
Deception Tactics for Network Interdiction:
A Multiobjective Approach

Javier Salmerón
Department of Operations Research, Naval Postgraduate School, Monterey, California 93943

This article develops defender-attacker network inter-
diction models with deception. Here, deception refers
to a preemptive and intelligent use of concealed inter-
diction assets and decoys by the defender, in addition
to transparent assets commonly employed in model-
ing defender-attacker problems. These models can help
security planners to locate a limited number of check-
points and sensors of various types to, for example,
detect the smuggling of illegal products. The problem
is complex, in part, because the objective functions of
the defender and the attacker are different, and because
the latter (which represents the attacker’s behavior) is
difficult to predict by the defender. First, we use duality
theory and a generalized network flow model to devise
an equivalent mixed-integer programming formulation,
and develop its Benders decomposition. We extend this
formulation with a multiobjective approach to account
for several behaviors simultaneously. The computational
effort to solve these models is considerable, as exempli-
fied by our testing on a variety of cases for a medium-
sized, notional network. Published 2011 Wiley Periodicals,
Inc. NETWORKS, Vol. 60(1), 45–58 2012
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1. INTRODUCTION

Network interdiction studies how decisions made by
two intelligent adversaries, called “defender” and “attacker,”
affect a network’s functionality. One of these players seeks,
for example, to maximize flow through the network, or to
minimize cost to supply the demand, while the other player
tries to disrupt the network by interdicting selected compo-
nents [18]. The associated problems are commonly referred to
as defender-attacker (DA) and attacker-defender (AD) mod-
els (see, e.g., [5] and references therein). In many of these
problems, players make their decisions in a specified order,
as in bi-level programming and Stackelberg games [16].
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This article deals with a special case of DA analysis. For
exposition’s sake, we refer to suicide attacks as the event
against which the defender is protecting. However, the tech-
niques we present have applications in other areas such as
weapon smuggling, drug traffic, facility security (such as air-
ports), and the like. The attacker comprises, for example,
a set of vehicle-born suicide attackers, each of whom may
originate at a different location and may seek one or several
possible targets. The defender wishes to allocate limited inter-
diction assets to minimize damage inflicted by the attacker.
In this context, interdiction refers to both the detection and
physical neutralization of the attacker, thus saving the lives
the attack would have otherwise claimed.

Among the assets available to the defender, we distin-
guish three types: The first type consists of interdiction assets
which, once deployed, are visible (or transparent) to the
attacker. We also assume the probability of successful inter-
diction by transparent assets is equally known by the attacker
and defender. One example of such an asset would be a check
point which randomly inspects one in every k vehicles. The
second type consists of trap-like assets, whose location is only
known by the defender. This may include, for example, con-
cealed sensors and other detection equipment, or unmanned
aircraft. The third type consists of decoy assets, which are
visible by the attacker, but perceived as more effective than
they actually are, for example, a surveillance camera that is
not being monitored. We also assume a nominal (typically
low) probability of interdiction always exists on noninter-
dicted arcs (e.g., by regular law enforcement patrols without
detection equipment).

Our models intend to provide insights into similar ques-
tions to those in classical (fully transparent) DA models,
such as “what is the optimal allocation of a given number of
interdiction resources?,” and “what are the associated routes
for attackers, and the probabilities of successful interdiction
for the defender?” They also analyze the tradeoff between
defender’s resources and the increased probability of detec-
tion to determine how many assets of each type must be
allocated to ensure a certain probability of success. Addition-
ally, we reckon the potential benefit provided by secrecy and
deception, whose effectiveness may depend on the attacker’s
behavior.
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Network interdiction has been extended to consider simul-
taneous decisions and uncertainty. Simultaneous-game ver-
sions of the shortest-path interdiction model (see, e.g., [17])
seek mixed strategies for both the defender’s interdiction
locations and the evader’s route selection. In discussing
game-theoretic models for defending critical infrastructure
against intelligent attackers, Bier et al. [3] believe that “an
approach that is more effective and practical than pure game-
theoretic analysis is needed.” They point out the caveats
in assuming subjective beliefs, game structures and pay-
off matrices, adding that “…for resource allocation, it is
essential to take into account an adversary’s possible adap-
tive behaviors, but without necessarily descending into the
mathematical quagmire of full game-theoretic modeling.” In
this sense, the authors favor a simpler approach under the
paradigm of AD or DA models. The deterministic maximum-
flow interdiction problem has been extended in [6] to account
for uncertainty in the attack success and in the initial arc
capacities. Another bi-level, two-stage stochastic model [14]
determines the optimal allocation of sensors to detect nuclear
smuggled materials, where uncertainty is related to the origin
and destination of the evader.

