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Abstract. We introduce a simple modification to the repeated shortest-path algorithm for
the all-pairs shortest-path problem that adds a cumulative distance label update at each
iteration based on the shortest-path tree from the prior iteration. We have implemented and
tested our update using several shortest-path algorithms on a range of test networks of
varying size, degree, and “skewness” (i.e., asymmetry) of costs on antisymmetric arcs, and
wefind that it provides a significant speedup to any such algorithm, except for cases either in
which the underlying graph is extremely sparsely connected (or even disconnected) or when
the arc costs are highly nonsymmetric. An added charm is that our best-modified method
preserves the polynomial worst case runtime of its label-correcting antecedent. Aswith other
repeated shortest-path algorithms, it is significantly faster than the Floyd–Warshall algo-
rithm on sparsely connected networks and even some fairly densely connected networks.
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1. Introduction
Given a network specified by a directed graph G �
(N,A), where n � |N | is the number of nodes and m �
|A| is the number of arcs, and an integral cost cij on
each arc (i, j) ∈A, the all-pairs shortest-path problem
seeks a minimum length directed path between each
pair of nodes i and j in N if such a path exists, where
the length of a directed path is the sum of the costs of
the arcs on the path. The all-pairs shortest-path
problem can be solved using a specialized method,
such as the Floyd–Warshall algorithm (Floyd 1962,
Ingerman 1962, Warshall 1962), or using a repeated
shortest-path algorithm, which solves a sequence of
single-source shortest-path problems: one from each
possible source node to all other nodes. The repeated
shortest-path algorithm is usually recommended for
sparse networks, whereas the concise exposition of the
Floyd–Warshall algorithm is preferred for dense
problems.

We introduce a distance label processing step for
repeated shortest-path algorithms that improves their
performance over a wide range of test problems (in-
cluding many that would not traditionally be called
“sparse”) using a custom update that provides, after
each shortest-path solve, a very effective “warm start”
for subsequent solves.

Our motivating application is a new method to
suggest for ships the shortest navigable path between
any two ocean-navigable points on a spherical Earth

that avoids obstacles (Washburn and Brown 2016).
Obstacles are represented by nodes defining corners
of spherical polygons, and the method benefits from
defining a networkwith arc lengths between each pair
of nodes for which there is an unobstructed great
circle connecting them and then precomputing all of
the shortest-path distances between all pairs of nodes.
Other applications arise from air route planning and
vehicle routing.
In each of these cases, the underlying directed graph is

symmetric (i.e., for each arc (i, j) ∈A, there is a corre-
sponding antisymmetric arc ( j, i) ∈A), although the arc
costs themselves might not be exactly symmetric:
because of oceanic currents, winds aloft, or slight dif-
ferences in directional node-to-node distances, altitudes,
or times, we might have that cij ≠ cji for some (possibly
all) arcs (i, j) ∈A. We do not assume symmetry in the
arc costs, but our algorithms expect symmetric arcs in
the underlying graph; this can be accommodated by
adding antisymmetric arcs where none exist with
sufficiently high costs. If we define C � max(i,j)∈A

{
|cij |

}

to be the maximum absolute arc cost, then no simple
directed path in a network with n nodes can have
length nC or greater, and therefore, we can use nC to
represent such an “infinite” arc cost. As is typically
done in shortest-path algorithms, we will also use nC
as a distance label to represent a path that has not yet
been found (or does not exist) between a particular
pair of nodes.
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Our key idea is to apply a shortest-path algorithm
from each source node to all other (destination) nodes
and take advantage of the principle of optimality for
shortest-path problems: each application of a shortest-
path algorithm yields a tree of shortest paths from the
source to all other nodes, and every subpath in that
treemust also be a shortest path. See Gallo (1980) for a
thorough exposition of this idea. Any such subpath’s
length can be calculated quickly, and the collection
of all of these values can be used to warm start sub-
sequent applications of label correcting from other
source nodes. When the underlying graph is sym-
metric, each shortest subpath in the tree has a cor-
responding feasible, but possibly suboptimal, reverse
path between the same pair of nodes. If the network
also has symmetric costs (i.e., cij= cji for each arc (i,j) in a
symmetric graph), then these reverse paths are also
shortest paths. Regardless of whether these reverse
paths are shortest paths, they still allow for an ef-
fective warm start of subsequent iterations. The ad-
ditional computing required for this modification is not
without cost, but our empirical analysis suggests that it
is almost always worthwhile, except for very sparsely
connected (and especially, disconnected) networks. We
find that, even in cases with highly asymmetric costs,
the computation improves the runtime of the underly-
ing algorithm but that the benefit diminishes as the
costs become increasingly asymmetric.

