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Abstract The U.S. Naval Supply Systems Command (NAVSUP), Weapon Systems
Support, manages an inventory of approximately 400,000 maritime and aviation
line items valued at over $20 billion. This work describes NAVSUP’s Wholesale
Inventory Optimization Model (WIOM), which helps NAVSUP’s planners establish
inventory levels. Under certain assumptions, WIOM determines optimal reorder
points (ROPs) to minimize expected shortfalls from fill rate targets and deviations
from legacy solutions. Each item’s demand is modeled probabilistically, and
negative expected deviations from target fill rates are penalized with nonlinear
terms (conveniently approximated by piecewise linear functions). WIOM’s solution
obeys a budget constraint. The optimal ROPs and related expected safety stock
levels are used by NAVSUP’s Enterprise Resource Planning system to trigger
requisitions for procurement and/or repair of items based on forecasted demand.
WIOM solves cases with up to 20,000 simultaneous items using both a direct
method and Lagrangian relaxation. In particular, this proves to be more efficient
in certain cases that would otherwise take many hours to produce a solution.

1 Introduction

Wholesale inventory management is broadly concerned with finding strategies to
balance customer demand satisfaction with inventory cost. Many different inventory
modeling strategies have been proposed; we focus on a framework known as the
order-point, order-quantity (s, Q) system ([18], pp. 237–238). In this system, stock
replenishment decisions are based on two parameters: the reorder point, s, and the
order quantity, Q. As an item’s stock level decreases, a reorder is triggered once
the item’s inventory position is less than or equal to the reorder point s. Inventory
position is defined as the quantity on hand plus the quantity on order minus the
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quantity backordered (i.e., owed to customers). When a reorder is triggered, an order
of quantity Q is placed. The time it takes for this order to arrive is known as the lead
time.

A key feature of an (s, Q) system is that each reorder is triggered by a low
inventory position, not low inventory on hand. This prevents the system from placing
extra orders during the lead time, when there is already an order due in that will
sufficiently replenish the stock level. Silver et al. provide an apt analogy ([18],
p. 238):

A good example of ordering on the basis of inventory position is the way a person takes
aspirin to relieve a headache. After taking two aspirin, it is not necessary to take two more
every five minutes until the headache goes away. Rather, it is understood that the relief is
“on order”— aspirin operates with a delay.

We describe an (s, Q) inventory optimization model known as the Wholesale
Inventory Optimization Model (WIOM). This model was developed at the request
of the Naval Supply Systems Command (NAVSUP) to provide decision support
for approximately 400,000 line items, sometimes referred to as National Item
Identification Numbers. The order quantities of these items are predetermined
by NAVSUP; thus, WIOM’s primary goal is to optimally select reorder points
for these items in such a way as to maximize customer demand satisfaction
while adhering to a monetary budget. Our figure of merit for customer demand
satisfaction is (expected) fill rate, which is defined as the (expected) fraction of
customer demand that is satisfied immediately with on-hand inventory, i.e., not
backordered. A secondary goal allows the user to optionally discourage deviations
from an incumbent solution; this is known as encouraging persistence or reducing
“churn” [3]. WIOM attains reorder points that are globally optimal for all items
simultaneously considered, i.e., without subordinating certain item decisions to
decisions previously made for other items. WIOM is developed as a mixed-integer
problem (MIP) that includes the following features, as required by NAVSUP:

• Intrinsic demand uncertainty modeling via probability distribution fitting (para-
metric) or empirical probability distributions;

• Closed-form approximation of expected fill rate for each item;
• Minimization of weighted, nonlinear penalties due to expected deviation from

target fill rates. (Nonlinearities are approximated via piecewise linear functions.)
• Minimization of weighted deviations with respect to legacy levels of safety stock

(to be defined later);
• Maximum budget for the expected cost of all items’ safety stocks;
• Bounds on decision variables for reorder points.

Section 2 provides a brief overview of the relevant literature. Section 3 describes
mathematical constructs that will be used in our formulation. Section 4 describes the
WIOM formulation, while Section 5 provides a reformulation of the WIOM model
using a Lagrangian relaxation approach. Section 6 compares the two approaches via
computational experiments.

jsalmero@nps.edu



Naval Wholesale Inventory Optimization 113

2 Literature Review

Given the broad applicability of inventory management systems, it is not surprising
that a variety of mathematical models exist to simulate, optimize and provide
insights into the behavior of these systems. We provide a brief review of a subset of
these models.