The special structure in our models makes our method-
ology different from most previous work in the literature.
Notable exceptions include a similar model with asymmetric
information for the case of a single evader (attacker) and
a single behavior (shortest distance) [2], and a stochastic
model with differing perceptions for defender and attacker
[12], which is especially effective in the case of bipartite net-
works (after adding specialized, valid inequalities). Our work
incorporates several attackers, different types of interdiction
assets and multiple behaviors simultaneously.

In the remainder of the article, Section 2 introduces our
core model formulation and develops an equivalent mixed-
integer program (MIP), and its Benders decomposition (BD).
We also discuss other related formulations, and our assump-
tions to represent different attackers’ behaviors. Section
3 describes our notional test networks and computational
results. These suggest a natural extension of the original for-
mulation as a multiobjective model, which is presented in
Section 4. Section 5 presents our conclusions.

2. MODEL DESCRIPTION

In this section, we describe the mathematical formula-
tion of the “nontransparent” DA (NTDA) model. This model
is initially stated as a nonlinear model NTDANL and then
converted into an equivalent MIP called NTDAMIP, which
can be solved directly or via BD. In addition, we present
a heuristic approximation NTDAH which uses a simplified
MIP but only guarantees an optimal solution to the NTDA
problem in the case of a unique attacker. We also introduce
RNTDANL, which is a “robust” NTDA model that replaces
total expected value by “worst-case value” among attackers;
then, we develop its MIP version RNTDAMIP. Finally, we
describe the attacker behaviors investigated in this research.

2.1. Notation

The notation used in our models is as follows:

Sets and indices

I , set of nodes in the network, i, j ∈ I;
A ⊂ I × I , set of directed arcs in the network, (i, j) ∈ A;

N , set of attackers, n ∈ N ;
sn ∈ I , source node for attacker n;

Tn ⊂ I , subset of possible target nodes for attacker n. We
assume sn /∈ Tn.

Parameters

vn, value of attacker n (if he succeeds);
qnij , nominal probability of evasion (nondetection) for

attacker n while traversing arc (i, j);
q̃nij , probability of evasion for attacker n while travers-

ing arc (i, j) interdicted with a transparent asset;
q̄nij , actual probability of evasion for attacker n while

traversing arc (i, j) interdicted with a trap asset.
(Attackers perceive nominal probability);

¯̄qnij , probability of evasion perceived by attacker n while
traversing arc (i, j) interdicted with a decoy asset.
(Actual probability is nominal);

dnij , measure of “cost” (such as distance or travel time)
for arc (i, j) used by attacker n who ignores the
defender’s strategy. (See “indifferent” behavior in
Section 2.7);

R̃, R̄, ¯̄R, number of transparent, trap and decoy assets,
respectively.

Decision variables

ỹij , ȳij , ¯̄yij , equals 1 if arc (i, j) is interdicted with a
transparent asset, with a trap or with a
decoy, respectively; 0 otherwise;

xnij , equals 1 if attacker n traverses arc (i, j); 0
otherwise;

xP
nij , x̃P

nij , x̄P
nij , ¯̄xP

nij , generalized flow variables for attacker n,
representing the probability of evasion up
to (but not including) arc (i, j), when arc
(i, j) has either no interdiction asset, a
transparent asset, a trap, or a decoy, respec-
tively;

Zn, overall probability of evasion for attacker
n.

Augmented network, derived data, and auxiliary variables

t, artificial “super-sink” node;
I∗, set of nodes augmented with the super-sink

node: I∗ = I ∪ {t};
A∗

n, set of directed arcs augmented with arcs
from targets for attacker n to the super-sink:
A∗

n = A ∪ {(i, t)|i ∈ Tn};
fni, equals 1 if i = sn, −1 if i = t, and 0

otherwise, for attacker n and node i ∈ I∗;
pnij , p̃nij , p̄nij , ¯̄pnij , derived data: pnij = 1−qnij , p̃nij = 1− q̃nij ,

p̄nij = 1 − q̄nij , ¯̄pnij = 1 − ¯̄qnij;
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r̃nij , r̄nij , ¯̄rnij , derived data: r̃nij = q̃nij

qnij
, r̄nij = q̄nij

qnij
, ¯̄rnij =

¯̄qnij

qnij
;

cnij , c̃nij , c̄nij , ¯̄cnij , derived data: cnij = log qnij , c̃nij = log r̃nij ,
c̄nij = log r̄nij , ¯̄cnij = log ¯̄rnij;

x̃nij , x̄nij , ¯̄xnij , auxiliary variables: x̃nij = xnij ỹij , x̄nij =
xnij ȳij , ¯̄xnij = xnij ¯̄yij .