2. Solving the All-Pairs
Shortest-Path Problem

For any network, the all-pairs shortest-path problem
has an optimal solution that can be specified by (1) a
set of distance labels, dkj, giving for each node k and
each node j the length of a shortest path from node k to
node j and (2) the arcs in one of the shortest paths from
each k to each j. The paths themselves are typically
specified using a predecessor structure: predkj is the
node that immediately precedes node j on the shortest
path from k to j. For any fixed node, k, the set of those
values taken over all j provides a tree of shortest paths
from node k to all other reachable nodes; if node j is
not reachable from node k, then the associated dis-
tance label, dkj, will be set to a large value (e.g., nC),
and predkj will be set to a flag value, such as zero,
indicating that no path has been found.

The Floyd–Warshall algorithm (Warshall 1962)will
solve any all-pairs shortest-path problem with a
runtime bound of O(n3) (or determine that there is a
negative cost directed cycle), but its primary draw-
back is that its theoretical runtime is its practical
runtime, taking the full O(n3) regardless of sparsity,
symmetry, or regularity in the arc costs. The Floyd–
Warshall algorithm returns twodensematrices of size
O(n2), one each for dij and predij. If the network
contains a negative cycle, then at least one diagonal

entry will be negative, and the results can be used to
help identify the negative cycle. If all diagonal entries
are zero, then the result is optimal.
The all-pairs shortest-path problem can also be

solved by simply solving the shortest-path problem
from each start node to all other nodes in the network
for a theoretical runtime of O(nf(n,m)), where the
runtime of the particular shortest-path algorithm
used is O( f(n,m)). If all arc costs are nonnegative, we
can use Dijkstra’s algorithm (Dijkstra 1959) with a
runtime of f(n,m) = O(n2), giving a theoretical runtime
of O(n3) for the repeated shortest-path algorithm.
Theoretical speedups to Dijkstra’s algorithm can be
used as well, although they are of widely varying
practical impact. We have implemented and tested a
two-heap version of Dijkstra’s algorithm on non-
negative data and report its performance, but we do
not focus our exposition on that algorithm.
In the general case, where there might be negative

costs on some arcs, we can use one of the many
implementations of a label-correcting algorithm. We
have implemented and tested two specific versions of
the label-correcting shortest-path method in our re-
peated shortest-path algorithm: a dequeue-based al-
gorithm with an exponential theoretical runtime but
with very good practical performance that is fairly
standard in the literature (Pape 1974 initially used the
term circular list, adopting dequeue in Pape 1980;
Gallo and Pallottino 1986 used double-ended queue and
shortened it to deque) and a two-queue approach (also
in Gallo and Pallottino 1986) that has a polynomial
worst case runtime but is not covered in textbooks as
often as or as thoroughly as dequeue implementations.
We have found in practice that the two-queue algorithm
is almost exactly as fast as thedequeueversion, andgiven
its speed and polynomial complexity, we focus the re-
mainder of our presentation on that algorithm.

3. Summary of
Label-Correcting Algorithms

The generic label-correcting algorithm for finding the
shortest paths from a given start node to all other
nodes starts by setting the distance label of each node
to nC (representing an unreachable node) and then
initializes the distance label of the start node to zero. It
maintains a list of all “interesting” nodes: those nodes
with distance labels that have been reduced from a
prior suboptimal value but with a set of outbound
arcs, or adjacency list, that has not been examined for
possible updates. This list has the start node as its
sole element at the beginning of the algorithm. Al-
though this list is nonempty, the algorithm selects and
removes a node, i, from the list, examines each arc in
the adjacency list of node i for a possible distance label
update, adds any node j that has had its distance label
updated to the list (if it is not already on the list
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from an earlier update), and records for node j the
predecessor node i that enabled the update. When the
list is empty, no additional updates are possible, and
the current distance labels and predecessor values are
optimal.