Chandra [4] describes a distribution model designed to meet warehouse and cus-
tomer replenishment requirements, with the goal of minimizing costs incurred from
transportation, storage, and orders. Lee [11] expands on work previously done by
Sherbrooke [17] to develop a multi-echelon model for repairable items that captures
lateral transshipments between customers. Pirkul and Jayaraman [15] develop a MIP
to minimize total transportation, distribution, and plant and warehouse costs tri-
echelon network with multiple commodities. Axsater [1] considers lateral supply
under stochastic demand and develops decision rules to minimize expected costs.
Graves [10] considers repairable items in a multi-echelon inventory system and
develops an exact model for finding the steady-state distribution of net inventory
levels and the number of outstanding orders for each site. Tsiakis et al. [19] use
integer programming to determine optimal sizes and locations of warehouses and
distribution centers, the resulting transportation links, and the subsequent material
flows needed to meet uncertain demands. Ganeshan [9] considers a single item
in a multiple-retailer, single-warehouse, multiple-supplier setting and finds near-
optimal reorder points and order quantities model to minimize inventory and
transportation costs. The model accounts for stochastic demands lead times, as
well as customer service constraints. Finally, Ettl et al. [5] formulate a nonlinear
optimization problem to minimize the average dollar value of inventory in a supply
network, subject to customer service constraints.

The Lagrangian relaxation approach [6] takes advantage of the fact that, in
many applications, a small set of constraints complicates an otherwise simple
optimization problem. Based on this observation, it reformulates the problem to
remove those constraints and instead include additional terms in the objective
function to penalize their violations. This approach has some history in inventory
systems. For example, Sherbrooke [17] formulates a nonlinear model that calculates
stock levels by minimizing total backorders across all customers. He uses a marginal
analysis technique to arrive at optimal solutions. Muckstadt [13] then modifies and
expands upon Sherbrooke’s formulation using Lagrangian relaxation.

3 Fill Rate Calculation

3.1 Overview

Consider a generic inventory item i, whose random demand Xi is known in terms
of a probability distribution function (PDF) with density fXi

(x), if continuous, or
an analogous probability mass function, if discrete. A PDF is typically estimated
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by either one of two methods: (a) parametric fit to a standard PDF (e.g., Poisson,
binomial, generalized negative binomial, and normal distributions are frequently
used in inventory models) using mean and standard deviation estimates from
observations or engineering data; or, (b) non-parametric fit by observing demand
in lead-time intervals for an empirical distribution. The specific method used in
each case may depend on the item characteristics and the number of observations
available, among others.

For the items considered by NAVSUP, the order quantities Qi are also provided,
therefore we will consider them fixed. WIOM’s primary figure of merit depends
on an expected fill rate calculation. Thus, we require a closed-form formula to
approximate each item’s steady-state, expected fill rate, fi, as a function of the
inputs, fXi

(x) and Qi, and the chosen reorder point si.
The difficulty in calculating the steady-state, expected fill rate (except in trivial

cases) stems from the massive number of potential realizations of random demand
Xi over a long period. Each realization results in a different pattern of orders met (i.e,
with on-hand stock available), and backorders, which must be averaged to estimate
the expected fill rate. This inherent difficulty can be dealt with via simulation of
random demand arrivals, and subsequent order placement (upon reaching a given
reorder point). However, our goal is to develop a closed-form approximation of
expected fill rate that enables us to incorporate the reorder point as a decision
variable in an optimization model where items share other constraints.

The baseline, closed-form calculation of expected fill rate used in this work is
based on the well-known approximation described in Silver et al. ([18], pp. 258,
299):

1− fi = 1

Qi

∫ ∞

si

(x − si) fXi
(x) dx. (1)

We note the right-hand side in Eq. (1) attempts to estimate expected backorders
during a lead-time period. In the case of normal demand, Xi ∼ N

(
μ̂Xi

, σ̂Xi

)
, the

suggested formula to calculate the reorder point is si = μ̂Xi
+ ki σ̂Xi

, where ki

(known as the safety factor) satisfies:

1− fi = 1

Qi

σ̂Xi

∫ ∞

ki

(u− ki) fN(0,1)(u) du. (2)

Note: The equivalence with (1) follows after substituting ki =
(
si − μ̂Xi

)
/σ̂Xi

into
(2) and a variable change u = (

x − μ̂Xi

)
/σ̂Xi

. Since
∫∞

ki
(u− ki) fN(0,1)(u) du

is tabulated (see, e.g., [18], pp. 724–734), identity (2) becomes very practical for
normally distributed demand. Of course, in practice, si = μ̂Xi

+ ki σ̂Xi
must be

rounded to an integer.
Equation (1) requires several assumptions ([18], p. 253), including “no crossing

orders” and “average level of backorders negligibly small when compared with
the average level of on-hand stock.” We note that a large percentage of the items
NAVSUP handles have expected demand during the lead time that largely exceed
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Qi and, therefore, may not fully comply with the above (depending on the chosen
reorder point). In addition, when Qi is less than the expected demand during the lead
time, we can expect multiple, simultaneous orders during a lead-time period.

