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Using limited assets, an interdictor attempts to destroy parts of a capacitated network through which an adversary will subsequently
maximize flow. We formulate and solve a stochastic version of the interdictor’s problem: Minimize the expected maximum flow
through the network when interdiction successes are binary random variables. Extensions are made to handle uncertain arc
capacities and other realistic variations. These two-stage stochastic integer programs have applications to interdicting illegal drugs
and to reducing the effectiveness of a military force moving materiel, troops, information, etc., through a network in wartime. Two
equivalent model formulations allow Jensen’s inequality to be used to compute both lower and upper bounds on the objective, and
these bounds are improved within a sequential approximation algorithm. Successful computational results are reported on networks

with over 100 nodes, 80 interdictable arcs, and 180 total arcs.

his paper investigates stochastic variants of a network

interdiction problem where an “interdictor,” using
limited assets, “interdicts” (destroys or at least stops the
use of) parts of a capacitated network through which an
adversary will subsequently maximize flow. The determin-
istic problem is to minimize the maximum achievable flow
through the network subject to constraints on interdiction
resources. In the stochastic variants, interdiction successes
can be uncertain and/or arc capacities can be random vari-
ables. The objective of these stochastic network interdic-
tion problems is to minimize the expected maximum flow
through the network by selecting the best set of arcs to
interdict, or to attempt to interdict.

The deterministic network interdiction problem has
been studied in McMasters and Mustin (1970), Steinrauf
(1991), Phillips (1992), and Wood (1993), with military
applications and with applications to the interdiction of
illegal drugs and precursor chemicals. Game-theoretic net-
work interdiction models have also been studied (Wollmer
1964, Washburn and Wood 1995), but these models are
substantially different: they determine optimal arc-
inspection strategies for detecting an evader moving
through a network surreptitiously.

Our analysis of stochastic network interdiction begins
with this basic problem: We wish to interdict arcs in a
network so as to minimize the expected maximum flow

from a source node s to a sink node t. Assets available to
perform these interdictions are limited. Interdiction suc-
cesses are assumed to be independent binary random vari-
ables such that an unsuccessful interdiction attempt on an
arc leaves the arc with its nominal capacity, and a success-
ful interdiction leaves the arc with no capacity.

A stochastic maximum flow problem cannot be solved by
solving a deterministic maximum flow problem where ran-
dom arc capacities are replaced by their expected values.
Likewise, our interdiction problem cannot be solved via
the deterministic “expected-value problem” (Birge 1982)
that minimizes maximum flow assuming uninterdicted arcs
have nominal capacities and interdicted arcs have their
expected residual (after-interdiction) capacities. Consider
the simple interdiction problem represented in Figure 1,
where each arc is marked with its nominal capacity. As-
sume that the probability of a successful interdiction on
any arc is 0.6, at most one interdiction on each arc may be
attempted, and resources limit the number of interdictions
to two. The expected-value problem selects arcs (s, t) and
(s, 2), or arcs (s, t) and (2, t) for interdiction. The capacity
of the network based on expected capacities following in-
terdiction is (1 — 0.6)10 + (1 — 0.6)100 = 44. This capac-
ity would be (1)10 + (1 — 0.6)100 = 50 if arcs (s, 2) and
(2, t) were interdicted, since nothing is gained in a deter-
ministic model by interdicting identical arcs in series. The

Subject classifications: Military, targeting: network interdiction. Programming, stochastic: sequential approximation. Networks graphs, stochastic: maximum flow.

Area of review: PusLIC SERVICES AND MILITARY APPLICATIONS.

Operations Research
Vol. 46, No. 2, March-April 1998

0030-364X/98/4602-0184 $05.00
© 1998 INFORMS



100 100

B 10 p

Figure 1. Interdiction decisions based on expected resid-
ual arc capacities may be incorrect.

correct solution is to interdict arcs (s, 2) and (2, t) leaving
the stochastic network with an expected capacity (and ex-
pected maximum flow) of (1)10 + (1 — 0.6)*100 = 26. It is
clear that the expected-value model above will always in-
terdict arcs that are part of some cut, say C (other irrele-
vant arcs may be interdicted if the interdiction budget is
sufficient), yet the correct solution may be to interdict arcs
that cannot all belong to the same cut C.

We first formulate the stochastic network interdiction
problem (SNIP), as in the above example, with uncertain,
binary interdiction successes, “SNIP(IB).” This problem is
a two-stage stochastic program with recourse, but it has an
unusual “min-max” objective. The integer first-stage deci-
sion variables represent the interdictor’s choice of which
arcs to attempt to destroy. After this decision has been
implemented, a random subset of the interdiction attempts
is successful and completely destroy the corresponding
arcs, i.e., drop their capacities to zero. Unsuccessful inter-
diction attempts have no effect on the network. With com-
plete knowledge regarding the status of the residual
network, the adversary solves the continuous recourse
problem of maximizing flow through this network. Our
goal, i.e., the interdictor’s goal, is to select arcs to attempt
to interdict so as to minimize the expected value of the
maximum flow that the adversary can achieve.

We also develop several variants of SNIP(IB):

(a) SNIP(ICB) has uncertain, binary interdiction suc-
cesses and uncertain, binary arc capacities (the capacity of
an arc can take on one of two nonnegative values); (b)
SNIP(CB) has uncertain, binary arc capacities; (c)
SNIP(CD) has uncertain arc capacities that can take on a
finite number of nonnegative values; and (d) SNIP(IM)
allows multiple uncertain interdictions on an arc. These
are realistic variants of the initial model. For instance,
SNIP(CB) could be used when the very existence of an arc
in the adversary’s network is uncertain because of incom-
plete intelligence.

A large-scale deterministic equivalent binary integer
program may be formed for SNIP(IB) by (a) reformulating
the problem as a simple minimization problem involving
binary interdiction variables and binary second-stage vari-
ables (these are related to dual variables of a maximum
flow problem), and (b) enumerating all possible realiza-
tions of the network with respect to the success or failure
of each possible interdiction. Analogous models can be
built for the other SNIPs. Unfortunately, solving such
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models would be computationally impractical for all but
the smallest problems.

The stochastic programming literature suggests that se-
guential approximation techniques (e.g., Kall et al. 1988
and Frauendorfer 1992) coupled with decomposition algo-
rithms (Van Slyke and Wets 1969) are practical methods
for solving difficult stochastic programming problems such
as the SNIP variants; we use this approach. A sequential
approximation algorithm successively refines lower and up-
per bounds on the optimal objective value as it divides the
state space of the random variables into finer and finer
partitions. For solving a minimization problem, such an
algorithm typically applies Jensen’s inequality to obtain
lower bounds and applies the Edmundson-Madansky in-
equality (Madansky 1959) or some other technique, for
fixed values of the first-stage variables, to obtain upper
bounds. The lower bound is usually easy to compute and
the upper bound difficult.

The stochastic network interdiction problem is a minimi-
zation with respect to the first-stage variables and has ran-
dom parameters appearing in the right-hand side of the
second stage. Typically, Jensen’s inequality is used to com-
pute a lower bound in such situations, but because our
second-stage problem is a maximization, it is the upper
bound that is easy to compute via Jensen’s inequality. We
are able to use this bound effectively, so the key to solving
our problem is to develop an efficient lower-bounding
method. We do this by reformulating the model to move
the random variables into the objective of the second stage
and by applying Jensen’s inequality again.