The standard polynomial time implementation of
label correcting is based on Bellman (1958), and it is
sometimes referred to as the Bellman–Ford algorithm.
The original presentation results in an algorithm that
scans the entire list of arcs n times looking for distance
label updates, yielding an O(nm) runtime. Contem-
porary treatments maintain the list of interesting nodes
as a first-in, first-out (FIFO) queue that focuses only
on the arcs that could possibly generate an update.
However, evenwith this improvement, the algorithm is
slow in practice; it can make a large number of small
useless updates to the same set of nodes if it has not yet
found a good path to those nodes.

Oneway to speed up a label-correcting algorithm is
to prioritize finding optimal distance labels for the
“old” nodes that it has already seen in prior updates
before rushing to explore “new” nodes that have been
updated for the first time (and that have potentially
very poor distance labels). This is usually accom-
plished by partitioning the updated nodes into two
separate sets. This works well in practice, providing
significant improvements in practical runtime at a
cost of theoretical worst case runtime. Glover et al.
(1985) discuss the partitioning shortest-path algo-
rithm, which subsumes several such algorithms.

The simplest implementation of this idea is to use a
dequeue, or double-ended queue, to maintain the list
of interesting nodes. Nodes are always selected from
the front of the dequeue; however, new nodes are
always added to the back of the dequeue, whereas old
nodes are pushed onto the front of the dequeue to be
processed as if they are on a stack. This ensures that
any old nodes on the list will be processed before any
new nodes. If there are no old nodes, the new nodes
will be processed in FIFO order. The primary appeal
of the dequeue data structure is that it can be kept in n
contiguous memory locations with no concern about
wraparound at either end: there is always enough room
at the front of the dequeue for all of the old nodes in
the network, and there is always room at the end of
the dequeue for any remaining new nodes. Un-
fortunately, the stack-like behavior of this algorithm,
especially toward the end of its operation when most
nodes are old, ruins the polynomial runtime, and the
best theoretical bound is exponential (Shier and
Wizgall 1981). However, its practical performance is
extremely fast on all but themost pathological examples.

A slightly more complicated method is to maintain
two separate FIFO queues: one for the old nodes and
one for the new nodes. If the old queue is nonempty,
the algorithmdraws from the front of it (in FIFO order

now), but if it is empty, it draws from the front of
the queue of new nodes (also in FIFO order). This
algorithm achieves a polynomial runtime bound of
O(n2m) (Pallottino 1979), which is theoretically worse
than the single-queue FIFO method. However, it is
much faster in practice, doing as well as or even better
than the dequeue method on almost all problems that
we test. It requires a bit more care in managing the
queues, but all operations can be done using a single
array of integer pointers in a linked list data structure.
Our repeated shortest-path algorithm begins by

initializing the data structures for the distance labels
and predecessors; then, it loops over each source
node, k, and uses a shortest-path algorithm to solve
for shortest paths fromnode k to all other nodes, and it
adds pre- and postprocessing routines to achieve a
significant speedup over other algorithms for all-pairs
shortest-path problems. Although we have also imple-
mented and tested our algorithm with a two-heap
version of Dijkstra’s algorithm and a dequeue label-
correcting algorithm, we present our implementation
of the two-queue algorithm (referred to as “2Q” in our
displays of results) explicitly to show exactly how our
proposed speedup works.

