec.) 305 6.70 358 434 679 - 0 0 0.01 0.01
no. solved 19 20 17 16 5 0 1 1 20 20

(350,200) avg. (sec.) 5.97 5.22 214 413 93.7 28.3 283 7.97 2.56 2.56
s.d. (sec.) 8.68 0.95 412 551 155 10.5 275 0 10.4 10.4
no. solved 18 20 14 15 7 2 2 1 20 20

(450,300) avg. (sec.) 54.5 16.9 364 55.2 605 127 16.8 16.8 5.02 5.02
s.d. (sec.) 121 5.10 449 44.0 511 0 0 0 20.2 20.2
no. solved 16 20 9 5 4 1 1 1 20 20

Table 5: Run-time statistics for LRE-PA and LS-P solving multi-constrained CSPPs on grid networks with
|I| side constraints and with medium (M) weight limits. Problems are solved to optimality. The table reports
the average (avg.) and standard deviation (s.d.) of the run times over 20 randomly generated instances for
each grid size. “No. solved” indicates the number of instances solved within 30 minutes. Only instances
solved within 30 minutes are included in the average and standard deviation calculations.

Grid Statistics |I|=2 |I|=3 |I|=4 |I|=5 |I|=10
LRE LS LRE LS LRE LS LRE LS LRE LS

(30,100) avg. (sec.) 0.01 0.02 0.04 0.04 7.87 14.3 127 61.2 1.62 1.62
s.d. (sec.) 0.01 0.02 0.07 0.04 28.0 40.0 339 158 4.90 4.90
no. solved 20 20 20 20 20 20 20 16 20 20

(100,100) avg. (sec.) 0.03 0.05 0.69 0.35 10.4 33.8 19.1 3.40 0.66 0.66
s.d. (sec.) 0.02 0.07 1.94 0.21 24.9 136 57.1 9.16 1.93 1.93
no. solved 20 20 19 20 19 19 20 15 20 20

(200,200) avg. (sec.) 0.11 0.11 1.94 0.73 174 3.83 454 155 0.10 0.10
s.d. (sec.) 0.04 0.04 6.25 0.98 357 6.36 494 300 0.01 0.01
no. solved 20 20 20 20 16 17 11 14 20 20

(350,200) avg. (sec.) 0.18 0.18 1.26 1.77 83.8 78.8 321 61.0 2.56 2.56
s.d. (sec.) 0.09 0.09 1.76 2.35 161 315 540 144 10.4 10.4
no. solved 20 20 20 20 18 20 9 10 20 20

(450,300) avg. (sec.) 0.35 0.35 1.18 1.91 53.8 28.6 6.19 34.3 5.02 5.02
s.d. (sec.) 0.20 0.20 0.81 3.77 156 68.1 5.53 46.6 20.2 20.2
no. solved 20 20 20 20 17 19 5 14 20 20

Table 6: Run-time statistics for solving the same CSPPs as in Table 5, except that the optimality tolerance
is 1% here.
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Grid Statistics |I|=2 |I|=3 |I|=4 |I|=5 |I|=10
LRE LS LRE LS LRE LS LRE LS LRE LS

(30,100) avg. (sec.) 0.02 0.05 0.06 0.09 0.14 0.18 0.24 0.49 12.6 43.1
s.d. (sec.) 0.01 0.03 0.05 0.05 0.15 0.16 0.33 0.96 25.1 68.0
no. solved 20 20 20 20 20 20 19 20 18 14

(100,100) avg. (sec.) 0.05 0.20 0.24 0.30 2.44 0.47 71.2 1.98 33.2 130
s.d. (sec.) 0.02 0.10 0.40 0.15 9.72 0.09 297 3.76 72.8 203
no. solved 20 20 20 20 20 20 19 20 15 18

(200,200) avg. (sec.) 43.9 1.63 1.32 2.63 32.9 8.66 19.6 15.1 148 343
s.d. (sec.) 187 0.88 1.73 0.83 62.1 10.1 46.3 31.1 242 526
no. solved 20 20 20 20 19 20 18 20 15 10

(350,200) avg. (sec.) 35.6 4.02 4.78 4.88 41.0 38.6 114 25.4 220 231
s.d. (sec.) 150 1.27 8.26 2.34 128 115 374 30.0 380 247
no. solved 20 20 20 20 18 20 17 20 12 11

(450,300) avg. (sec.) 25.5 11.3 19.4 16.6 110 29.4 68.8 38.2 446 86.1
s.d. (sec.) 103 4.60 34.5 6.55 204 15.8 129 37.3 499 51.2
no. solved 20 20 19 20 17 20 12 15 6 3

Table 7: Run-time statistics for solving the same CSPPs as in Table 5, except that the weight limit on side
constraints is high (H). (Problems are solved to optimality.)

increase to 1%. In this case LS-P and LRE-PA perform equally well, with 99.8% of the

problem instances solved within 30 minutes.