One might attempt to modify standard upper-bounding
techniques (for minimization problems) to obtain a lower
bound; e.g., the Edmundson-Madansky bound (Madansky
1959), a piecewise-linear bound (Birge and Wets 1989,
Wallace 1987b, Birge and Wallace 1988), and a bound for
problems with “convex marginal return functions” (Dono-
hue and Birge 1995a, 1995b). For binary interdiction suc-
cesses, the Edmundson-Madansky bound is equivalent to
enumerating the state space of the random variables,
which is impractical. The Donohue-Birge approach re-
duces computational effort relative to the Edmundson-
Madansky bound, but can still require work that is
exponential in the size of the network. The outer minimi-
zation of our min-max problems would be difficult to carry
through to those bounds (for reasons of convexity dis-
cussed below), but would probably be impossible to carry
through for a piecewise-linear bound. One might also at-
tempt to adapt a specialized lower bound for the stochastic
maximum flow problem, in particular, the bound of Aneja
and Nair (1980). This bound involves products of arc reli-
abilities and these lead to an undesirable, nonlinear
bounding model for interdiction. Our reformulation tech-
nique avoids all of the above difficulties.

As we show, the recourse function to the interdiction
problem, in its “natural formulation,” is a concave function
of the interdiction decisions, when these first-stage vari-
ables are viewed as continuous. Since we want to minimize
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the expected recourse function, this precludes application
of the “standard” integer version of the L-shaped method
(Van Slyke and Wets 1969). However, we derive an equiv-
alent formulation of the recourse problem that, for given
interdiction successes, is a convex function of the first-
stage decision variables and, for fixed first-stage decisions,
is a convex function of interdiction success parameters.
The second type of convexity allows us to apply Jensen’s
inequality to obtain a lower bound for fixed first-stage de-
cisions, and the first type of convexity allows us to obtain a
global lower bound by minimizing a convex function using
the L-shaped method. Our method is efficient because we
compute both lower and upper bounds through Jensen’s
inequality, and this computation does not depend on the
number of stochastic parameters.

Our algorithm, applied to SNIP(IB), uses a state-space
partitioning scheme that recursively conditions on whether
or not a specific interdiction would be successful if at-
tempted. Partitioning is similar for the other variants. For
instance, in SNIP(CB), we can sequentially refine the par-
tition by conditioning on whether or not a particular arc’s
capacity exists or not. The gap between upper and lower
bounds on the optimal objective value is continually tight-
ened with iteratively refined partitions of the state space.

The models we develop are all meant for interdicting
arcs in a directed network but, in some networks such as
road and communications networks, undirected arcs and
node interdiction could be important. Our basic models
can be easily modified to deal with these variations. The
standard transformation of an undirected arc into two di-
rected arcs in anti-parallel (e.g., Ahuja et al. 1993, p. 38)
will convert undirected arcs appropriately. Only slight
modifications of our models would be needed to accom-
modate the resulting dependent pairs of directed arcs. An-
other standard transformation converts nodes into
directed arcs (e.g., Ahuja et al., p. 41-43).

Our techniques have applications to areas beyond net-
work interdiction. When no arcs can be interdicted or suf-
ficient resources exist to interdict every arc, SNIP(ICB)
simplifies to a stochastic maximum flow problem (e.g.,
Carey and Hendrickson 1984, Evans 1976); see Section 5.
If we convert the objective of SNIP(CB) from “min-max”
to “max-max” and reformulate interdiction as capacity ex-
pansion, the resulting problem is a two-stage stochastic
program where expected maximum flow can be improved
by making investments in network infrastructure. This
problem has been studied by Wallace (1987a), but our
bounds would allow an alternate solution approach. The
“vulnerability” of networks to attack or arc failure has
been the topic of a number of papers that are largely
theoretical in nature (e.g., Caccetta 1984, Goddard 1994).
Our models or variants of them could be used, at least in
an ad hoc fashion, for studying vulnerability from a more
practical point of view. Finally, we note that our bounding
techniques can be generalized for use in other stochastic
programming problems; see Section 6.

Network concepts and notation are defined in the next
section and a key theorem is provided that will lead to two
equivalent formulations of SNIP(IB). Section 2 describes
the deterministic network interdiction problem and the
stochastic variant that is SNIP(IB). It also derives objective
function bounds for use in the algorithm that is then de-
scribed in Section 3. Section 4 describes extensions of
SNIP(IB) that allow uncertain arc capacities, certain com-
binations of random capacities and interdiction attempts,
and multiple interdiction attempts. Section 5 provides
computational results for SNIP(IB), SNIP(ICB) and for a
special case of SNIP(ICB) when no arcs may be interdict-
ed—this is the classic stochastic maximum flow problem in
a network with unreliable arcs. The paper is summarized
in Section 6.

1. PRELIMINARIES

Let G = (N, A) denote a directed network with node set N
and arc set A. An arc is an ordered of pair of nodes (i, j)
where i is the tail of the arc and j is the head of the arc.
The set of arcs directed out of a node i, i.e., with tail i, is
the forward star of i, denoted FS(i). The set of arcs di-
rected into node i, i.e., with head i, is the reverse star of i,
denoted RS(i).

A single commodity flows through the arcs of G from a
source node s to a sink node t. The flow on any arc cannot
exceed its capacity, u;. Let (t, s) be an artificial return arc
associated with G and define A’ = AU{(t, s)}, U, =
Zapeali T 1, and redefine FS( ) and RS( ) to include
the return arc. The problem of finding the maximum fea-
sible flow from s to t in G, i.e., the maximum flow problem
on G, is given by the following linear program (LP) which
maximizes the flow on the return arc subject to arc capac-
ities and flow balance constraints:

MAXFLOW
max Xis,
X
st. > xj— > xi=0 VieN, 1)
(i,j))EFS() (i,HERS()
0$Xij$uij V(l,J)EA, (2)

Note that uy is effectively infinite since the maximum flow
cannot exceed u, — 1.

Lemma 1 regarding MAXFLOW follows from the ob-
servation that the maximum flow through a network can be
increased by at most one unit by increasing the capacity of
an arc by one unit.

Lemma 1. The dual variables associated with arc capaci-
ties in MAXFLOW are bounded above by 1.

In the sections that follow, we will use the following theo-
rem to establish equivalence of alternative formulations of
deterministic and stochastic network interdiction models.
The set of arcs A* will later correspond to successfully
interdicted arcs.



Theorem 2. Let A* C A’. Then, z* = z** where:

Z* = max Dual Vars.
X
s.t. E Xij — E in=0 YieN LT
(i,) EFS(i) (j,ERS(i)
Xij$uij V(l,J)EA, O
XijSO V(I,j)EA*
Xij =0 V(I,J)EA, :Mij
®
and:
IR = maX Xes — X X Dual Vars.
x (i,heA*
s.t. E Xij — E inzo VieN LT
(i,j))EFS(i) (J,HERS(i)
Xij$uij V(I,j)EA/ gy
;=0 V(i j)eEA. @

Proof. Let [x*, (&*, a*, p*)] denote an optimal primal
and dual solution to (3) with dual variables corresponding
to constraints as noted. It suffices to show that [x**, (w**,
a*®)] = [x*, (w*, «*)] is an optimal solution to (4) with
objective value z*. That the primal and dual objective val-
ues of (4) are z*, when evaluated at x** and (mw**, a**),
can be seen by simple substitution. The solution x** = x*
is primal feasible to (4) since the primal constraints of (3)
are a restriction of those of (4). Using the theorem of
strong duality, the proof will be complete if we can show
dual feasibility of (w=**, «**) in (4). The dual constraints
associated with (i, j) € A'"NA* in (4) are satisfied by (m**,
a**) since they are identical to those in (3). The remaining
dual constraints of (4), which are m — m; + «;; = —1 for
(i, j) € A*, are satisfied since:

= 7wl + ol +ui=0

v (i, ) € A*
by dual feasibility of (1),

Fri—7nj+aj=—pj=-1

v (i, j) € A*
by rearranging and Lemma 1,

o Y (i, j) € A*

T+ et = -1
by substitution. []

2. THE DETERMINISTIC AND STOCHASTIC
MODELS

This section reviews the basic deterministic network inter-
diction model and then describes a stochastic variant,
SNIP(IB), where interdiction successes are binary random
variables. Lower and upper bounds on the optimal objec-
tive value of the stochastic model are developed in subsec-
tion 2.3 for use in the sequential approximation algorithm
of Section 3.