As a consequence, for many modeled items, Eq. (1) suffers from incorrectly
assessing the shortage from the reorder point si. A better reference would be the
expected on-hand inventory for item i at the time of placing an order (less than si

in cases in the cases when there is more expected demand during the lead time than
the order quantity, Qi). Accordingly, we should adjust the fill rate estimation in Eq.
(1) as follows:

• Define c̃i := max
{

1,
μ̂Xi

Qi

}
as the expected number of cycles (expected orders per

lead-time period). When Qi is large (no simultaneous orders expected), c̃i = 1

and a cycle’s length matches the lead time. When Qi is small, c̃i = μ̂Xi

Qi
> 1, and

the lead time has many cycles.
• Replace lead-time demand Xi by “cycle-time demand” Yi. As for Xi, a PDF fYi

(.)

for Yi can be estimated with: (a) parametric methods, using mean cycle demand
μ̂i := μ̂Yi

= μ̂Xi
/c̃i and standard deviation σ̂i := σ̂Yi

= σ̂Xi
/c̃i ; or, (b) via an

empirical distribution from observations drawn in intervals of cycle-time length.
• Replace si by s′i := si − (c̃i − 1) Qi , which is the expected on-hand at the

beginning of a cycle.

The adjusted fill rate estimate for item i, with cycle-time demand Yi, is given by the
following equation:

1− fi = 1

Qi

∫ ∞

s′i

(
y − s′i

)
fYi

(y)dy. (3)

Roth [16] performed simulations on thousands of parts with parametrically fit
demand distributions. He concluded that “the majority of WIOM estimated fill rates
are within 2% of the simulated fill rates,” with a slight tendency to over-estimate
fill rate.

3.2 Properties of the Adjusted Fill Rate Approximation
and Modeling Considerations

We first note the following property:

Property 1 The fill rate approximation established by Eq. (3) satisfies 1 − c̃i ≤
fi ≤ 1.

Proof:
To prove fi ≤ 1 we note that

∫∞
s′i

(
y − s′i

)
fYi

(y)dy ≥ 0. Given that Qi ≥ 1, it

immediately follows that fi = 1− ∫∞
s′i

(
y − s′i

)
fYi

(y)dy/Qi ≤ 1.
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The lower bound, 1− c̃i ≤ fi , is derived as follows:

fi = 1−
∫ ∞

s′i

(
y − s′i

)
fYi

(y)dy/Qi = 1−
∫ ∞

s′i
y fYi

(y)dy/Qi +
∫ ∞

s′i
s′ifYi

(y)dy/Qi

≥ 1− μ̂i/Qi + (si − (c̃i − 1) Qi) Pr {Yi ≥ (si − (c̃i − 1) Qi)}︸ ︷︷ ︸
p

/Qi

= 1− (μ̂Xi
/c̃i

)
/Qi

︸ ︷︷ ︸
=1

+ sip/Qi − (c̃i − 1) p ≥ p(1− c̃i )︸ ︷︷ ︸
≤0

≥ 1− c̃i .

�
Property 1 ensures that, when c̃i = 1, we can ensure 0 ≤ fi ≤ 1. However, like

Eq. (1), the adjusted fill rate Eq. (3) could still produce a “negative” fill rate estimate,
as the lower bound is only 1− c̃i . In such cases we wish the optimization to use an
estimated fill rate of zero in the calculations; thus, we need to decompose the fill rate
approximation into its positive and negative components, f+i and f−i , respectively.
More specifically, consider the following indicator:

�c̃
i = 1 if c̃i > 1, and zero otherwise (if c̃i = 1) ,

and set fi = f+i −�c̃
i f
−
i . The restated approximation to be used in the optimization

model is:

1−
(
f+i −�c̃

i f
−
i

)
=
∫ ∞

s′i

(
y − s′i

)
fYi

(y)dy/Qi, (4)

which reduces to Eq. (3) when �c̃
i = 0, and otherwise carries out the desired

decomposition of fill rate as fi = f+i − f−i . Still, in order to make Eq. (4) work,
we need to ensure its right-hand side is met in a manner that prevents f+i and f−i
from becoming positive simultaneously. Thus, we use binary variables, f̃+i and f̃−i
to control if the estimation in the right-hand side of Eq. (4) is positive or negative.
This is accomplished by the three following constraints:

f̃+i + f̃−i = 1; f̃+i ≥ f+i ; and, f̃−i ≥ f−i /M̃i, (5)

where M̃i could be any sufficiently large constant. Note that Constraints (5) ensure:

f̃+i = 1, f̃−i = 0, f−i = 0 if f+i > 0, and

f̃+i = 0, f̃−i = 1, f+i = 0 if f−i > 0.
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These constraints appear in WIOM when c̃i > 1. For numerical computation
purposes, it is a good idea to make M̃i as small as possible. Based on Property
1, we set M̃i =| 1− c̃i |= c̃i − 1 > 0.