4. A Two-Queue Implementation of
Label Correcting

We assume that the nodes are indexed by consecutive
integers from 1 to n. The arcs are stored in an adja-
cency list data structure: for each node i, adji is the list
of nodes j adjacent to node i: adji � {j : (i, j) ∈A}. We
treat all arc costs cij and distance labels dij as integer
values, although our algorithms will work (un-
modified) with rational (floating point) data. All of
the “pseudocode” in our figures is typeset in a fixed
width font, whereas mathematical terms will be typeset
in italics as usual. All of our subscripted values will be
represented by arrays, with a separate set of brackets
(“[. . .]”) for each index. For example, the set of dis-
tance labels dij is represented in our code by a two-
dimensional array, d, and an individual element is
accessed as d[i][j]. All arguments to subroutines are
assumed to be pass-by-value so that any modification
made in a subroutine persists. Specifically, the dij and
predij values will be updated by each call to a shortest-
path subroutine. This avoids having to “return” their
values explicitly.
For our two-queue implementation, we use a sin-

gle array of integer pointers, queuei, indexed from 1
to n + 1, with position n + 1 serving as a pointer to the
first node in a single queue that represents the con-
catenation of the two queues that we wish to maintain
with old nodes in the front and new nodes in back;
if the queue is empty, then queuen+1 = n + 1. For each
node i, queuei is the next node after node i in the
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queue in a “linked list” structure that eventually
threads through all nodes currently on the queue.
A node that is not in the queue at all and has not been
seen before has queuei = 0, and a node that is not
currently in the queue but has been seen before has
queuei = -1. We use a pointer, back, to access the node
in the last position of the queue. If the dequeue is
empty, back will also have the value n + 1. We use a
second pointer, mid, that refers to the last old node
in the queue. The mid pointer is used to insert an
updated old node into the correct position. If there is
no old node in the queue, then midwill be set to n + 1,
and therefore, an empty queuewill also havemid = n + 1.
Figure 1 illustrates the values in the queue array for a
particular list of nodes in a two-queue data structure.

Figure 2 displays the pseudocode for our 2Q im-
plementation. There are two lines annotated with brackets,
{Step 1:Optional Preprocessing} and {Step 2: Optional
Postprocessing}, which represent our proposed code
for speeding up the repeated shortest-path algorithm
for solving the all-pairs shortest-path problem. We
will expand these sections in our discussion of node
label updates.

The FIFO management of old nodes in the two-
queue structure results in a breadth-first sequence
for all node examinations. The two-queue algorithm
starts by examining the start node, k, as a new node
and any new nodes reached from k. If, at some point,
there are any old nodes on the queue, the two-queue
algorithm will process all of them (and any old nodes
updated by this processing) before any more new
nodes are encountered on the queue. It would take a
pathological example to achieve the O(n2m) runtime
bound for two queue; in practice, the runtimes are
essentially linear in m and almost exactly the same as

our (similarly implemented) dequeue algorithm. On
almost every case that we study, the average num-
ber of times that a node reappears on the queue is
very small: the average over all of our tests is between
one and two appearances per node, with the most ex-
treme cases in our test set having some nodes appear
five or six times, even for networks with tens of thou-
sands of nodes, with any degree of sparsity or density
and for any distribution of arc costs.

Figure 1. Illustration of the Values in the Queue Array and
the Pointers Mid and Back for a Two Queue on Eight Nodes
with Six Nodes in the Queue

Notes. In this example, we have n = 8 nodes. Node 2 is at the front of
the queue, and therefore, we have queue9 = 2. Next in the queue is node
3, and therefore, queue2 = 3; this continues to the last node in the queue,
node 5, with back = 5 and queue5 = n + 1 = 9. Node 4 is the last old node
in the queue, and therefore, mid = 4. For this example, node 1 is not
currently on the queue and has been seen before; therefore, queue1 = −1,
whereas node 6 has not been seen up to this point and has queue6 = 0.