Remarks.

1. We use the following vector notation for our decision
variables: Z = (Zn)n∈N ; ỹ = (ỹij)(i,j)∈A; ȳ = (ȳij)(i,j)∈A;
¯̄y = ( ¯̄yij)(i,j)∈A; y = (ỹ, ȳ, ¯̄y); x = (xn)n∈N where xn =
(xnij)(i,j)∈A∗

n
; and so on for xP, x̃P, x̄P, ¯̄xP, x̃, x̄, and ¯̄x.

2. If an attacker may choose among several origins as
his starting point, we can create a super-source node
connected to those origins by noninterdictable arcs.

3. vn reflects attacker n’s capability, independent of his final
target. For example, we expect an attack by truck n to
be more destructive than another attack n′ committed
with a car. We discuss the extension that accommodates
different target values for the same attacker (vni) after
introducing the NTDAMIP model. Alternatively, vn could
be used to model a one-attacker case similar to [14] with
unknown origin and/or destination. In this case, N would
be the set of potential origin-destination scenarios and
vn would be the probability that scenario n arises.

4. For simplicity in our model representation, we assume
0 < qnij , q̃nij , q̄nij , ¯̄qnij < 1.

2.2. NTDANL Model Formulation

In the NTDANL model, the defender tries to minimize the
total expected value not interdicted:

NTDANL : min
y,Z

∑
n∈N

vnZn, (1)

s.t. Zn =
∏

(i,j)∈A

q
xnij

nij r̃
xnij ỹij

nij r̄
xnij ȳij

nij , ∀n ∈ N , (2)

y ∈ Y ≡




∑
(i,j)∈A

ỹij ≤ R̃,

∑
(i,j)∈A

ȳij ≤ R̄,

∑
(i,j)∈A

¯̄yij ≤ ¯̄R,

ỹij + ȳij + ¯̄yij ≤ 1, ∀(i, j) ∈ A,

ỹij, ȳij, ¯̄yij ∈ {0, 1}, ∀(i, j) ∈ A,
(3)

where xn solves the flow problem Fn for each attacker n ∈ N :

Fn : max
xn

∏
(i,j)∈A

q
xnij

nij r̃
xnij ỹij

nij
¯̄rxnij ¯̄yij

nij , (4)

s.t. xn ∈ ℵ∗
n

≡




∑
j|(i,j)∈A∗

n

xnij −
∑

j|(j,i)∈A∗
n

xnji = fni, ∀i ∈ I∗ [uni],

xnij ∈ {0, 1}, ∀(i, j) ∈ A∗
n.

(5)

Remark. Below, we will justify that xnij ∈ {0, 1} can be
replaced by xnij ≥ 0; this, in turn, will justify the existence of
dual variables u = (uni)n∈N , i∈I∗ .

We note that the defender’s objective function defined
through (1) and (2) incorporates the actual interdiction prob-
abilities. The nth attacker tries to maximize his probability
of evasion, but his perceptions are not always truthful, as
reflected in (4).

Constraints y ∈ Y represent the decision space for the
defender, which (for simplicity) restricts the possible inter-
dictions by a cardinality constraint on each type of asset.
We assume that the defender does not place more than one
interdiction asset per arc, and that an interdiction asset is
not consumed by an attacker (i.e., it can be used on multiple
attackers). The decision space for all the attackers, x ∈ ℵ∗,
comprises the individual flow balance constraints for each
attacker, xn ∈ ℵ∗

n.