Statistics for problems with low (L) weight limits are not listed because: (i) All 500

randomly generated instances are infeasible, and (ii) the preprocessing routines, which the

two algorithms hold in common, prove this in less than five seconds for each instance.

Table 9 summarizes the computational study of multi-constrained grid networks (detailed

in Tables 5-8). This table displays the total number of problem instances solved within 30

minutes over all grid sizes. The total number of instances for each case is 100. (5 network

sizes × 20 randomly generated instances = 100 instances.) The last column of Table 9 gives

the percentage of instances solved within the time limit, over all grid sizes and numbers of

side constraints. In relatively easy cases, where both algorithms perform well, LS-P tends

to be faster than LRE-PA: See cases |I|=3 and |I|=4 with high weight limits and a 0%

optimality tolerance, and with medium weight limits and a 1% tolerance. In difficult cases,

however, LRE-PA appears to outperform LS-P: See cases |I|=4 and |I|=5 with medium

weight limits and a 0% optimality tolerance, and see |I|=10 with high weight limits and a

0% optimality tolerance).
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Grid Statistics |I|=2 |I|=3 |I|=4 |I|=5 |I|=10
LRE LS LRE LS LRE LS LRE LS LRE LS

(30,100) avg. (sec.) 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 2.36 0.04
s.d. (sec.) 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 10.2 0.11
no. solved 20 20 20 20 20 20 20 20 20 20

(100,100) avg. (sec.) 0.01 0.01 0.02 0.01 0.14 0.04 0.05 0.05 0.23 0.25
s.d. (sec.) 0.01 0.01 0.00 0.01 0.52 0.09 0.06 0.12 0.54 0.58
no. solved 20 20 20 20 20 20 20 20 19 19

(200,200) avg. (sec.) 0.05 0.04 0.07 0.06 0.09 0.07 0.10 0.09 0.16 0.16
s.d. (sec.) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
no. solved 20 20 20 20 20 20 20 20 20 20

(350,200) avg. (sec.) 0.08 0.07 0.11 0.10 0.14 0.12 0.18 0.15 0.32 0.32
s.d. (sec.) 0.01 0.01 0.02 0.01 0.02 0.01 0.03 0.02 0.16 0.16
no. solved 20 20 20 20 20 20 20 20 20 20

(450,300) avg. (sec.) 0.19 0.15 0.25 0.21 0.30 0.25 0.38 0.31 0.57 0.57
s.d. (sec.) 0.02 0.01 0.03 0.02 0.01 0.02 0.04 0.03 0.05 0.05
no. solved 20 20 20 20 20 20 20 20 20 20

Table 8: Run-time statistics for solving the same CSPPs as in Table 5, except the weight limit is high (H)
and the optimality tolerance is 1%.

Algorithm Weight Optimality Problems solved over all grid sizes Total %
Limit Tolerance |I|=2 |I|=3 |I|=4 |I|=5 |I| = 10 Solved

LRE-PA Medium 0% 93 79 54 38 100 72.4
LS-P Medium 0% 100 75 32 18 100 65.0
LRE-PA High 0% 100 99 94 85 66 88.8
LS-P High 0% 100 100 100 95 56 90.2
LRE-PA Medium 1% 100 99 90 65 100 90.8
LS-P Medium 1% 100 100 95 69 100 92.8
LRE-PA High 1% 100 100 100 100 99 99.8
LS-P High 1% 100 100 100 100 99 99.8

Table 9: Summary run-time statistics for computational study of multi-constrained grid networks (from
Tables 5-8). This table reports total number of problem instances solved (out of 100 instances) within 30
minutes over all grid sizes as well as total percentage solved over all grid sizes and number of side constraints.
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5.4 Routing Aircraft on Dense Network

Our fourth and final set of test problems examines the performance of LRE and LS on a

class of networks arising in the routing of military aircraft. This class involves fairly dense

graphs with potentially large duality gaps. Hence, these networks are differ substantially

from the grid networks examined in Section 5.3, which are sparse and have relatively small

duality gaps.