Figure 2. Pseudocode for a Two-Queue Implementation of
the Label-Correcting Algorithm

Notes. Our queue array of integer pointers provides an in-place
linked list structure for easy addition and deletion of nodes; the
mid pointer allows for adding nodes at the end of the queue of old
nodes (and before the queue of new nodes). The two bracketed
comments {Step 1:. . .} and {Step 2:. . .} indicate the location of our
proposed speedups.
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5. Practical Speedups to Repeated
Shortest Paths

At each step of the repeated shortest-path algorithm,
we have an opportunity to use the information ob-
tained from running the shortest-path algorithm from
any prior node. Let Sk be the set of all pairs of nodes,
(i, j), that are connected by a directed path from i to j
in the directed out tree of all shortest paths from
node k. Note that, if (i, j) ∈ Sk, we can use the predkj
values to determine the path from i to j in that tree in
reverse order from j back to i. Because subpaths of
optimal paths are also optimal, if (i, j) ∈ Sk, then the
corresponding path from i to j is a shortest path from i
to j, and it has length dkj − dki. Figure 3 illustrates
this situation for a shortest-path tree rooted at node k
and highlights a path from node i to node j, 〈i, p, q, j〉,
that is a subpath in the tree.

After we have solved the shortest-path problem from,
say, node 1,wehave a shortest path and its length, dij, for
each pair of nodes (i, j)∈ S1.We can use these distances
and paths to reduce the number of computations
required in the following shortest-path solves; this
reduction depends on the size of Sk for each k. If our
underlying graph is symmetric then for each pair of
nodes (i, j) ∈ S1, there is a corresponding reverse path
from j back to i; we can use these reverse paths to
generate initial estimates of the shortest-path distance
from j to i, and we find that this improves the runtimes
even if the costs are not symmetric. If the costs are also
symmetric, then these reverse-path distances are opti-
mal. For almost every test case that we examine, using
this update in both directions in the shortest-path tree
gives a significant speedup over the repeated shortest-
path algorithm without the update, and in all cases ex-
cept for extremely densely connected networks, it is
significantly faster than Floyd–Warshall.

Our extension of the repeated shortest-path algo-
rithm involves the two optional steps mentioned in

Figure 2. For a particular start node, k, the first op-
tional step checks all other nodes to see if a prior it-
eration has discovered a path from k to that node
(indicated by a value of dki less than nC) and if so, adds
that node to the queue of updated nodes behind node
k. This gives each application of the label-correcting
algorithm after the first a warm start of optimal or
near-optimal labels, and it has the benefit that any
optimally labeled nodes will be updated once at the
beginning of the subsequent label-correcting code
and will never reappear on the queue. Figure 4 pro-
vides pseudocode for this preprocessing step.
The second step is our distance label update based

on the shortest-path tree rooted at node k. We perform
a complete exploration of the paths in that tree by using
the predkj values to climb the shortest-path tree from
each node t toward the root, k. At every intermediate
node, i, we calculate the length of the path from i to t
as dkt − dki, which is guaranteed to be optimal by the
principle of optimality for shortest-path trees, and the
length of the reverse path from t to i, dr, as a successive
sum of reverse arc lengths (which is only guaranteed to
be optimal in the case of symmetric arc costs but is a
valid upper bound on, and may be close to, the length of
a shortest path from t to i). If the new path length is
an improvement over the current value, we update
the appropriate distance label, dit or dti, respectively.
Figure 5 displays the pseudocode for our postpro-
cessing “update” of the distance labels.
After we solve for the shortest paths from each

source node, k, we process the shortest-path tree to
revise shortest-path distances and predecessor values
for each pair of nodes (i, j) ∈ Sk. Because these repre-
sent optimal distance labels or perhaps, near-optimal
ones in the nearly symmetric case, when we solve for
the shortest paths from node i, we treat them as having
been seen before and put them at the back of the list
of old nodes before processing begins for node i.
The update code in Figures 4 and 5 applies to any

repeated shortest-path method with the same data
structure for labels and shortest-path tree prede-
cessors. This includes, for instance, the two-heap
Dijkstra label-setting algorithm (see Johnson 1977

Figure 3. Illustration of a Shortest-Path Tree from Node k

Note. The path from i to j, indicated in bold, is a shortest path from
i to j, and its length is dkj − dki.