2.3. Reformulation: The NTDAMIP Model

Some manipulations to the above formulation are nec-
essary to convert the min-max, bi-level NTDANL problem
with two different nonlinear objectives into a single-objective
MIP. This requires reformulating the problem in three steps
which deal with: (a) the attackers’ nonlinear objective; (b)
the defender’s nonlinear objective; and (c) the fact that both
players have different objectives. This is done as follows:

a. We first linearize the attacker’s objective (4) by maximiz-
ing the logarithm of that objective (see, e.g., [9]). Thus, for
each fixed y, model Fn can be solved by finding the optimal
solution to the following linear problem:

max
xn∈ℵ∗

n

∑
(i,j)∈A

(cnij + c̃nij ỹij + ¯̄cnij ¯̄yij) xnij . (6)

This linearization renders another important benefit: By
unimodularity, it is possible to replace xnij ∈ {0, 1} by
xnij ≥ 0, ∀(i, j) ∈ A∗

n. The replacement will be assumed
as part of the definition of xn ∈ ℵ∗

n in the remainder of the
article.

b. Unfortunately, the same strategy cannot be applied to
the defender’s objective (1) and (2) because the order
of the logarithm and summation operators cannot be not
switched, unless |N | = 1. Instead, we use the concept of
generalized networks (see [1], pp. 566–568) to construct
a flow that captures the probability of interdiction along
the path chosen by the attacker, similar to the approach in
[12].

Specifically, we add four arcs for each (i, j) ∈ A∗
n, with

generalized flows denoted xP
nij , x̃P

nij , x̄P
nij , ¯̄xP

nij , respectively. If
the nth attacker traverses arc (i, j) in the original network
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(i.e., when xnij = 1), we let one of the above flows represent
the probability that the attacker is not detected up to that
arc. The chosen arc with positive flow depends on whether
(i, j) has not been interdicted or, if it has, on whether the
defender has used a transparent asset, a trap, or a decoy,
respectively. The below linear constraints (7)–(13) replace
(2) by a generalized flow structure that calculates Zn:

∑
j|(sn ,j)∈A∗

n

xP
n,sn ,j = 1, ∀n ∈ N , (7)

∑
j|(i,j)∈A∗

n

(
xP

nij + x̃P
nij + x̄P

nij + ¯̄xP
nij

)

=
∑

j|(j,i)∈A∗
n

(
qnjix

P
nji + q̃njix̃

P
nji + q̄nji x̄P

nji + qnji ¯̄xP
nji

)
,

∀n ∈ N , ∀i �= sn, t, (8)
∑

j|j∈Tn

(
xP

njt + x̃P
njt + x̄P

njt + ¯̄xP
njt

) = Zn, ∀n ∈ N , (9)

x̃P
nij ≤ ỹij , ∀n ∈ N , ∀(i, j) ∈ A∗

n

[
π̃P

nij

]
, (10)

x̄P
nij ≤ ȳij , ∀n ∈ N , ∀(i, j) ∈ A∗

n

[
π̄P

nij

]
, (11)

¯̄xP
nij ≤ ¯̄yij , ∀n ∈ N , ∀(i, j) ∈ A∗

n

[ ¯̄πP
nij

]
, (12)

xP
nij + x̃P

nij + x̄P
nij + ¯̄xP

nij ≤ xnij , ∀n ∈ N , ∀(i, j) ∈ A∗
n. (13)

Remarks. Constraints to establish that xP
nij ≤ 1− ỹij , xP

nij ≤
1− ȳij , and xP

nij ≤ 1− ¯̄yij are not needed because the defender

is minimizing flow and qnij ≥ q̃nij , q̄nij , ¯̄qnij . The π notation
refers to dual variables which will be used to develop a BD
approach.

c. As the objectives of defender and attacker are different, the
well-known technique of dualization of the “inner” prob-
lem to obtain a min–min formulation (see e.g., [5]) is not
applicable. However, for every defender choice y, we may
use strong duality theory with the attacker’s problem (5)
and (6) to characterize an optimal x, similar to the tech-
nique used in [13]. Specifically, we replace (6) by setting
the objective value equal to that of its dual counterpart, and
by adding all necessary dual constraints:

∑
(i,j)∈A

(cnij + c̃nij ỹij + ¯̄cnij ¯̄yij) xnij = un,sn − unt , ∀n ∈ N ,

(14)

uni − unj ≥ cnij + c̃nij ỹij + ¯̄cnij ¯̄yij ,

∀n ∈ N , ∀(i, j) ∈ A [πnij], (15)

uni − unt ≥ 0, ∀n ∈ N , ∀i ∈ Tn. (16)