When routing military aircraft, the goal is to identify a fuel-constrained, minimum-risk

route from an entry point in an area of operations (AO), through enemy airspace to a fixed

destination. We consider an F/A-18 strike group, typically comprising two to ten aircraft of

various types (e.g., electronic warfare, fighter, strike), whose mission is to destroy or disable

some ground or naval target. Each aircraft in the group risks being shot down by enemy

surface-to-air missiles (SAMs).

We formulate this routing problem as a singly constrained CSPP on a two-dimensional

network consisting of a highly connected grid of vertices. Edge length ce measures the risk

of traveling along e. (The AO contains 15 SAM threats that generate various risk values for

the edges.) Edge e’s weight fe = f1e represents fuel consumption along e, with the Euclidean

length of the edge used as a surrogate. Current doctrine specifies that F/A-18 and similar

aircraft will maintain a constant and fuel-efficient altitude of about 36,000 feet, so a two-

dimensional grid suffices to model the relevant airspace. We cover the airspace with a 26×38

rectangular grid of vertices (i.e., |V | = 988), with a spacing of eight nautical miles (nm).

The grid covers an AO of 200 nm by 296 nm with the southwest corner being the origin

in a Cartesian coordinate system, measured in nautical miles. We assume that the strike

group enters the AO at its western edge, at x-y coordinates (0,104), and the destination lies

directly east at coordinates (296,104).

The simplest discretization of the AO might connect nearest-neighbor vertices, including

diagonals, with edges. The resulting network would be sparse and the computational burden

low, but it could lead to unrealistically jagged flight paths. On the other hand, modeling
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straight-line flight segments between every vertex pair would yield a dense, complete network

with about 106 edges, and a high computational burden. Consequently, we explore eight

different edge structures (A-H in Table 10), which are much denser than the grid and road

networks examined above, but sparser than a complete network. For instance, Structure A

connects each vertex u to all vertices v that are between 8 nm and 12 nm away, but only

those that are no further west than u. (The general east-to-west travel of the strike group

makes westward travel unlikely, so none of the structures contain edges with a west-bound

vector components.) We justify models with no short edges (see F, G, and H in Table 10) by

the fact that solutions to these models cannot exhibit much zig-zagging, which is desirable

from a pilot’s perspective. Note that the minimum possible fuel consumption for the strike

group is 296.

Edge length Run times for various fuel limits g
Struct. |E| min max Algo. 300 310 320 330 340 350
A 4,712 8 12 LRE-PA 0.02 0.02 0.06 0.02 0.02 0.02

LRE-PAR 0.02 0.02 0.02 0.02 0.02 0.02
LS-P 0.41 0.41 0.41 0.41 0.41 0.42

B 11,048 8 18 LRE-PA 0.06 0.50 0.08 0.08 1.05 1.56
LRE-PAR 0.00 0.00 0.00 0.00 0.05 0.02
LS-P 0.41 0.42 0.44 2.20 1.72 1.17

C 22,222 8 30 LRE-PA 3.23 0.13 0.03 0.02 0.42 1.11
LRE-PAR 0.03 0.02 0.03 0.02 0.42 0.02
LS-P 0.42 0.44 0.42 0.42 0.44 0.42

D 123,166 8 80 LRE-PA 0.16 153 0.16 0.33 0.23 23.1
LRE-PAR 0.16 0.47 0.30 0.16 0.25 0.14
LS-P 0.56 1.92 0.56 0.56 0.59 0.59

E 228,042 8 120 LRE-PA 0.31 269 0.31 0.47 0.52 39.6
LRE-PAR 0.30 0.55 0.47 0.31 0.59 0.31
LS-P 0.72 2.34 0.75 0.78 0.80 0.80

F 223,330 16 120 LRE-PA 0.28 3.03 0.30 0.31 0.31 0.50
LRE-PAR 0.22 0.45 0.44 0.25 0.31 0.50
LS-P 0.69 0.92 0.70 0.72 0.74 0.75

G 195,110 40 120 LRE-PA 0.23 0.25 0.25 0.25 0.25 0.25
LRE-PAR 0.19 0.38 0.24 0.22 0.25 0.25
LS-P 0.66 0.67 0.67 0.66 0.67 0.69

H 118,454 16 80 LRE-PA 0.14 1.67 0.14 0.17 0.14 0.27
LRE-PAR 0.13 0.25 0.28 0.13 0.14 0.28
LS-P 0.56 0.69 0.56 0.56 0.58 0.56

Table 10: Run-time statistics for solving aircraft-routing CSPPs with various fuel constraints and network
structures. All problems are solved to optimality. Each vertex u is connected with edges (u, v) where v lies
between “min edge” and “max edge” nautical miles distant, but is no further west than the tail vertex. The
last six columns specify the run times for LRE-PA, LRE-PA with reprocessing, denoted “LRE-PAR,” and
LS-P.
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The last six columns of Table 10 show the run times for LS-P, LRE-PA, and LRE-PA with

“reprocessing” (LRE-PAR), which will be described below. Results indicate that LRE-PA

is substantially faster than LS-P for most instances with network structures A, B, and G.