Figure 4. Pseudocode for {Optional Preprocessing} at Step k

Notes. For a particular start node, k, each node iwith a finite distance
label from k is added to the queue of nodes to be examined as an old
node. The placement of this code in the algorithm ensures that these
nodes will be processed immediately after node k.
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for a discussion of using heaps with Dijkstra’s algo-
rithm), although the preprocessing shown in Figure 4
must be modified to create the initial two heap of
nodes with finite distance labels and seed it with
source node k. Gallo and Pallottino (1986) survey a
wide collection of such procedures, many of which
(including the two-queue algorithm) fall under the
general category of partitioning shortest-path pro-
cedures (Glover et al. 1985).

6. Computational Results
We randomly generate symmetric graphs with a
given number of nodes, n, and a desired out-degree
for the nodes, deg, using Bernoulli trials on each
possible (undirected) edge in the graph and adding
both (directed) arcs associated with each edge. Al-
though this does not guarantee that our graphs are
connected, for deg = 3, we observe that at least 90% of
the nodes in our graphs are in a single connected com-
ponent; this quickly approaches 100% as deg increases
to four, five, and higher. Our algorithms do not require
connectivity, of course, but we feel that connected
graphs better represent real-world problems.

We create our network by adding a uniformly dis-
tributed integer arc cost, cij, drawn from the closed
interval [100, 10,000] to one of each pair of antisym-
metric arcs, and we use an additional “skew” factor,
0≤ σ≤ 2, as a parameter for generating reverse arc
costs to represent the amount of asymmetry in those
arc costs. If σ � 0, we set the reverse arc cost as cji � cij,
yielding a network with symmetric costs. Otherwise,
we draw cji uniformly from the interval [(1 − σ/2)cij,
(1 + σ/2)cij], preserving the nonnegativity of the arc
costs while allowing for narrower or wider variations
in the costs of asymmetric arcs as σ ranges up from
zero. As an example, a skew factor of 0.05 yields
reverse arcs with uniformly distributed 2.5% relative
variation from the forward arc costs. We also have an
option (signaled in our code by setting σ � −1) to
generate reverse arcs completely independently and
uniformly from the interval [100, 10,000].
We generate networks with n, the number of

nodes, taking values in {1,000, 2,500, 5,000, 7,500,
and 10,000}. For each value of n, we generate graphs
with expected node out-degrees deg in the set {1, 2, 3,
4, 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, and 500}.

Figure 5. Pseudocode for {Optional Postprocessing}

Notes. The first, “forward-path,” loop defines optimal distance labels embedded in forward paths in the current shortest-path tree for trees not
yet evaluated rooted at node i (namely, if node i hasn’t been used as the “root,” or start node, of any shortest-path tree). The latter “reverse-path”
loop refines distance labels for trees not yet evaluated rooted at t. If the network has symmetric arc costs, these latter updates are optimal. Otherwise,
these updatesmay be suboptimal, but they are valid distance labels andmay speed up subsequent forward search tree computations. Our “simplified
update” version of the code skips this second loop; this version can be faster if arc costs are highly nonsymmetric.
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We also generate test problems on complete graphs,
but Floyd–Warshall dominates all other algorithms
on complete networks, and we do not report those
results here. For each of these combinations of n and
deg, we create networks with arc costs using skew σ
in the set {0, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5,
and 2.0} as well as completely uncorrelated cases
(i.e., with skew σ � −1).

We have implemented and tested our algorithms in
both optimized Fortran90 and (interpreted) Python 3.5.1
(e.g., www.python.org). All benchmarks have been
run on a Lenovo P50 portable workstation with an
Intel Xeon E3-1505M V5 chip rated at 2.80 GHz,
single thread. For timings, we use INTEL Visual
Fortran optimized for this 64-bit processer. The net-
work data for computations reported in this paper
can be downloaded from http://faculty.nps.edu/
gbrown/downloads.htm.