Constraints (14) involve products of binary and con-
tinuous variables. A linearization of these terms can be
achieved, for example, by replacing every ỹx, ȳx, and
¯̄yx occurrence by x̃, x̄, and ¯̄x, respectively, and adding
appropriate linear constraints:

0 ≤ x̃nij ≤ ỹij
[
π̃1

nij

]
; x̃nij ≥ ỹij + xnij − 1

[
π̃2

nij

]
;

x̃nij ≤ xnij;

0 ≤ x̄nij ≤ ȳij; x̄nij ≥ ȳij + xnij − 1; x̄nij ≤ xnij; (17)

0 ≤ ¯̄xnij ≤ ¯̄yij
[ ¯̄π1

nij

]
; ¯̄xnij ≥ ¯̄yij + xnij − 1

[ ¯̄π2
nij

]
;

¯̄xnij ≤ xnij , ∀n ∈ N , ∀(i, j) ∈ A,

so (14) becomes:
∑

(i,j)∈A

(cnijxnij + c̃nij x̃nij + ¯̄cnij ¯̄xnij) = un,sn − unt , ∀n ∈ N .

(18)

Remark. x̄ = ȳx is not used in the NTDAMIP model, but
will be used in the NTDAH and RNTDAMIP models. For
conciseness, (17) includes its linearization too.

The NTDAMIP reformulation is:

NTDAMIP : min
y∈Y , x∈ℵ∗ , u, Z,

xP , x̃P , x̄P , ¯̄xP ,

x̃, x̄, ¯̄x

∑
n∈N

vnZn, (19)

s.t. (7)–(13),

(15)–(18).

The above model could be extended to include
target-dependent values for each attacker. This would
require the replacement of the current objective function∑

n∈N vnZn by
∑

n∈N

∑
(i,t)∈A∗ vnixnitZn. With this modi-

fication, attacker n would take the value of target i with
probability Zn if he traverses the (i, t) arc. The product
xnitZn can be linearized using a MIP linear construct similar
to that in (17).

2.4. Benders Decomposition of NTDAMIP

Fixing y = (ỹ, ȳ, ¯̄y) to ŷ = ( ˆ̃y, ˆ̄y, ˆ̄̄y) in NTDAMIP produces
a linear subproblem which is separable for each attacker,
making NTDAMIP amenable to BD. This technique has been
used in other detector-evader problems including uncertainty,
which exhibit a special structure that can be exploited via the
so-called L-shaped method [15].

In what follows, a superindex k represents the iteration
counter for the BD algorithm. For a fixed y = ŷk , the sub-
problem for the nth attacker, SPk

n(ŷ
k
), calculates his optimal

(as perceived) route, and its actual objective value vnZk
n . This

is equivalent to solving a network shortest path problem using
perceived probabilities of interdiction as costs, and then post-
processing its solution to calculate the actual interdiction
probability. Note that, by construction, SPk

n(ŷ
k
) is always

feasible and bounded. Let Z(SPk(ŷk
)) = ∑

n vnZk
n be the

total objective function of the subproblem at iteration k. The
ensuing master problem can be stated as follows:

MPk : min
y∈Y ,Z

Z ,

s.t. Z ≥ υ̂k′ +
∑

(i,j)∈A∗

(
α̃k′

ij ỹij + ᾱk′
ij ȳij + ¯̄αk′

ij
¯̄yij

)
,

∀k′ = 1, . . . , k.

The independent term and the coefficients of a generic cut k
are calculated from the subproblem’s dual solution (10)–(12),
(15), and (17) as follows:
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α̃k
ij =

∑
n∈N

(
π̃

P,k
nij + c̃nijπ

k
nij + π̃

1,k
nij + π̃

2,k
nij

)
,

ᾱk
ij =

∑
n∈N

π̄
P,k
nij ,

¯̄αk
ij =

∑
n∈N

( ¯̄πP,k
nij + ¯̄cnijπ

k
nij + ¯̄π1,k

nij + ¯̄π2,k
nij

)
, and

υ̂k = Z(SPk(ŷk
)) −

∑
(i,j)∈A∗

(
α̃k

ij
ˆ̃yij + ᾱk

ij
ˆ̄yij + ¯̄αk

ij
ˆ̄̄yij

)
.