The results are mixed for structures C, D, E, F, and H: LRE-PA is often faster than LS-P

for these five cases but run times exhibit substantial variability, and LRE-PA can be much

slower on occasion. The long run times correspond to problems with large duality gaps. For

example, LRE-PA solves the “D-problem” with fuel limit 310 in 153 seconds: This problem

instance has an initial optimality gap of 264%, and a duality gap of 117%. On the other

hand, LRE-PA solves the same problem with a fuel limit of 320 in only 0.16 seconds: This

instance has an initial optimality gap of 41% and a duality gap of only 4%.

To improve the robustness of LRE-PA, we have experimented with application of the

preprocessing routines within the enumeration phase of the algorithm. In this phase, LRE-

PA typically finds a sequence of improving solutions, i.e., upper bounds. Each time a new

upper bound is found, another “preprocessing” scan (see Section 4.1) may shrink the network

further and reduce enumeration. We refer to this application of the preprocessing routines

as “reprocessing.”

Preliminary numerical testing on this class of problems indicates that a single scan of

reprocessing, applied each time the upper bound improves, can reduce run times significantly

over LRE-PA. However, reprocessing does add overhead, and it may reduce the network only

modestly, or not all, when executed. We find it more efficient to execute a reprocessing scan

only after the upper bound has improved a suitable amount compared to the last time

reprocessing was executed. Without extensive numerical experimentation, we adopt this

empirical rule: Execute one reprocessing scan whenever the upper bound reduces to 90% of

the value found after the last scan.

Table 10 reports computational results for reprocessing in the rows marked “LRE-PAR.”

Clearly, LRE-PAR is almost always faster than LRE-PA, and it is substantially faster for

difficult instances. Hence, reprocessing appears to be a valuable technique. (However, re-

processing does not reduce run times substantially in the grid network problems of Section
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5.3, because those problems have small duality gaps and few updates of the upper bounds

occur.) In principle, LS-P could also incorporate reprocessing, but the effect is likely to be

minimal, or even deleterious, because the run times for LS-P are modest to begin with here,

and do not exhibit the variability seen with LRE-PA.

6 Conclusions

We have described a new, highly effective algorithm for solving the constrained shortest-

path problem (CSPP), which seeks a shortest s-t path in a directed network that satisfies

one or more side constraints with respect to edge “weights.” Our basic “LRE algorithm”

Lagrangianizes all side constraints, optimizes the resulting Lagrangian function, defines new

edge lengths through the Lagrangian function, and enumerates all near-shortest paths in

order to close any remaining optimality gap. This enumeration defines a specialized branch-

and-bound algorithm, with a depth-first enumeration tree, that updates but does not reop-

timize the Lagrangian lower bound at each node in the tree.

The basic LRE algorithm solves many problems quickly, but standard preprocessing is fast

and can improve performance. (“Standard preprocessing” eliminates vertices and edges that

cannot lie on any feasible path using simple bounding arguments based on edge weights. This

can also be extended to “cannot lie on any optimal path” if the preprocessing mechanism

identifies a feasible solution.) We also find the following enhancements useful:

1. Adding aggregate constraints to improve the effectiveness of preprocessing and to reduce

effort in the path-enumeration phase of the algorithm,

2. Executing additional preprocessing scans within the algorithm’s enumeration phase

(called “reprocessing”) to take advantage of improving upper bounds from improving

feasible solutions, and

3. When the process of optimizing the Lagrangian lower bound does not yield a feasible

solution, solving a phase-I problem to find one. This problem is a variant of the original

CSPP that moves one of the side constraints into the objective function.
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The first two enhancements, even when not required, do not add significantly to compu-

tational overhead, so we recommend them as standard additions to the basic algorithm. The

third enhancement may involve substantial computational effort but computational tests

show that that effort is almost always worthwhile when an initial feasible solution is not

immediately available.

Testing on a variety of instances with up to ten side constraints indicates that LRE

is competitive with a state-of-the-art label-setting algorithm (LS) and can be significantly

faster in certain cases. Specifically, on singly constrained grid networks, LRE is typically

5-10 times faster than LS. On the most difficult group of problem instances considered

(multi-constrained grid networks with medium weight limits), LRE solves up to twice as

many instances as LS within a 30-minute time limit. However, LS does solve some problems

substantially faster than LRE, especially in the presence of large duality gaps.