4 Optimization Model

WIOM is established a MIP with piece-wise, linear approximations of nonlinear
penalties for deviations from target fill rates. The mathematical formulation of
WIOM follows:

4.1 Indices and Index Sets

i, item, for i ∈ I;
n, demand-level index for item i ∈ I, for n ∈ Ni;
m, penalty segment index for piece-wise linearization of nonlinear penalties

(applied to deviations from target fill rates), for m ∈ M.

4.2 Input Data [with Units, if Applicable]

ti, lead-time for item i [quarters];
Xi, lead-time demand random variable [units of issue per lead-time period];
μ̂Xi

, expected value of Xi [units of issue per lead-time period];
Qi, order quantity for item i [units of issue per order];
f i , desired (target) fill rate for item i [fraction];
wi, weight for meeting required fill rate for item i [weight units];
ci, cost per unit in safety level [$/unit of issue];
b, safety stock budget for all items [$];
si, si , lower and upper bounds on reorder point for item i [units of issue], [units

of issue];
ẑ

SS,0
i , legacy (i.e., initial) safety stock used to encourage persistence for item i

[units of issue];
δP
i , relative penalty for (lack of) persistence with respect to legacy reorder point

for item i [fraction]. Note: assume, without loss of generality, that
∑

i∈I

δP
i =1;

γP, persistence penalty [relative weight of persistence with respect to fill rate,
e.g., fill rate penalty/unit of persistence deviation].

Derived data:
c̃i , number of cycles during a lead time for item i [orders per lead time]:

c̃i := max
{
1, μ̂Xi

/Qi

}
;

�c̃
i , one if c̃i > 1 (i.e., if μ̂Xi

> Qi), and zero otherwise;
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μ̂i , expected value of demand during a cycle [units of issue per cycle]:
μ̂i := μ̂Xi

/c̃i ;
din, pin, n-th level of cycle demand and its probability, respectively, for item

i [units of issue], [fraction]. For most of the items, if a parametric fit to
a discrete distribution or an empirical PDF is used, we allow up to a
maximum of 100 demand levels (e.g., din � n, ∀ n = 0...99) and calculate
the associated pin at each level using the mass function; for continuous
parametric fits, we set pin � 0.005 + 0.01n, ∀ n = 0...99 and derive din as
the value of the inverse cumulative probability distribution level at pin. In
some cases, special modifications to these rules are also considered;

wim, penalty for deviation from target fill rate for item i within bracket m
[penalty units]: wim � m wi. (Note: the first bracket m = 1 has the lowest
penalty rate, creating an incentive to avoid subsequent brackets as the
penalty becomes steeper);

f
−
im, maximum deviation below target for item i within bracket m [fraction]:

f
−
im = f i m2/

∑

j∈M

j2. (Note: this divides the maximum fill rate shortage

f i into segments where the first bracket m = 1 is the shortest);
M̃i , large number greater (in magnitude) than any possible “negative” fill rate

estimation for item i, if c̃i > 1 [fraction]: M̃i := |1− c̃i | = c̃i − 1 is used
in our models.

4.3 Decision Variables

si, reorder point for item i [units of issue];
zSS,+
i , zSS,−

i , deviations below and above, respectively, with respect to initial safety
stock for item i [units of issue];

f+i , f−i , positive and negative components, respectively, for the expected fill
rate for item i [fraction]. (The negative component is only applicable
if c̃i > 1);

f̃+i , f̃−i binary variables to record the expected fill rate sign (only applicable if
c̃i > 1);

f−im, expected fill rate shortage (with respect to target) for item i within
penalty segment m [fraction];

zSO
in , ancillary variable for expected stockouts for item i if demand level n

occurs [units of issue]:

zSO
in = max {din − (si − (c̃i − 1)Qi) , 0} ; (6)

zSS
i , ancillary variable for “planned safety stock” for item i [units of issue]:

zSS
i = max

{
si − μ̂i , 0

} ; (7)
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f, z, s, decision vectors for allf -, z-, and s-termed decision variables, respectively;
W (f; z; s), WIOM’s objective function value assessed at decision vectors f, z, s.

4.4 Formulation

We formulate WIOM as the following MIP:

WIOM : min
f;z;s W (f; z; s) =

∑

i

∑

m

wim f−im + γP
∑

i

δP
i

zSS,+
i + zSS,−

i∣∣∣ẑSS,0
i

∣∣∣+ 1
, (8)

subject to:

Qi

(
1−

(
f+i −�c̃

i f
−
i

))
=
∑

n∈Ni

pinz
SO
in ∀i, (9)

zSO
in ≥ din − (si − (c̃i − 1) Qi) ∀i, n ∈ Ni, (10)

zSO
in ≥ 0 ∀i, n ∈ Ni, (11)

f̃+i ≥ f+i ∀i | �c̃
i = 1, (12)

f̃−i ≥ f−i /M̃i ∀i | �c̃
i = 1, (13)

f̃+i + f̃−i = 1 ∀i | �c̃
i = 1, (14)

f+i ≥ f i −
∑

m

f−im ∀i, (15)

zSS
i ≥ si − μ̂i ∀i, (16)

zSS
i ≥ 0 ∀i, (17)