2.1. The Deterministic Model

First consider the basic, deterministic network interdiction
model from Wood (1993). This model assumes that an
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interdictor has R total units of resource that can be ex-
pended to interdict arcs and that r;; units of resource are
required to interdict arc (i, j). Let v; be a binary decision
variable that is 1 if arc (i, j) is interdicted and is 0 other-
wise. For notational simplicity, let vy, exist, but define r, =
R + 1 so that the return arc will never be interdicted. Also,
let T = {v[Zgpeativi <R v € {0, 1} V (i, ) € A’}
and let x € X denote the flow-balance and capacity con-
straints of MAXFLOW, i.e., constraints (1) and (2). The
deterministic network interdiction problem can now be de-
scribed by the following min-max model:

D-MIN-MAX-1 z* = melp hq(y) (Model 1)
Y
where:
ha(y) = maxx,
S-t-0$xij$uij(1_7ij) V(l,])EA'

The exact form of I' is unimportant provided that its con-
straints are linear. However, even when r;; = 1 for all (i, j)
€ A, D-MIN-MAX-1 is an NP-complete problem (Wood
1993).

We may reformulate the deterministic network interdic-
tion problem as:

D-MIN-MAX-2 z* = melp gda(y) (Model 2)
Y

where:

ga(y) = maxx, — 2 Vi Xij -

XEX (i,)eA’
Applying Theorem 2 with A* = {(i, j)|y;; = 1}, we see that
gq(y) = hy(y) for all y € {0, 1}, Hence, this reformu-
lation is equivalent to D-MIN-MAX-1 from the perspec-
tive of determining optimal interdiction decisions.

2.2. A Stochastic Model: Uncertain Interdiction

Interdiction of an arc need not be successful; it may be
completely unsuccessful, partially successful (part of the
arc’s capacity is destroyed) or completely successful. Ini-
tially, we consider the binary case where an attempted
interdiction of arc (i, j) is completely successful with prob-
ability p; and is completely unsuccessful with probability
1 — p;;. Independence of interdiction successes is assumed,
and only a single interdiction may be attempted on any
arc. This model is denoted “SNIP(1B).”

Let T; be an indicator random variable that is 1 with
probability p; and is 0 with probability 1 — p;. The state
space; i.e., support, for I is denoted $ C {0, l}wA". For the
case of binary random interdiction successes, the following
min-max model is analogous to D-MIN-MAX-1 (Model 1)
and models SNIP(IB):

S-MIN-MAX-1(IB) ~ w* =min Eh(y,T) (Model 3)
Y

where:

hiy, 1) = max Xss

StO<X|J$U|J(1_||J’)/”) V(l,J)EA’
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In a fashion that is analogous to reformulating D-MIN-
MAX-1 (Model 1) as D-MIN-MAX-2 (Model 2), we refor-
mulate S-MIN-MAX-1(1B) as follows:

S-MIN-MAX-2(1B) ~ w* = min Eg(y, 1) (Model 4)
Y

where:

2 Ty

gy, 1) = max xy —
xeX (i.j)en’

It can be seen that g(3, 1) = h(¥, 1) for all (¥, 1) € {0,
131 x 9 by applying Theorem 2 with A* = {(i, j) €
A'[33 = 1,1 = 1}. Thus, the recourse functions h(y, T) and
g(y, 1) are equivalent and this reformulation is equivalent
to S-MIN-MAX-1(IB). Again, by “equivalent” we mean
that the first-stage solution sets for S-MIN-MAX-1(IB)
and S-MIN-MAX-2(IB) are identical; the second-stage so-
lution sets may differ.

2.3. Lower and Upper Bounds for Uncertain
Interdiction

The sequential approximation method developed in Sec-
tion 3 requires lower and upper bounds on w*, which we
develop here. The following proposition is key to these
bounds. The proposition follows from standard LP theory,
but its application to stochastic programming is discussed
in Wets (1966).

Proposition 3. For fixed 7, h(y, T) and g(y, 1) are concave
and convex functions on the convex hull of %, respectively.

_ Asaresult, we may apply Jensen’s inequality, twice, with
I; = El;; to obtain:

g(y, H <Eg(y, ) = Eh(y, D <h(y, 1.

The following bounds on w* may be formed by solving
min,crg(y, 1) to obtain ¥.

g(¥ D=w*<h@ . ©®)

In Section 3, we will refine the bounds (5) by extending
them to a partition of the state space of the indicator
random variables (Huang et al. 1977). Let ¥ = {9%
$2,..., 9%} be such a partition of $; i.e., U, 9 = ¢ and
FINgk = @ for j # k. The elements of & are called cells.
Also, let 1 = E(I]T € $¥) and pX = Prob(l € $%). Then, a
lower bound w(¥) on w*, with respect to the partition ¢, is
derived as follows:

K
LBMIN(Y) w*x = mi? > p*E[g(y, D[TE 94
YEL k=1

K
= min 2 praly, 19 =w(9), (Model 5)
k=1

ye
where “Model 5” refers to the minimization problem on
the right. In Section 3, we will convert this min-max model
to a simple minimization model and it will become appar-
ent that the number of rows and columns in the problem is
proportional to |#|. An upper bound W(¥, ) for fixed v is
obtained using:

K
UB(Y, v) w* = > pkE[h(y, D[T € 94
k=1

K
< 2 p*h(y, 1N =w(¥, v), (Model 6)
k=1
where “Model 67 refers to the || recourse function evalu-
ations (maximizations) required to calculate w(<, ). In
the algorithm, we apply UB(Y, ) to the optimal decision
4 obtained in calculating LBMIN(Y).

A refinement of a partition & is another partition &’
such that for any $ € ¥', $¥ C $* for some $* € ¥ and
I C g* for at least one 9 € ¥ and $¥ € ¥'. LB-
MIN(Y) and UB(¥, y) are monotonic in the sense that if
S’ is a refinement of &:

w(F) sw(F") and W(Z, y) =W, y).

See Hausch and Ziemba (1983) for details.

The idea behind our sequential approximation algo-
rithm is to create a sequence of finer and finer partitions &
until the gap between lower and upper bounds is suffi-
ciently small and we can declare the problem solved, at
least approximately. We recursively refine & by selecting
one of its cells $* and subdividing this cell, i.e., partitioning
%, into two cells $¥ and $¥', and then replacing $* with
$* and $¥ to obtain the refinement ¥'. The algorithm is
convergent since our refinement scheme could, in princi-
ple, create a partition that enumerates ¢, at which point
LBMIN(Y) (Model 5) would solve SNIP(IB) exactly. Such
an algorithm is clearly of exponential complexity so, for
the method to be useful, we must demonstrate empirically
that & does not grow too large before the gap between the
bounds shrinks sufficiently to yield a high-quality solution.

3. SEQUENTIAL APPROXIMATION ALGORITHM

In this section we describe a sequential approximation algo-
rithm for solving SNIP(IB) that utilizes the bounds developed
in the previous section. The algorithm is listed in Figure 2.