For the smaller cases, we run a modified Floyd–
Warshall algorithm (“F-W”) that includes a test to
skip unnecessary updates (i.e., those involving distance
labels of nC on candidate paths). On all cases, we run a
dequeue (“dQ”) algorithm (not displayed) and two-
queue (“2Q”) implementations of the label-correcting
algorithm from Figure 2, respectively.We also run the
modified dequeue (“dQ + upd”) and two-queue
(“2Q + upd”) algorithms with our full distance label
update code as described in Figures 4 and 5, and,

finally, the two-queue with a simplified update (“2Q +
upds”) omitting the “update reverse-path labels” loop
from Figure 5. The online appendix displays our
implementation of 2Q + upd in FORTRAN90. We also
run a standard implementation of a two-heap version of
Dijkstra’s algorithm (“Dijk”) and a full update version
of two-heap Dijkstra using our update where the
preprocessing step has been modified to run with a
two heap (“Dijk + upd”). We measure runtimes to an
approximate hardware accuracy of 0.02 seconds, and we
report and plot the results in seconds.
Figure 6 displays the runtimes of our implementa-

tions, with and without the new update, as well as the
runtime of Floyd–Warshall for 5,000-node networks
with symmetric costs and deg ranging from 1 to 500.
Except for the densest cases, the repeated shortest-
path algorithms are significantly faster than Floyd–
Warshall, and our new update code improves the
runtime enough that, even at 10% density, (i.e., deg =
500 of 5,000), our new update versions are still faster
than Floyd–Warshall.
Figure 7 displays the runtimes of the repeated

shortest-path algorithms on test cases of various sizes
with n ranging from 1,000 up to 10,000, with deg = 10
and symmetric costs. The update version of each algo-
rithm is noticeably faster than the non-update version,
and the updated two-queue algorithm is consistently the
fastest. Figure 8 displays the average number of times

Figure 6. (Color online) Runtimes of Floyd–Warshall vs. Two-Queue Label Correcting

Notes. For networkswith 5,000 nodes and symmetric arc costs, the run times for the 2Q (in Figure 4, this algorithm is named “two_queue”), two-
queue with update (2Q + upd), and two-queue with simplified update (2Q + upds) algorithms are significantly faster than Floyd–Warshall
(F-W) for sparse graphs. As the expected node out-degree, deg, increases beyond 1% of the number of nodes (i.e., deg = 50), the runtime of
Floyd–Warshall remains essentially constant, as expected, whereas the dependence of the label-correcting algorithms on the number of arcs
leads to an increase in runtime that eventually surpasses that of Floyd–Warshall. As the density of connections in the network increases, the
advantage of the distance label update becomes more pronounced over standard repeated shortest paths. Our full update version remains
the fastest algorithm (even faster than Floyd–Warshall) beyond 10% density (deg = 500). The online appendix displays our implementation of
2Q + upd in FORTRAN90.
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that each node appears for processing at the front of
the two-queue algorithm in both the regular version
and the update version per shortest-path solve. The
update version sees far fewer updates per node; over
all of our test cases, the average is never higher than
about 1.8, meaning that each node is far more likely
to already have its optimal distance label by the

time that it reaches the front of the queue in any
particular solve.
Figure 9 displays the runtime of the two-queue

algorithm with and without our proposed update
for networks with n = 5,000 nodes and expected out-
degree deg = 10 and for the skew σ ranging from 0.0
to 2.0. Our update algorithm is especially helpful

Figure 7. (Color online) Runtimes of Floyd–Warshall and the Seven Repeated Shortest-Path Algorithms as n Increases

Notes. For symmetric networks with expected node out-degree deg = 10, we see that the update versions are consistently faster than the non-update
versions, with the two-queue dominating the dequeue in both non-update and update versions. Floyd–Warshall is orders of magnitude slower for
n > 2,500; at n = 5,000, its runtime is 513 seconds. For reference, the 10,000-node problem solves for 100,000,000 shortest paths.

Figure 8. (Color online) Average Number of Times That Each Node Appears on the Queue as Node Degree Increases

Notes. We see that the non-update version of the two-queue algorithm applied to networks with ± 25% symmetry processes each node more
times as the expected node degree increases but that our update version starts to flatten out at less than 1.5 appearances on the queue per node.
The majority of nodes in the network only appear on the queue once, which means that, on average, most nodes already have their optimal
distance label by the time that they reach the front of the queue.
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when the cost data are completely symmetric and the
reverse paths of optimal paths are also optimal. As the
costs become less and less symmetric, we gain less

benefit from our update until the overhead from per-
forming the update is more expensive than the benefit
that we gain from it. In all cases that we examine, this