∑

i

ciz
SS
i ≤ b, (18)
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si − μ̂i = ẑSS,0
i + zSS,+

i − zSS,−
i ∀i, (19)

si ≤ si ≤ si ∀i, (20)

si ≥ 0 and integer ∀i, (21)

z
SS,+
i , zSS,−

i ≥ 0 ∀i, (22)

0 ≤ f−im ≤ f
−
im ∀i, m, (23)

f̃i , f̃
−
i ≥ 0 and integer ∀i | �c̃

i = 1, (24)

f+i , f−i ≥ 0 ∀i. (25)

4.5 Description of the Formulation

The objective function (8) has two goals: (a) minimizing weighted deviations from
target fill rates across all items (with steeper penalties applied as we move away
from the target fill rate for each item); and (b) minimizing weighted penalties for
lack of persistence (relative deviations from legacy safety stocks). The persistence
term can be voided altogether by setting γP = 0.

Constraints (9) capture the (discretized) approximation of expected fill rate in
Eq. (4). In particular, the stockouts at each demand level, as specified in Eq. (6), are
implemented in the model as linear constraints (10) and (11).

Constraints (12)–(14) simply restate (5) by decomposing the closed-form fill rate
calculation into positive and negative components.

Constraints (15) allocate the shortfall of the achieved fill rate with respect to
target fill rate into different penalty brackets (in increasing order per the objective
function).

Constraints (16) and (17) calculate NAVSUP’s so-called “planned safety stock,”
as specified in Eq. (7). The combined cost of all planned safety stocks is limited by
a budget in Constraint (18).

Constraints (19) calculate the deviations up or down from given initial safety
stocks, for the purpose of calculating persistence penalties. We note that the
deviation is with respect to the “unconstrained” safety stock si − μ̂i (which could
be a negative value), and not necessarily with respect to the planned safety stock
zSS
i ≥ 0 which is used for cost in Constraint (18).

Constraints (20)–(25) establish additional bounds and domain constraints for the
decision variables.
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4.6 Alternative Formulations and Generalizations

In some settings, expected fill rate requirements are established by groups of items.
That is, if g is a group comprised of items i ∈ Ig, Constraints (15) are replaced by:

∑

i∈Ig

μ̂Year
i f+i

∑

i∈Ig

μ̂Year
i

≥ f g −
∑

m

f−gm ∀g, (26)

where:

• μ̂Year
i represents the yearly (or any other fixed-time reference) expected demand

for item i ∈ Ig;
• f g is the overall target on expected fill rate for the group’s items; and,
• f−gm is the decision variable for expected fill rate shortage in group g and penalty

bracket m.

Note that Constraints (26) assess a group’s overall expected fill rate by factoring
in the items’ demands. This ensures that an item that is seldom ordered contributes
less to the group’s overall expected fill rate than another item that is frequently
ordered.

Of course, for those items in groups, WIOM also replaces objective function
terms

∑

i

∑

m

wim f−im by
∑

g

∑

i∈Ig

∑

m

wim f−gm .

The original WIOM formulation (without groups) is slightly simpler and more
frequently used by NAVSUP. We note, however, that the formulation by groups can
be seen a generalization of the original WIOM, which considers single-item groups.

Although NAVSUP defines safety stock as in (7), other variations are conceiv-
able. In some settings, zSS

i could take into account the specific probability of each
level of safety stock:

zSS
i =

∑

n∈Ni

pin max {si − din, 0} . (27)

We note that
∑

n∈Ni

pin max {si − din, 0} ≥ ∑

n∈Ni

pin (si − din) = si − μ̂i . Strict

inequality occurs frequently, for example, by simply taking two equally likely
demand levels: di1 = 0, di2 = 2, pi1 = pi2 = 0.5. Then, if the chosen reorder point
is si = μ̂i = 1, the definition in (7) leads to zSS

i = 0; but, the alternative definition
in (27) yields zSS

i = 0.5. Thus, it is important to establish the desired interpretation
of safety stock beforehand. Of course, in order to express (27) as linear constraints
in WIOM, we would need to add ancillary variables zSS

in , similarly to how we used
zSO
in for stockouts.
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5 Lagrangian Approach

5.1 Lagrangian Model

The instances provided by NAVSUP vary widely in size and complexity. WIOM can
solve some instances in seconds, while others take hours using a commercial MIP
solver. For this reason, we have developed an alternative approach via Lagrangian
relaxation (see, e.g., [2], pp. 257–300, [6, 14], pp. 323–337).