3.1. Overview of the Algorithm

At each iteration of the algorithm (starting at Step 1) the
partition of $ induces an approximating problem (Model
5) that is solved to calculate LBMIN(Y). Model 5 is an
approximation to the original problem in the following
sense: it is equivalent to Model 4 except that T is replaced
by a random vector with fewer realizations (scenarios),
namely, I, k = 1, ..., K, that occur with probability p¥,
k =1,..., K. This min-max K-scenario stochastic integer
program (Model 5) can be solved exactly at Step 1 using
the following simple minimization model:

K
w(s)=min > X pkaﬁuij

Yme k=1 (i j)EA’

E-MIN-2(I1B)(¥)

(Model 7)
vk, (i,j) €A,
Yk (i,j)EA, yET,

k k k 1k
s.t. i — ) + ajj + IIJYIJ ?eij

aﬁ?O



Input: A problem instance for SNIP(IB) and finite, abso-
lute convergence tolerance € > 0
Output: y* approximately solving SNIP(IB), and lower
bound L* and upper bound U* on w* such that
L* < w* < Eh(y*, 1) < U* and U* — L* < ¢

STEPO. Let ¥ = {$}, U* = + wand L* = 0;

STEP 1. Solve LBMIN(Y) for 4 and let L* = w(¥);
STEP 2. If (U* — L* < ¢) then go to (7).

STEP 3. Evaluate UB(¥, ) and let U' = w(¥, ¥);
STEP 4. If (U' < U*) then let y* = y and let U* = U’;
STEP 5. If (U* — L* < ¢) then go to (7);

STEP 6. Refine the partition ¥ and go to (1);

STEP 7. Print (“Approximate solution is”, ¥*);

STEP 8. Print (“Lower bound =", L*, “Upper bound
=" U%*) and halt;

Figure 2. Sequential approximation algorithm for solving
SNIP (1B).

where: e; = 0 for all (i, j) # (t, s) and e,; = 1. This model
can be derived by setting up LBMIN(Y), in the form anal-
ogous to S-MIN-MAX-2(1B) (Model 4), and taking the
duals of the inner maximizations.

However, as the number of scenarios becomes large,
solving E-MIN-2(IB)(¥) directly can become difficult.
Rather than doing this, we solve, or approximately solve,
E-MIN-2(1B)(¥) by Benders decomposition (the decom-
position can also be derived directly from the min-max
formulation of LBMIN(Y)). The decomposition algorithm
is identical to the continuous, L-shaped algorithm of Van
Slyke and Wets (1969), except that the master problem is
subject to both the linear and binary constraints of I". (See
Laporte and Louveaux 1993 and Wollmer 1980 for more
complete discussions on extensions of the L-shaped
method to stochastic integer programming.)

One advantage of using the decomposition approach is
that cuts from any iteration are valid, if not “tight,” in
subsequent iterations under finer partitions. Thus, the final
master problem in iteration n of the algorithm may be
used as the starting point for the master problem in itera-
tion n + 1, and as n increases, the decompositions tend to
converge more quickly than if one were “starting from
scratch” in each iteration. Another advantage of the de-
composition is that we need not solve E-MIN-2(IB)(Y)
exactly. At each iteration of the Benders decomposition,
we obtain a lower bound L” and an upper bound U” such
that L” < L* = w(¥) < U". Thus, we can stop the decom-
position when L" is “good enough” and use L" as a global
lower bound in place of L*.

In Step 3, we evaluate W(¥, v) (Model 6) at the optimal
solution 4 of the lower-bounding problem and, if appropri-
ate, update the best upper bound observed to date. How-
ever, it might be advantageous to improve the upper
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bound by minimizing w(¥, ) subject to vy € I'. We do not
pursue this idea, but we note that it is possible to do so
since this min-max problem can be converted to a minimi-
zation problem using the transformations exploited by
Wood (1993) for the deterministic case.

We end this overview by noting that the absolute termi-
nation criterion for the algorithm is tested both in Steps 2
and 5. Of course, other criteria can be used and, in prac-
tice, we terminate on relative error; i.e.,, when (upper
bound — lower bound)/(lower bound) is sufficiently small.
The remainder of this section focuses on the approach we
use to refine the partition in Step 6.

3.2. Partitioning

We refine the partition & by selecting a cell to subdivide
and then subdividing that cell by conditioning on whether
or not a potential interdiction is successful. Obviously, the
algorithm slows down as the cardinality of the partition
increases, so we must reduce the optimality gap to an
acceptable level before K = |¥| becomes too large. Two
heuristics are described here that tend to reduce the gap
quickly by (a) selecting a “good” cell to subdivide and (b)
subdividing the cell effectively. See Birge and Wets (1986),
Frauendorfer (1992, § 19), and Kall et al. (1988) for re-
lated discussions.

3.2.1. Selecting a cell to subdivide. The gap between the
upper and lower bounds may be expressed:

K
WS, 3) —w() =2 ph@F, 1M — 9’7, 19],

k=1
and hence, the difference due to each cell is:
DX*®) = p*h(¥, 1% — g(3, 1M]. 6)
We will select a cell k' to subdivide such that k' &
argmax,{D*(3)}, although other selection criteria could be
used. It is important to note that (6) depends on %, and
D¥( ) should be re-evaluated for all cells when 4 has
changed from the previous iteration. In subsection 5.2 we
describe a computational enhancement that significantly
increases solution speed by performing a sequence of cell
refinements prior to re-solving the lower-bounding prob-

lem to obtain a new 4. Next, we need to decide how to
partition cell k.

3.2.2. Subdividing on arcs. In rectangular partitioning
schemes, cells are recursively subdivided by planes orthog-
onal to the axis of one stochastic parameter. In our case,
this corresponds to selecting some cell $* together with an
arc (i’, j) such that'E,jJs not fixed in $%, and conditioning
on whether 1;;, = 0 or I;;;; = 1. A generic cell $* of & has
the form Il jyea {15/l = aj, b} where the possible values
for the pair (af;, bfj) indicate whether I;; on $ is: fixed at 0,
(0, 0), fixed at 1, (1, 1), or not fixed, (0, 1). Subdivision of a
cell $% with respect to arc (i’, j'), satisfying (af;., by;) =
(0, 1), corresponds to replacing $¥ with two disjoint cells
$* and $¥ satisfying:
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(aif, bi) = (af, by)
= (aj, bjf V@i, ) eANI )L

and

(afj, bf) =(0,0) and (afj, b¥j) = (1, 1).

Conditional probabilities and expectations are easy to cal-
culate:

pX = Prob(T € $%)

:( [ pij)'( [1 (1_pij)>v
{(.j)EA [al=bf=1} {(i.)EA’[ak=bl=0}

o if(ak bk = (0, 0),
E(ATe g =1 1 if(ak bl = (1, 1),
Piiif (ak bY) = (0, 1).

1k
Iij

Our method for selecting an arc for conditioning is de-
scribed next, assuming that cell $¥ has already been se-
lected for subdivision. For each arc (i, ) satisfying (af;, bi
= (0, 1), we form $% and 9% as described above and
calculate the deviation in bounds D¥'(§) + D¥'(§) (which
is guaranteed to be no larger than D*(%)). We select an arc
(i’, j") to subdivide that minimizes D'(3) + D¥'(¥). We
must solve four recourse problems for each candidate arc
on which we consider conditioning. Note that such a rule
would be considerably more expensive to implement when
using the Edmundson-Madansky bound.