The problem’s asymmetry can also be observed by inspecting
the above coefficients. α̃k

ij, ᾱ
k
ij and ¯̄αk

ij bound the maximum
decrease in the defender’s objective (at the kth iteration)
should he place an asset of the corresponding type on the arc.
If arc (i, j) has not been interdicted, and attacker n traverses
the arc (i.e., xnij = 1), then π̃P

nij, π̄
P
nij, ¯̄πP

nij from (10)–(12) may
become strictly negative and contribute to that bound. On
the attacker’s side, (15), the contribution of additional trans-
parent interdictions and decoys to the defender’s objective is
captured by c̃nijπnij ≤ 0 and ¯̄cnijπnij ≤ 0, respectively.

2.5. Heuristic Approximation: NTDAH

Our NTDAH model suggests that, instead of (1)–(2), the
defender optimizes miny,Z

∑
n∈N vn log(Zn), i.e., replacing

evasion probabilities by their logarithms in the expected
value calculation. Note this model does not rely on the
generalized network, therefore it does not require all the
xP

nij, x̃P
nij, x̄P

nij, ¯̄xP
nij variables and their associated constraints.

This comes at the expense of producing a heuristic solu-
tion, which is only guaranteed to be optimal when |N | = 1,
and otherwise has unknown quality. Intuitively, however,
we expect the approximating model works well given the
apparent correlation between the objective function values∑

n∈N vnZn and
∑

n∈N vn log(Zn) for 0 < Zn ≤ 1, so that
solving the latter produces an acceptable solution for the
original problem. (Indeed, this is the case in most of our
computational experience.) Naturally, we still prefer to solve
NTDAMIP directly, or via BD, whenever possible.

The objective function of NTDAH becomes:

min
y∈Y

∑
n∈N

vn


 ∑

(i,j)∈A

(cnij + c̃nij ỹij + c̄nij ȳij)xnij


 . (20)

Since this objective also involves products of decision
variables, we resort to linearizing constraints (17) to state
our heuristic model as follows:

NTDAH :

min
y ∈ Y , x ∈ ℵ∗ , u,

x̃, x̄, ¯̄x

∑
n∈N

vn


 ∑

(i,j)∈A

(cnijxnij + c̃nij x̃nij + c̄nij x̄nij)


 ,

s.t. (15)−(18). (21)

2.6. Robust Models: RNTDANL and RNTDAMIP

As an alternative to the models based on total expected
value contributed by all attackers, the defender could solve
a NTDA model in the spirit of robust optimization. Here,
robustness refers to the worst of the expected values allowed
by an individual attacker. The nonlinear, robust NTDA model,
RNTDANL, is stated as:

RNTDANL : min
y∈Y ,z

z, (22)

s.t. z ≥ vn

∏
(i,j)∈A

q
xnij

nij r̃
xnij ỹij

nij r̄
xnij ȳij

nij , ∀n ∈ N ,

(23)

(15)−(18),

where, for each attacker n ∈ N , xn solves problem Fn stated
in (4) and (5). Naturally, we may linearize the attacker’s prob-
lem as in (5) and (6). To linearize the defender’s problem in
RNTDANL, we use ẑ = log(z) in (22) and (23):

RNTDAMIP : min
y ∈ Y , x ∈ ℵ∗ , u,

x̃, x̄, ¯̄x, ẑ

ẑ, (24)

s.t. ẑ ≥ log(vn) +
∑

(i,j)∈A

(cnijxnij

+ c̃nij x̃nij + c̄nij x̄nij), ∀n ∈ N , (25)

(15)−(18).

2.7. Attacker Behaviors

For the purpose of assessing both the benefits and the pos-
sible caveats of the deceptive interdiction concept presented
in this article, we analyze four attacker behaviors, similar to
those proposed in [11]:

– Pseudo-optimal behavior: Attackers follow optimal
routes but only according to their perceptions (as
expected by the defender). That is, each attacker n deter-
mines his route by solving problem Fn given in (4)
and (5).

– Skeptic, pseudo-optimal behavior: As in the pseudo-
optimal behavior, attacker n solves Fn to find his route.
However, instead of following this route, he randomly
deletes one arc from it and solves Fn again for a new
route. Two variants are implemented: (a) Preemptive:
The attacker still uses his origin sn as the starting point
for the recalculated route. (b) Dynamic: The attacker fol-
lows the prescribed route up to the removed arc, and then
uses the tail node of that arc as an intermediate origin
before resolving Fn. In both variants the attacker’s route
depends on the arc removed; therefore our computational
results run all possible cases and report the average.