The only coupling (i.e., complicating) constraint in WIOM is (18), which
limits the planned safety stock cost to a given budget. The removal of the budget
constraint requires penalizing its violation in the objective function and creating the
Lagrangian version of WIOM (LWIOM):

LWIOM : max
θ≥0

L (θ) := min
(f;z;s)

∑

i

∑

m

wimf−im + γP∑

i

δP
i

zSS,+
i +zSS,−

i∣∣∣ẑSS,0
i

∣∣∣+1

+θ

(
∑

i

ciz
SS
i − b

) (28)

subject to (9)–(17), (19)–(25)
L (θ) reduces to a number of separable subproblems, either by item, if Con-

straints (15) are used, or by groups of items, if Constraints (26) replace (15). In
either case, those subproblems are notably simpler to solve than the full WIOM.
Note that although an instance of WIOM containing n items can, in principle, be
separated into n single-item subproblems using Lagrangian relaxation, this may
not be the most computationally efficient approach. Our experience indicates that
it is preferable to formulate subproblems containing dozens or perhaps hundreds of
items instead, due to the overhead involved in formulating the subproblems.

In what follows, (f; z; s)∗ and θ ∗ will denote the optimal solutions to WIOM
and LWIOM, respectively, and W∗ = W(f; z; s)∗ and L∗ = L (θ∗) their optimal
objective function values.

By weak duality, for any θ ≥ 0 and WIOM-feasible solution, (f; z; s), we have
L∗ ≤ L (θ) ≤ W (f; z; s) ≤ W∗. However, the presence of integer variables in
WIOM creates a potential duality gap ε ≥ 0 between L∗ and W∗. That is, L (θ∗)+
ε = W(f; z; s)∗ for some ε ≥ 0. This gap depends on the relative sizes of (i) the
convex hull of the full set of constraints and (ii) the intersection of the convex hull
of the non-complicating constraints and the set of complicating constraints ([14],
pp. 329). In addition, the gap also depends on the objective coefficients. A proof to
guarantee that a certain problem type has no duality gap is, in general, complicated.
In most other cases, a counterexample can be easily found. LWIOM incurs duality
gaps in some of our cases, as shown by our computational results.
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5.2 Lagrangian Algorithm

The Lagrangian function L (θ) is concave (but not necessarily differentiable), so
solving for max

θ
L (θ) can be carried out via subgradient optimization. Here, at each

iteration k, the incumbent solution θ̂k is updated to a new solution along the direction

of unitary vector ξ k/‖ξ k‖, where ξk = ξk

(
θ̂k

)
is a subgradient of L (θ) at θ = θ̂k .

A so-called step size λk ≥ 0 dictates the amount of change along the direction,
where the choice of λk must satisfy certain conditions in order to ensure asymptotic
convergence (see e.g. [2], pp. 446–441). Given those conditions may lead to very
slow convergence, in practice, they are replaced by alternative (heuristic) rules that
have proven empirically efficient. Given that LWIOM contains a unique dualized
constraint, θ is a single, real-valued variable. A subgradient ξ at θ = θ̂ is given by

ξ
(
θ̂
)
= ∑

i

ciz
SS
i

(
θ̂
)
− b, which describes the amount by which the incumbent

expected safety stock under- or over-expends the given budget. Thus, ξ k/‖ξ k‖ can
only become ±1, respectively, and the update step is simply θ̂k+1 := θ̂k ± λk ,
respectively.

Given that θ is real-valued, θ ∗ can be found more efficiently than by subgradient
methods using univariate search algorithms, such as binary search or dichotomous
search. These methods use an initial interval of uncertainty, θ ∈ [θmin, θmax], where
θmin = 0 and θmax is specified below (according to Eq. (29)). We next outline these
two algorithms:

• Binary search, as inspired by the bisection method: Given [θmin, θmax], and

subgradient function ξ
(
θ̂
)
:= ∑

i

ciz
SS
i

(
θ̂
)
− b, verify ξ (θmin) > 0, and

ξ (θmax) < 0; Main Step: update θ̂ := (θmin + θmax) /2 and evaluate ξ
(
θ̂
)

; If

ξ
(
θ̂
)

> 0, update θmin := θ̂ ; If ξ
(
θ̂
)

< 0, update θmax := θ̂ ; If ξ
(
θ̂
)
≈ 0 or

θmin ≈ θmax, STOP (otherwise, return to Main Step).
• Dichotomous search, using golden section: Given [θmin, θmax], α :=(

1+√5
)

/2, θa � θmin + (1 − α)(θmax − θmin), θb � θmin + α(θmax − θmin),

evaluate L (θa) and L (θb); Main Step: If L (θa) ≥ L (θb), then update θmax� θb,
θb � θa, L (θb) := L (θa), θa � θmin + (1 − α)(θmax − θmin), and evaluate
L (θa); If L (θa) < L (θb) then update θmin � θa, θa � θb, L (θa) := L (θb),
θb � θmin + α(θmax − θmin), and evaluate L (θb); If θmin ≈ θmax, STOP
(otherwise, return to Main Step).