In the SNIP(IB) model, we can reduce the set of arcs to
which we apply the above rule by never subdividing on an
arc (i, j) that currently has ; = 0. Clearly, the algorithm
still converges under this rule because a stochastic param-
eter T;; cannot contribute to the error unless %; = 1.

Selecting an arc that minimizes D¥'(§) + D"'(3) puts
equal value on decreasing the upper bound or increasing
the lower bound. This rule can be modified by putting a
greater weight on the improvement in the lower bound,
with the idea that it is more important to get a high quality
lower-bounding approximation problem since it deter-
mines the incumbent solution.

4. EXTENSIONS

This section first considers an extension of SNIP(IB), de-
noted “SNIP(ICB),” where arc capacities as well as inter-
diction successes are binary random variables. As a special
case, we immediately obtain SNIP(CB), which only has
uncertain binary capacities, by setting the probabilities of
successful interdictions in SNIP(ICB) to 1. We then extend
SNIP(CB) to SNIP(CD) where capacity can take on a fi-
nite number of realizations. Finally, we consider SNIP(IM)
where multiple interdiction attempts on a single arc are
allowed. Such a model would be useful when the probabil-
ity of a successful interdiction is relatively low and/or when
interdiction success on a particular arc or group of arcs is
critical to reducing flow.

4.1. Uncertain Binary Interdictions and Arc
Capacities, SNIP(ICB)

Consider the model SNIP(ICB) where (a) at most one
interdiction on an arc may be attempted, (b) interdiction
successes are binary random variables as in SNIP(1B), (c)
the capacity of each arc (i, j) is a binary random variable
that can take on the values 0 or u;;, and (d) all random
variables are independent. (Modifications for nonzero
minimum capacities are easily handled.) Define the indica-
tor random variable '3'” to be 1 if arc (i, j) exists and has
capacity uy;, and to be 0 if it does not exist (or it exists but
has no capacity). Also, let ¢; = Prob(J; = 1); definitions
related to uncertain interdictions remain as before. The
analogs of S-MIN-MAX-1(IB) (Model 3) and S-MIN-
MAX-2(1B) (Model 4) are:

S-MIN-MAX-1(ICB)  w* = min Eh(y, T, J)
Y

(Model 8)
where:
T3 = maxxe,
st 0=x;<uy(y —TyJjvy) V(i DEA,
and:
S-MIN-MAX-2(ICB) ~ w* = min Eg(y, T, J)
Y
(Model 9)
where:
gy, T,J) =maxxs — > (1 _’j'ij +~’ij‘3’ij7ij)xij-
xeX

(i,)eA’

In the “natural formulation” S-MIN-MAX-1(ICB), an
arc (i, j) has its nominal capacity dropped to zero if it does
not exist, i.e.,FinAJ'ij = 0; or if the arc is successfully inter-
dicted, i.e., if Iy; = 1. In the equivalent model S-MIN-
MAX-2(ICB), we subtract any flow x; from the total flow
if either of the above conditions hold. The correctness of
the alternative formulation follows from Theorem 2. The
development of bounds and an algorithm for SNIP(ICB)
parallels the development for SNIP(IB) and is omitted.
We remark only that the models may be transformed to a
more standard form by viewing the random parameters as

independent vectors of the form ( T.I.ijT..) with realizations
ijr iy

(i) (é) (8) and respective probabilities ¢;p;, (1 —

p;), and 1 — ¢;;. Finally, note that SNIP(CB) (interdictions

are certain but arc capacities are binary random variables)

is the special case of SNIP(ICB) with Prob(l; = 1) = 1 for

all (i, j) € A",

4.2. Discrete Random Arc Capacities, SNIP(CD)

We now generalize our models to handle random arc ca-
pacities that have a finite number of realizations. For no-
tational simplicity and without loss of generality, we
assume interdiction success is certain. This model is de-
noted “SNIP(CD).” Let U be the nonnegative random



vector of arc capacities. Then the following model leads to
upper bounds for SNIP(CD):

S-MIN-MAX-1(CG)  w* = min Eh(y, T
Y

where:
h(y, T) = max X,
(Y ) TAX Xis

st 0=x; =T;(1— vy V(i jeEA".
For fixed vy, S-MIN-MAX-1(CG) is a stochastic maximum
flow problem, and when T is replaced by U, we obtain the
standard Jensen upper bound for this problem. The bound
holds for more general nonnegative distributions in which
the relevant expectations are finite. See Aneja and Nair
(1980), Carey and Hendrickson (1984), and Wallace
(1987a) for related methods for bounding the expected
maximum flow in stochastic networks, i.e., bounding
Eh(0, T).

In order to develop the lower bound, assume that each
arc (i, j) can take on L different capacity values u;; such

that Uij| = Uin_l fOf I = 1, ey L — 1. Let the “Ith
capacity increment” for arc (i, j) be ujj, i.e., uf = uy —
Uij|_1 fOF I = 2, PN L, and Uﬁ| = Uij|. Let ‘]ij| be the in‘

dicator random variable that is 1 if T; = uy;, and is 0
otherwise. For notational simplicity, assume that the re-
turn arc also has L capacity values, but that u, is effec-
tively infinite and J, = 1. Then S-MIN-MAX-1(CG)
specializes to:

$-MIN-MAX-1(CD) ~ w* = min Eh’(y,J)
Y

where:

L
h'(y, J) = max X X
X =1

L L
st > Dxji— X 2 Xu=0 VieN,
(i) EFs) i=1 (j,hERS() I=1

O<xju<ufdyl—vy VG, DEA, 1=1,...,L.

This model replaces each original arc with L parallel
arcs in order to use the indicator random variables
'Jvij, rather than the original random variables T;. For
each arc (i, j), the random variables J; for I = 1,..., L
are dependent, but this does not compromise the
validity of the bound since Jensen’s inequality does
not require independence of the relevant random
variables.

Given that we have represented S-MIN-MAX-1(CD) as
a variant of the binary model S-MIN-MAX-1(ICB) (Model
8) withpﬂj = 1, we can now write the corresponding variant
of S-MIN-MAX-2(ICB) (Model 9):

S-MIN-MAX-2(CD) w* = min Eg(y, J)
Y

where:

CorwmicAaN, MoRrTON, AND Woop /191

L L
gly, ) =max 2 xg — > > (L= Ty + Jivip) X
X =1 (i,)eA’ 1=1

L L
s.t. E E Xiji — E 2 Xiji = 0 VieN,
(i, )EFs() 1-1 (j,heRs(i) 1=1
ngi“guiﬁ V(i,j)EA/,lzl,...,L.

As in SNIP(IB) and SNIP(ICB), conditional expecta-
tions of g(y, J) and h(y, T) with respect to partitions of
the associated state spaces lead to lower and upper
bounds, respectively. Partitioning schemes can be extended
to discrete random arc capacities by conditioning on
whether the capacity value is at or below a certain level or
above the specified level.

4.3. Multiple Uncertain Interdiction Attempts,
SNIP(IM)

When interdiction success probabilities are low, or when
certain arcs are critical to maximizing flow, it may be de-
sirable to make more than one attempt at interdicting cer-
tain arcs. We model this situation with “SNIP(IM).” This
model assumes that the successes of interdiction attempts
are independent and that no intelligence about the success
or failure of an interdiction attempt can be gathered until
all attempts are made. (A multistage stochastic program-
ming model would be needed if the state of the network
could be observed after each interdiction attempt, or
group of attempts, and these observations could influence
subsequent attempts.) For notational and expository sim-
plicity, we describe the modeling extensions for the special
case in which an interdiction on any arc (i, j) may be
attempted at most twice. Letpﬂj1 and 'Ejz be the indicator
random variables for the success of the first and second
interdiction attempts, respectively, with associated success
probabilities p;;; and pjj,.