Figure 9. (Color online) Runtime of the Three Versions of the Two-Queue Algorithm as Skew Varies

Notes. The non-update version of the two-queue algorithm is essentially completely insensitive to skew, but our full update version enjoys a benefit
that decreases as the reverse arc costs are less associated with the corresponding forward arc costs. The simplified update that skips the reverse arc
updates is not as effective as the full update on nearly symmetric cost data, but as the skew increases past 0.25, the reduced overhead of themodified
update allows it to solve more quickly. However, at all skew values, both update versions execute faster than the non-update version.

Figure 10. (Color online) Runtime of Two-Queue Algorithm with Standard and Modified Updates as the Number of Missing
Reverse Arcs Varies for Two Values of Skew

Notes. As more reverse-arcs are removed from the network, the runtime of the standard update increases until about 50% of the reverse arcs are
missing, at which point all algorithms start speeding up due to the reduced problem size and the reduced chance that any pair of nodes is
connected by a directed path. However, our standard update is always faster than the non-update version, and it is only slightly slower than the
modified update when a significant number of reverse arcs have been removed.
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“breakeven” point occurs when σ > 0.5 (or positive
parallel arc costs are within about ± 25%).

We are aware that randomly generated networks
are notoriously harder to solve than real ones, but
we prefer this in our tests. We have also had expe-
rience (Bradley et al. 1977) randomly generating
networks attempting to produce special structure,
such as grids, supply chains, etc. (see, e.g., Klingman
et al. 1974) We do not test networks with negative arc
lengths, although all of the label-correcting methods
here can accommodate these: this avoids the need to
find and eliminate negative cycles in our random test
problems.

If the underlying graph is not symmetric (namely,
if some arcs do not have corresponding antisym-
metric arcs), then there might not be reverse paths
corresponding to the forward paths between pairs of
nodes, and our standard update might suffer as a re-
sult.We add a newparameter, δ ∈ [0, 1], to our network
generation to represent the probability that an arc
has an associated reverse arc. Specifically, for any
particular value of δ ∈ [0, 1], whenever we select a pair
of nodes i and j to create an arc, we choose the forward
direction randomly (and uniformly), and after we gen-
erate the forward arc, we generate the reverse arc
with probability (1 − δ). We tested our algorithms for
values of δ ∈ {0, 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00},
and Figure 10 displays the effect of removing greater
numbers of reverse arcs during network generation for
purely symmetric costs and costs generated with a skew
of 0.5. In particular, we see that having reverse arcs
missing does not significantly degrade the performance
of our update algorithm. As expected, for high-skew
problems, our simplified update performs slightly better
than the full update, but the difference diminishes as larger
numbers of reverse arcs are missing. Both versions of the
update are always better than the non-update version.

7. Conclusions and Insights
In sparsely connectednetworks, a repeated shortest-path
algorithm will usually run significantly faster than the
Floyd–Warshall algorithm for determining all-pairs
shortest paths. With a distance label update based on
the principle of optimality for shortest-path trees and
especially if costs on antisymmetric pairs of arcs are
close to each other, these algorithms can be modified
to be even more efficient, in most cases performing
less than two distance label updates per node on
average. Our update procedures can be adapted to
almost all of the common shortest-path routines, in-
cluding those based onDijkstra’s algorithm (see Gallo

1980 for a discussion of how they can be used even in
the presence of negative costs).
With new insight gained, we have discovered net-

works in legacy applications with symmetry and near
symmetry that we had overlooked in the past. We are
in the process of retrofitting the improvement re-
ported here. Our original motivating problem was to
improve route navigation software for a planning
tool developed by one of the authors (Washburn and
Brown 2016) in Microsoft Excel using Visual Basic for
Applications and used as a component of the Oce-
anic Routing Service of the U.S. Navy. The original
Floyd–Warshall implementation has been replaced
by a repeated shortest-path algorithm with our pro-
posed update, and on networkswith several hundreds
of nodes and arcs, the route planning tool runs faster
by a factor of about seven.
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