We have implemented both the binary search and dichotomous search algorithms
with very similar computational performance. Note that, whilst the former is driven
by the sign of the Lagrangian’s subgradient, the latter relies on assessments of the
original Lagrangian function. Of course, either method should keep track of the best
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incumbent lower and upper bounds on W∗. If we let (f; z; s)∗
/θ̂

denote the optimal

solution to the inner problem in (28) for (primal) variables (f; z; s) given θ̂ , that is:

L
(
θ̂
)
=
∑

i

∑

m

wimf−im
∗
/θ̂
+ γP

∑

i

δP
i

zSS,+∗
i/θ̂

+ zSS,−∗
i/θ̂∣∣∣ẑSS,0

i

∣∣∣+ 1
+ θ̂

(
∑

i

ciz
SS∗
i/θ̂

− b

)

,

then, a lower bound is given by L
(
θ̂
)

(at any iteration), and an upper bound is given

by iterations where (f; z; s)∗
θ̂

is WIOM-feasible.
Both methods require us to establish an initial interval of uncertainty for θ , that

is θ ∈ [θmin, θmax]. We first set θmin = 0, noting that, if (f; z; s)∗
/θ̂=0

is a feasible

solution to WIOM (i.e., if it satisfies budget Constraint (18)), then θ ∗ = 0 constitutes
an optimal solution to LWIOM, (f; z; s)∗

/θ̂=0
is an optimal solution to the original

WIOM, (f; z; s)∗ = (f; z; s)∗
/θ̂=0

, and L∗ = W∗ (no duality gap). This is not a

common case but, if the budget is not constraining the optimal solution, trying
θ ∗ = 0 before initiating a local search on θ will save unnecessary iterations: the
r golden search methods would converge to θ ∗ = 0, but only asymptotically.

We implement the binary or dichotomous search in the more interesting scenario
where θmin = 0 does not produce an optimal solution. If WIOM is a feasible
problem, by concavity of L (θ), we know that L (θ) must be monotonically non-
decreasing over [0, θ ∗ ] and monotonically non-increasing for θ ≥ θ ∗ . Thus, θmax
should be sufficiently large to ensure θ ∗ ∈ [0, θmax]. Because θ can be interpreted as
the rate of change in W(f; z; s)∗ per unit of change in b, a trivial upper bound on θ

can be computed independently of b because:

(i) W (f; z; s) ≥ 0 for all feasible (f; z; s);
(ii) all coefficients in the objective function are non-negative; and,

(iii) upper bounds on all objective variables exist as follows:

f−im ≤ f
−
im;

zSS,−
i ≤ max

{
ẑSS,0
i − (si − μ̂i

)
, 0
}
:= zSS,−

i ; and,

zSS,+
i ≤ max

{(
si − μ̂i

)− ẑSS,0
i , 0

}
:= zSS,+

i ,

so we can derive θmax by simply substituting those bounds into W (f; z; s):

θmax :=
∑

i

∑

m

wim f
−
im + γP

∑

i

δP
i

zSS,+
i + zSS,−

i∣∣∣ẑSS,0
i

∣∣∣+ 1
(29)

jsalmero@nps.edu



Naval Wholesale Inventory Optimization 125

We note that, even though a tighter (i.e., smaller) θmax can be derived based on
the (linear programming) interpretation of the dual variable for a constraint, such
derivation should be done carefully given that WIOM is a MIP. For example, a
unitary increase in budget b can produce a decrease in expected fill rate shortfall
even if budget Constraint (18) is met with strict inequality. This, in fact, occurs
in our computational experience where, in some cases, the expected cost of safety
stock is close (but not equal) to budget b simply because reorder points si (and
thus safety stocks zSS

i ) can only be modified in increments of one full unit, making
the added cost of an extra item violate the budget. This MIP duality issue can be
realized with a simple academic example: Consider max

z∈{0,1,2,... } z subject to 2z ≤ b

for b = 1. Obviously, the MIP optimal solution is z∗ = 0 (which under spends the
given budget). However, for b = 2, z∗ = 1. This shows how an apparently non-
binding budget is actually binding in the MIP. Moreover, a unitary increase of b
causes the objective to increase by 1 unit, when the constraint coefficient for z is
2, which (under a purely linear programming reasoning) would make us think that
the objective increase should be only 0.5 (as it is in the continuous solution, from
z = 0.5 to z = 1).