There are several ways to formulate models for
SNIP(IM), but we have chosen the following for its ease of
implementation. Let vy;;; be the first-stage decision variable
that is 1 if at least one interdiction attempt is made on arc
(i, j) (0 otherwise), and let ;, be 1 if two attempts are
made (0 otherwise). Thus, y;; = 1 and vy, = 0 when
exactly one interdiction attempt is made. In our formula-
tion, we must add constraints requiring that the “first at-
tempt” be made before the second. Therefore, we define:

= {’Yh’ijl, vip €10, 1},

2
Yie = Yig =0, 2 2 FipYig < R}, (7
(i)eA k=1

where ry, units of resource are required for the kth inter-
diction attempt on arc (i, j). The equivalent formulations

for this problem are:
S-MIN-MAX-1(IM) ~ w* = min Eh(y, T)
Y

where:
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Table |
Test Problem Characteristics

First Stage Subproblem Number of Stochastic

Problem (rows X cols.) (nodes X arcs) Parameters Number of Scenarios
SNIP(IB).7 X 5 1X22 37X 61 22 42 x 10°
SNIP(ICB).7 X 5 1% 22 37 x 61 44 3.1 X 10'°
SNIP(IB).4 X 9 1X24 38X 70 24 1.7 X 107
SNIP(ICB).4 X 9 1X24 38X 70 48 2.8 x 101*
SNIP(1B).10 X 10 1X 84 102 x 183 84 1.9 X 10%®
SNIP(ICB).10 X 10 1X84 102 X 183 168 1.2 x 10%°

h(y, D = max Xis it does not exploit many special structures that could im-

St 0<x: < U prove its efficiency. Several examples are (a) the network

e v flow subproblems are solved by a general LP optimizer

(= v — @ = Lplipyip) V3G, ) EA, rather than a more efficient network optimizer; (b) the

and:

S-MIN-MAX-2(IM)  w* = min Eg(y, 1
Y
where:

gy, ) = fxng(x Xts — > (rijl'Yijl + (1 —Tijl)Tijzvijz)Xij-

(i,hea’

Devising a recursive partitioning scheme to exploit these
formulations is straightforward if we condition first on
whether or not Ty, = 1 and only when T;; = 0, condition
on whether or not I, = 1. As in subsection 4.1, implemen-
tation can be facilitated by transforming the random pa-
rameters into more standard, independent vectors of the
form i

a7}7, ) with realizations (8) (f) (3) and respec-
tive probabilities (1 — p;)(1 — pij2), (1 — Pijz) Pij2» and
Pij1-

5. COMPUTATIONAL RESULTS

The algorithm described in Section 3 has been imple-
mented and tested on the set of stochastic network inter-
diction problems described here. We begin by giving an
overview of the implementation and the test problems.
Then, two examples are used to illustrate the value of the
stochastic solution for the binary interdiction problem
SNIP(IB). Computational results are then summarized for
some modest-sized model instances that also include binary
random arc capacities (SNIP(ICB)). We also illustrate how
computational difficulty varies with certain model parameters
including the size of the interdiction resource budget and the
values of the arc existence probabilities. Finally, we de-
scribe computational experience on a larger network model.

The algorithm is coded in FORTRAN and uses IBM’s
Optimization Subroutine Library (OSL) (1991) to solve
the integer master problems and linear subproblems. The
code is adapted from an implementation (Morton 1995)
designed to handle general LP subproblems in which the
data are read in SMPS format (Birge et al. 1987) and
first-stage decisions are passed to the right-hand side of
the second-stage constraints. Because the code was not
originally designed to solve network interdiction problems,

dual of the lower-bounding subproblem (see S-MIN-
MAX-2(IB), Model 4) is solved, rather than the primal, in
order to accommodate decisions being passed to the right-
hand side instead of the objective; and (c) bounds on vari-
ables in the upper-bounding subproblems are implemented
as structural constraints rather than as simple upper bounds.
So, this code is prototypic, but it still effectively illustrates
the value of the proposed methodology. All CPU times
reported here are from an IBM RS/6000 Model 590 with
512 megabytes of random access memory.

The test problems are summarized in Table |I.
SNIP(P).a X b denotes a SNIP problem of type P on a
network with an a X b rectangular grid of nodes, i.e., with
a horizontal layers of b nodes each. Horizontal arcs are
oriented from “west to east” but vertical arcs are oriented
randomly. There are no arcs in parallel or anti-parallel. All
westernmost nodes are connected to a supersource with arti-
ficial, noninterdictable, infinite-capacity arcs and all eastern-
most nodes are connected to a supersink with artificial,
noninterdictable, infinite-capacity arcs. (Because of this struc-
ture, the easternmost vertical arcs are superfluous and are
not considered as interdictable.) The node and arc data in
Table I counts the supersource, supersink and artificial arcs.
Figures 3 and 4 show SNIP(IB).4 X 9 and SNIP(IB).7 X 5.

For each problem, only a subset of the network’s arcs
involve uncertainty. For example, the SNIP(IB).7 X 5 net-
work contains 37 nodes and 61 arcs (including the artificial
nodes and arcs), but only 22 of the original arcs are eligible
for interdiction. In the SNIP(ICB).7 X 5 example, those
same 22 arcs have both uncertain interdiction success and
uncertain capacity while other arcs are noninterdictable
and have deterministic capacities. As described in subsec-
tion 4.1, the SNIP(ICB) models implement stochastic arc
existence combined with stochastic interdiction success as
sets of independent random 2-vectors with three realiza-
tions each. All p;; values (interdiction success probabilities)
are identical for each interdictable arc in any test problem,
as are the ¢; values (arc existence probabilities) in the
SNIP(ICB) examples. For simplicity, r; = 1 for all prob-
lems; i.e., one unit of resource is required to interdict each
interdictable arc.
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Figure 3. Sequential Approximation Algorithm for Solving SNIP(IB)

The number of scenarios and/or stochastic parameters is
not always a good measure of the difficulty of a stochastic
program. The values in Table | should be read with the
following in mind: given a fixed first-stage decision, evalu-
ating the recourse function for SNIP(ICB) requires deal-
ing with one or two stochastic parameters for each
interdictable arc, in particular, the arc-existence parameter
and possibly the interdiction parameter if the first-stage
decision interdicts the arc. However, for SNIP(IB), this
evaluation only involves a subset of the stochastic interdic-
tion parameters due the integral first-stage decision vy. So,
the number of stochastic interdiction parameters that is
“active” at any one time corresponds to the budget avail-
able, rather than the total number of stochastic parame-
ters. On the other hand, SNIP(IB) with 100R arcs, all
interdictable, and an interdiction budget of R, is certainly
harder to solve than a simple stochastic maximum flow

Figure 4. SNIP(IB).7 X 5 example. Node s is the super-
source and node t the supersink. Arcs are la-
beled with their capacities and only arcs with
bars over their capacities are interdictable.

problem with 99R deterministic arcs and R stochastic arcs,
because the interdiction problem must decide where to
“place the uncertainty.”

In contrast to interdiction uncertainties, random arc ex-
istence parameters in SNIP(ICB) do not depend on vy and
hence are always active.

5.1. Value of the Stochastic Solution

Table | indicates that the deterministic equivalents of our
stochastic programming problems can be very large. This is
typical of stochastic programs, and so, such problems are
often approximately solved by solving expected-value mod-
els in which random parameters are replaced with their
means. That this can lead to poor decisions has been dem-
onstrated in the introduction. However, more can be
learned about the pitfalls of the expected-value approach
by investigating the differences in the expected-value solu-
tion and the true solution for more realistically sized exam-
ples. We perform this investigation here with two examples
of SNIP(IB). All solution values we report in this section
are computed with a relative error of no more than 0.01,
where relative error is defined as (upper bound-lower
bound)/(lower bound).