We see several avenues of additional research that may lead to even faster algorithms.

Simple ideas may prove useful, for example, extending preprocessing to investigate pairs of

adjacent edges, (u, v), (v,w), in order to determine if vertex v cannot lie on a feasible path.

Various “decomposition schemes” may also prove useful. For instance, suppose a network’s

topology implies that an optimal path in G must pass through exactly one vertex in some

easily identifiable subset of vertices V ′ = {v1, v2, . . . , vk}. Then, the CSPP’s solution may be

found by solving, for i = 1, . . . , k, the presumably simpler CSPPs defined on G with vertices

V ′\{vi} deleted. (In fact, such a decomposition reduces LRE’s 40.7 second average solution

time in Table 4, indicated by “†,” to less than four seconds.)

More complicated ideas may prove useful, too. In particular, we believe that a hybrid

LS/LRE algorithm could reduce some of the variability seen in solution times for CSPP,

especially since the two pure algorithms seem to have complementary behavior. That is,

when one algorithm exhibits especially poor performance, the other often does not. After

preprocessing, one hybrid algorithm we envisage would (i) use the label-setting paradigm

to compute labels starting backwards from t, (ii) stop when some limit on time or number

of labels is reached, and (c) finish solving the problem through path enumeration starting
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at s. This approach would also help reduce the potential for excessive computer-memory

requirements associated with a label-setting algorithm, which may need to store a huge

number of labels at any one time.

In essence, both LRE and LS are branch-and-bound procedures for CSPP in which the

local lower bound is updated, but not reoptimized. The number of possibile variants and

hybrids is enormous.
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Appendix

Path-Enumeration Subroutine for LRE Algorithm to Solve CSPP
INPUT: A directed graph G = (V, E) in adjacency-list format, s, t, edge length

vector c ≥ 0, side-constraint data for Fx ≤ g with fi ≥ 0,
optimal or near-optimal Lagrangian vector λ for CSPLR,
upper bound z̄, lower bound z(λ) and optimality tolerance δ ≥ 0.

OUTPUT: A δ-optimal shortest path x∗ satisfying Fx∗ ≤ g, if such a path exists.
NOTE: “firstEdge(v)” points to the beginning of a linked list of edges directed out of v
{

c′ ← c + λF ;
/* Add a “0-th side constraint” to limit enumeration based on c */
I+ ← I ∪ {0}; f0 ← c; g0 ← z̄;
/* The following requires just one backwards shortest-path calculation */
for ( all v ∈ V ) { d(v)← minimum distance, in terms of c′, from v to t; }
for ( each side constraint i ∈ I+ ){

/* Solve a backwards shortest-path problem using edge “lengths” fi */
for ( all v ∈ V ) { di(v)← minimum weight, in terms of fi, from v to t; }

}
for( all v ∈ V ) { nextEdge(v) ← firstEdge(v); }
L(s) ←−λg; /* Initialize path length with the Lagrangian constant term */
for( all i ∈ I+ ) { Li(s)← 0; } /* Initial path weight with respect fi is 0 */
theStack ← s; onStack(s) ← true; onStack(v) ← false ∀ v ∈ V \{s};
while ( theStack is not empty ){

u ← vertex at the top of theStack;
if ( nextEdge(u) 6= ∅ ) {

e ← the edge pointed to by nextEdge(u); /* e = (u, v) */
increment nextEdge(u);
if ( (onStack(v) = false) and (L(u) + c′e + d(v) < z̄ − δ)

and (Li(u) + fie + di(v) ≤ gi ∀ i ∈ I+) ) {
if ( v = t ) { /* An improved solution has been found */

Represent the feasible path encoded as theStack ∪ {t} through
its edge-incidence vector x̂;
z̄ ← cx̂; g0 ← z̄; x∗ ← x̂;
/* Preemptive termination is possible in the following step */
if ( z̄ − z(λ) ≤ δ ) goto Finish;

} else {
push v on theStack; onStack(v) ← true;
L(v) ← L(u) + ce;
for ( all i ∈ I+ ) { Li(v) ← Li(u) + fie; }

}
}

} else {
Pop u from theStack; onStack(u) ← false;
nextEdge(u) ← firstEdge(u);

}
}
Finish: If x∗ is empty Print ( Problem is infeasible ), otherwise Print ( x∗ );

}