6 Computational Results

The test cases presented here represent realistic NAVSUP scenarios, which may
consist of consumable items, repairable items, or a mix. In practice, a demand for
which there exists a carcass available for repair will trigger a repair order. The
carcass will eventually be fixed (unless found unrepairable) and become a ready-
for-issue item that is delivered to the customer. That process incurs a different
lead time than a regular purchase order. WIOM does not model these two streams
for repairable items, but uses NAVSUP’s estimates on the fraction of surviving
carcasses to approximate a lead time for a “generic” order. This combined lead
time does not distinguish if the demand will be fulfilled with a purchase or a repair.
Similarly, NAVSUP also provides the order quantity as a combined figure. Finally,
NAVSUP uses WIOM’s calculated safety stock levels into their Enterprise Resource
Planning system. This includes more specific forecasts and algorithms that trigger
actual requisitions for item procurement and/or repair based on current data.

WIOM has been developed in the Windows 7 operating system and requires (as
additional software) the General Algebraic Modeling System (GAMS) optimization
environment with the GAMS/CPLEX solving engine [7, 8, 12].

We compare the performance of the Lagrangian relaxation approach and the full
MIP using several instances derived from realistic NAVSUP problems. All instances
use the concept of groups introduced in Section 4.6, along with notional budget
values. We set a time limit of 2 hours for each method, and a stopping criterion
if the incumbent solution is proven within 1% from optimal. Our results appear in
Table 1.
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Table 1 Computational results comparing the performance of the MIP formulation with the
Lagrangian relaxation approach

Input characteristics Results

Fill rate goal Budget Run time Budget used
Instance # items # groups (by group) ($1,000) Method W (f;z;s) (minutes) Status ($1,000)

Consumables #1 4,494 51 85% 17,190 MIP 0.17 120 Feasible 17,190

Lagrangian 0.03 95 Feasible 15,625

Consumables #2 19,948 4 95% 66,782 MIP 0 118 Optimal 66,762

Lagrangian 0.03 115 Feasible 15,365

Consumables #3 2,368 37 85% 7,923 MIP 0 8.5 Optimal 7,913

Lagrangian 0.03 3.3 Feasible 2,472

Repairables #1 6,431 251 85% 170,020 MIP 0 119 Optimal 170,011

Lagrangian 0 95 Feasible 111,774

Repairables #2 923 4 95% 8,929 MIP 0.12 120 Feasible 8,928

Lagrangian 0.39 0.27 Feasible 4,542

Repairables #3 9,946 178 85% 887,486 MIP 0 5.5 Optimal 548,007

Lagrangian 0 28.7 Feasible 176,887

Our primary figures of merit are the two methods’ computation times, their primal objective values W (f; z; s) (i.e., the sum
of expected fill rate and persistence penalties), and budget expenditures. In all instances, budget values are notional

Results demonstrate several phenomena typical of Lagrangian relaxations. First,
for smaller, easier instances, the overhead involved in creating the subproblems
causes the Lagrangian approach to take longer than the MIP. In instances such as
“Repairables #3,” the difference is large enough to give the MIP a significant advan-
tage. As the problem instances become larger and more difficult, the Lagrangian
approach becomes advantageous. Despite the fact that case “Repairables #2” is of
relatively small size, the MIP times out without finding an optimal solution, while
the Lagrangian is able to converge quickly, although it converges to a suboptimal
solution.

In addition to the differences in computation time, we also observe patterns in
the types of solutions produced by both methods. Notably, the MIP is able to prove
optimality of its solutions, while the Lagrangian is only able to certify feasibility
due to the duality gap. This occurs even in instances where the solution is, in
fact, optimal (e.g., “Repairables #1” and “Repairables #3”). For those instances
where the MIP and Lagrangian solutions differ in their primal objective value, the
Lagrangian’s quality is slightly inferior (i.e., its penalty is higher). However, its
budget performance is superior across all instances, often significantly so. While
minimizing cost is not an objective in the original formulation, it may nevertheless
be a desirable side effect of the Lagrangian formulation, which rewards lower-cost
solutions. Note that cost-minimizing solutions could, in principle, also be obtained
using the MIP formulation. For instance, one might employ a hierarchical approach
by first determining the best possible objective value (with respect to fill rate and
persistence), then solving a modified version of WIOM designed to minimize cost,
subject to a constraint on the fill rate and persistence penalty. However, such a
hierarchical approach would incur additional computation time due to the fact that
it involves two separate model runs.
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7 Conclusions

We have introduced WIOM, a MIP that helps NAVSUP planners to set reorder
points for thousands of maritime and aviation line items under uncertain demand.
WIOM seeks to minimize weighted, expected shortfalls from fill rate targets and
deviations from legacy solutions under a limited safety stock budget. We adjust an
existing closed-form approximation of expected fill rate that better captures multiple
expected orders per lead time, and incorporate it into the optimization model. We
solve realistic instances of WIOM provided by NAVSUP via both a general-purpose
MIP solver and by Lagrangian relaxation. Preference for either method depends
on the case and metric used: objective value, computational time, or fraction of
budget used.
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