To perform this analysis, we first solve the expected-
value model of the “natural formulation” S-MIN-MAX-
1(1B) (Model 3), and denote the optimal solution yg,,. The
performance of yg, is then evaluated in the stochastic
environment; i.e., we calculate Eh(yg,, 1). This objective
value can be compared with the optimal objective Eh(y*,
T); the difference between these values is referred to as
“the value of the stochastic solution” (Birge 1982).

We begin with SNIP(1B).4 X 9 with an interdiction bud-
get of R = 6 and p;; = 0.75 for all interdictable arcs. (See
Figure 3.) In the expected-value problem, the minimum
capacity cut consists of four interdicted arcs, arcs (17, 21),
(22, 26), (31, 35) and (32, 36). When the budget resource
constraint is implemented as an inequality, only these four
arcs are interdicted in our solution, even though there is
an interdiction budget of six. For this model we obtain,
Eh(ye,, 1) = 25.0 while Eh(y*, T) = 10.9. That is, the
stochastic solution improves the stochastic objective by
more than a factor of two. When the budget constraint is
implemented as an equality, two additional arcs (arcs (12,
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Table 11

Relative Errors vs. CPU Time for SNIP(IB).7 X 5 with p;; = 0.75 and R = 6,
and for SNIP(ICB).7 X 5 with p; = 0.75, ¢;; = 0.9, and R = 6

SNIP(IB).7 X 5 SNIP(ICB).7 X 5
Relative Error Relative Error
Number of Cells (Local) (Global) Cumulative CPU sec. Number of Cells (Local) (Global) Cumulative CPU sec.

1 0.42 11 1 0.95 15
2 0.17 0.17 2.5 12 0.43 0.64 6.3
4 0.058 0.11 7.3 20 0.30 0.34 213
7 0.046 0.058 11.8 55 0.17 0.22 46.0
10 0.022 0.037 17.8 126 0.11 0.11 104.9
12 0.017 0.017 20.3 327 0.055 0.068 228.9
14 0.0052 0.0052 29.2 742 0.034 0.038 433.1
1648 0.019 0.019 848.0

3735 0.0099 0.0099 1532.4

16) and (31, 32)) are interdicted in the expected-value
problem, but poor choices are made by the model and we
still obtain Eh(yg,, 1) = 25.0. The stochastic solution se-
lects the same four arcs as the expected-value model, but
an intelligent choice of the additional two arcs (arcs (5, 9)
and (10, 14)) significantly improves the quality of the solu-
tion. So, in this example, one of the expected-value solu-
tions is an optimal stochastic solution, but the expected-
value model has no way of differentiating among its
alternatives and chooses a wrong one.

The second example, shown in Figure 4, is
SNIP(IB).7 X 5. Once again, we use an interdiction budget
of R = 6 and p;; = 0.75 for all interdictable arcs. In this
model, the budget and problem structure allow the
expected-value model to interdict only a subset of the arcs
on a minimum capacity cut. Unlike the previous example,
the expected value and stochastic solutions share only two
arcs in common. (The expected-value solution interdicts
arcs (12, 19), (13, 20), (17, 24), (18, 25), (22, 29), and (23,
30). The stochastic solution interdicts arcs (6, 13), (7, 14),
(17, 16), (17, 24), (18, 25), and (23, 22)). In fact, the total
nominal capacity of interdicted arcs in the expected-value
solution is 290 while the corresponding capacity for the
stochastic solution is 230. The stochastic program sacrifices
60 units of nominal capacity in order to improve the solu-
tion. For this model, Eh(ygy, 1) = 119.6 while Eh(y*, 1) =
80.4.

5.2. Small Test Problems and Computational
Enhancements

As noted in subsection 3.2.1, every time the first-stage de-
cision changes, the Jensen bounds on each cell of the par-
tition must be reevaluated. However, solution speed can
be increased significantly by performing a number of cell
refinements prior to re-solving the lower-bounding prob-
lem. This idea is implemented as follows: After having
performed Steps 1 and 3 of the algorithm (see Figure 2), a
relative error is calculated from the global upper and
lower bounds associated with the current solution . We
then refine the partition with respect to the fixed 4 until
the local relative error is cut in half. Note that during this

procedure, the recourse function need only be evaluated
on new cells. We then perform the next iteration of the
algorithm. The upper bound produced for fixed 4 is glo-
bally valid but a global lower bound is obtained only by
reoptimizing the lower-bounding problem.

Tables Il and 111 display local and global relative errors
as the algorithm converges for four test problems. They
also reveal a number of interesting features regarding the
problems, bounds, and algorithm. The initial Jensen
bounds are considerably worse for the “longer” 4 X 9
network than for the 7 X 5 network. This is consistent with
the presence of redundant penalty terms in the lower-
bounding objective. For instance, consider the initial
lower-bounding problem for SNIP(IB). If flow moves
along a path with two interdicted arcs (i, j) and (i’, j) in
this model, a penalty of p; + p;; is subtracted in the
objective of the recourse function. However, this flow will
be stopped if either interdiction is successful and the pen-
alty should only be p;; + pi;; — p;pij- One may be able to
reduce this effect by using a path (or partial-path) formu-
lation of the model (Aneja and Nair 1980).

The results indicate that the higher dimensionality intro-
duced by including random arc capacities makes computa-
tion significantly more expensive. The tables display
relative errors associated with the current solution ¥, in
order to convey some of the volatility of the quality of the
decisions generated by the sequence of lower-bounding
problems. In particular, see Table 11l for the 4 X 9 prob-
lems. The global relative error is typically larger than the
local error for the same partition (because the global lower
bound is no larger than the local lower bound). However,
within the local/global refinement procedure, the lower-
bounding problem occasionally generates a new first-stage
decision that significantly improves the upper bound and
the reverse occurs. For example, see the sixth row of the
results for SNIP(ICB).4 X 9.

To illustrate the value of the local/global refinement
procedure over naive refinement, we performed experi-
ments in which the lower-bounding problem is reoptimized
every time a cell is subdivided. For this strategy,
SNIP(IB).7 X 5 requires 12 cells and 53.5 seconds, while
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Table 111
Relative Errors vs. CPU Time for SNIP(IB).4 X 9 with p;; = 0.75, R = 6,
and SNIP(ICB).4 X 9 with p;; = 0.75, ¢ = 0.9, andR = 6

SNIP(IB).4 X 9 SNIP(ICB).4 X 9
Relative Error Relative Error
Number of Cells (Local) (Global) Cumulative CPU Sec. Number of Cells (Local) (Global) Cumulative CPU Sec.

1 4.0 25 1 9.0 1.0
2 11 1.2 9.7 3 4.0 4.0 2.2
3 0.42 0.47 15.4 4 15 1.7 3.8
4 0.16 0.42 17.7 9 0.72 1.0 8.2
6 0.14 0.14 317 16 0.50 0.87 14.8
7 0.064 0.16 329 31 0.42 0.39 25.1
8 0.064 0.16 34.3 49 0.19 0.33 42.6
10 0.022 0.10 43.3 75 0.16 0.47 65.8
12 0.031 0.031 48.3 98 0.23 0.19 91.3
13 0.015 0.065 52.2 140 0.10 0.16 129.1
14 0.016 0.015 56.3 207 0.078 0.088 189.1
15 0.0036 0.015 59.8 269 0.044 0.049 239.9
16 0.0063 0.0063 66.1 351 0.025 0.037 308.7
439 0.018 0.020 3735

535 0.0099 0.011 465.0

543 0.0099 0.0099 481.6

SNIP(IB).4 X 9 requires 16 cells and 84.0 seconds to
achieve a global relative error of 1%. SNIP(ICB).7 X 5
requires 15855.2 seconds to form 1116 cells with a relative
error of 2.1% (at which point the algorithm was prema-
turely terminated), and SNIP(ICB).4 X 9 achieves a rela-
tive error of 1% with 358 cells in 4134.5 seconds.
Contrasting these values with those in Tables 11 and 111, we
see that the local/global refinement procedure, which pro-
vides a formal mechanism for deciding how many cells to
subdivide prior to resolving the lower bounding problem,
can lead to significant computational savings.

Table IV reveals how problem difficulty varies with the
size of the interdiction budget. When R = 0 or R = 24,
SNIP(ICB).4 X 9 reduces to a stochastic maximum flow
problem with unreliable arcs (e.g., Carey and Hendrickson
(1984), Evans (1976)) because the optimal first-stage deci-
sion is trivial. However, in this case, computing tight
bounds on the expected maximum flow still requires a
fairly fine partition with corresponding computational
effort.

For general R, the master problem is a difficult integer
knapsack problem with a piecewise linear objective func-
tion formed by optimality cuts. (Of course, for our test
problems, the knapsack problem by itself is quite simple
since r; = 1 for all interdictable arcs.) The results show
that for moderate values of R the problem is most difficult.
A finer partition is required to close the gap between
bounds when these values are moderate, so there are more
master problems and subproblems to solve. Also, the more
partitions there are, the more master-problem cuts there
tend to be and the integer master problems become harder
and harder to solve. Our implementation solves each mas-
ter problem from scratch and increased efficiency could
probably be achieved by using information from previous
iterations for initial solution and bounding purposes.

Table V shows that the bounds are the weakest, and
hence require finer partitions, when the uncertainty re-
garding arc existence is greatest, i.e., when ¢;; ~ 0.5. Even
small deviations from 0.5, particularly to larger values,
make the problem significantly easier. The asymmetry in

Table IV
SNIP(ICB).4 X 9 with ¢;; = 0.9 and p;; = 0.75 for Various Interdiction Resource Budgets

Master Probs. Solved

Subproblems Solved

Budget Num. of (Number for (Number for Total
Value R Cells (Number) (CPU Sec.) Lower Bnd.) Upper Bnd.) (CPU Sec.) CPU Sec.

0 56 0 0.0 2290 2145 18.6 22.6

3 93 37 35 4681 4068 379 458

6 543 151 102.8 47205 26100 417.3 581.6

9 725 195 226.4 80440 37030 731.1 995.4

12 768 106 24.4 74335 43089 492.3 595.9

15 474 47 0.5 36097 28823 237.6 295.2

18 362 25 0.11 25447 24240 174.3 271.6

21 422 27 0.13 33176 31345 224.4 281.6

24 287 0 0.0 23911 23033 161.6 202.4

Note: all problems are solved to within a relative error of 0.01.
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Table V
SNIP(ICB).7 X 5 with R = 0 for Various Arc
Existence Probabilities

o Number of Cells CPU Sec. Objective Bounds
0.9 53 20.0 [181.5, 183.3]
0.7 1063 342.8 [138.1, 139.5]
0.55 2217 697.3 [101.4, 102.4]
0.5 6496 1954.9 [89.10, 89.99]
0.45 5033 1527.7 [77.02, 77.78]
0.3 1112 359.0 [43.59, 44.02]
0.1 185 65.1 [10.32, 10.42]

Note: all problems are solved to within a relative error of 0.01.

Table V is due, in part, to the fact that a 1% relative error
is more difficult to achieve when the objective function
values are smaller, i.e., when ¢;; is smaller. However, an
absolute error termination criterion would reverse the
asymmetry.

5.3. Larger Test Problems

Table | indicates that SNIP(IB).10 X 10 and SNI-
P(ICB).10 X 10 are significantly larger than the problems
analyzed above, particularly with respect to the number of
the random parameters. Certain special cases of the 10 X
10 models are tractable with respect to the proposed solu-
tion technique. Table VI shows the effort required to
achieve various relative errors for a “highly” reliable sto-
chastic maximum flow problem (R = 0) with arc existence
probabilities of 0.95. The total number of upper- and
lower-bounding subproblems solved to achieve a relative
error of 1% is just over 1 X 10° Table VII illustrates that
SNIP(IB).10 X 10 is tractable when the interdiction bud-
get is relatively small. As expected, the computational ef-
fort to solve the integer master problem grows
exponentially with R and quickly becomes unmanageable.

6. CONCLUSIONS

This paper has studied stochastic variants of a network
interdiction problem where an interdictor attempts to de-
stroy arcs in a capacitated network through which an ad-
versary will subsequently maximize flow. The problem is
formulated as a mixed-integer stochastic program with a
“min-max” objective, although it is possible to convert this
to a more standard stochastic integer program with a min-
imizing objective.

The stochastic variants include cases where one or more
uncertain interdiction attempts may be made, cases where

Table VI
Relative Error vs. CPU Time for SNIP(ICB).10 X 10
with ¢;; = 0.95 and R = 0.

Cumulative CPU Sec.

Number of Cells Relative Error

115 0.048 329.5
625 0.024 1623.5
2993 0.012 7598.2
4201 0.0099 10684.4

the arc capacities are random variables, and certain com-
binations and extensions of these cases. The objective of
the problem is to plan interdictions so that the expected
maximum flow, after interdiction attempts are made, is
minimized. The models for these problems are two-stage
stochastic programs with recourse.

We develop a sequential approximation algorithm for
solving these problems that recursively refines a partition
of the state-space of the random variables to improve up-
per and lower bounds on the objective. Jensen’s inequality
applied in the usual fashion to the “natural formulation”
of the models leads to upper bounds. A key result allows
us to reformulate each model so that Jensen’s inequality
can also be used to compute lower bounds. An important
computational advantage of our bounding models is that
their size increases only with the number of elements in
the state-space partition, not with the number of stochastic
parameters.

The natural formulation of the model minimizes a con-
cave function with respect to the convex hull of the integer
first-stage feasible region. An equivalent reformulation
yields a convex recourse function over the same space and
thus allows direct application of an integer L-shaped
method. This reformulation makes the problem tractable.
Two examples showed that the value of the stochastic so-
lution can be quite large for stochastic network interdic-
tion problems (greater than 50% for one example).
Computational results for a number of test problems dem-
onstrated the merit of the proposed solution technique.

It is clear that the key reformulation technique of this
paper leads to a new method for evaluating the expected
maximum flow in a stochastic network. The reader may
also see that the technique can be applied to other sto-
chastic network problems dealing with reliability, shortest
path length, project completion date in a PERT problem,
etc. We are already programming algorithms to solve these
problems and exploiting the reformulation technique in a
number of other stochastic network models. We are also
developing analogous bounds for more general stochastic
programs.
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Table VII
SNIP(1B).10 X 10 with p; = 0.75 for Various Interdiction Resource Budget Values

Master Problems

Subproblems

Budget Value R Number of Cells (Number) (CPU Sec.) (Total Num.) (CPU Sec.) Total CPU Sec.
5 15 26 34.2 325 2.9 38.5
6 11 43 295.8 327 35 300.7
7 14 64 1668.5 401 4.2 1674.2
8 63 145 23927.7 3114 32.6 23970.5

Note: all problems are solved to within a relative error of 0.01.
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