– Indifferent behavior: Attackers use a geographical infor-
mation system to follow the shortest route (based,
e.g., on distance or travel time) ignoring all defenses.
In our examples, we use the Euclidean distance
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for all attackers. Thus, if nodes i, j have coordi-
nates (ix , iy), (jx , jy), respectively, we define: dnij =√

(ix − jx)2 + (iy − jy)2, ∀n ∈ N , ∀(i, j) ∈ A.
– Cognizant behavior: attackers realize traps and decoys,

and plan their routes according to the actual probabil-
ities of interdiction (i.e., all defender’s assets become
transparent).

3. COMPUTATIONAL RESULTS

In this section, we illustrate our deception models using a
notional network. We provide all the input data so our results
can be reproduced. We also test two random variants of the
baseline network.

3.1. Test Network Setup

Our baseline network (see Fig. 1) has 53 nodes, 196
directed arcs (shown as undirected connections in the figure),
and three attackers, “A,” “B,” and “C.” One fictitious node
(labeled “A,B,C”) is used to allow each attacker to start at
any of four possible locations. (Arcs originating at this node
are not bidirectional.) The attackers’ values are vA = 20,
vB = 30, and vC = 50, and each attacker has two pos-
sible targets (labeled “A∗”, “B∗,” and “C∗,” respectively).
Target nodes are connected to a super-sink (not shown) in the
augmented network used by our models.

Coordinates for the original nodes (i.e., excluding
“A,B,C”) are all integer-valued, ranging from (ix, iy) = (1, 1)

for lower-left node “111” to (ix, iy) = (10, 10) for upper-right
node “338.” For simplicity, interdiction probabilities (actual
or perceived) have been made identical for all attackers, there-
fore we drop their subindex n below. In the baseline network,
these probabilities are assigned as follows (see examples in
Fig. 1):

1 − qij = pij = 1

100

√
(ix − jx)2 + (iy − jy)2

+ 1

500
(ix + iy + jx + jy) + 0.005�y,

where �y = 1 if iy �= jy (and �y = 0 otherwise). pij is
designed to increase with the arc length and with its proximity
to the upper-right corner. The lowest nominal probability of
interdiction is p113,114 = p114,113 = 1/100+9/500 = 0.028,
and the highest is 0.109 for arcs (238, 338) and (338, 238).

1 − q̃ij = p̃ij =




0.25, for long arcs, e.g., (218, 228)
or (118, 228),

0.35, for oblique arcs, e.g., (218, 225),
0.50, for short arcs, e.g., (225, 226)

or (223, 225).

1 − q̄ij = p̄ij =



0.25, for long arcs,
0.30, for oblique arcs,
0.35, for short arcs.

1 − ¯̄qij = ¯̄pij =



0.40, for long arcs,
0.50, for oblique arcs,
0.60, for short arcs.

TABLE 1. Baseline network results for cases with three transparent assets
and up to two traps or decoys.

Attacker’s value V under different behaviors

(R̃, R̄, Fixed Pseudo Skeptical Skeptical

Case ¯̄R) x̃? optimal (Preemt.) (Dynamic) Indifferent Cognizant

1 (3,0,0) No 70.6 69.3 67.7 62.3 70.6
2 (3,1,1) No 57.8 65.9 60.0 62.3 74.3
3 (3,1,1) Yes (1) 57.8 65.9 60.0 62.3 70.6
4 (3,2,0) No 59.0 61.2 60.0 56.7 70.4
5 (3,2,0) Yes (1) 59.0 61.2 60.0 56.7 70.4
6 (3,0,2) No 62.6 67.1 63.1 60.0 78.3
7 (3,0,2) Yes (1) 68.0 67.2 62.4 62.3 70.6

Remark. We set qABC,j = q̃ABC,j = q̄ABC,j = ¯̄qABC,j = 1,
∀j ∈ {111, 117, 217, 317} for the fictitious arcs originating at
the “A,B,C” node.

The best routes for attackers in the non-interdicted net-
work, that is, using only nominal probabilities of interdiction,
are as follows (see Fig. 1): 117-118-128-135 for attacker
“A,” with overall probability of success ZA = 82.3%; 217-
218-228-235 for attacker “B,” with probability ZB = 79.2%;
and, 317-318-328-335 for “C,” with probability ZC = 76.2%.
After accounting for the attacker’s value, the overall expected
value for the attacking team is V = 78.3 (where the maximum
possible is vA + vB + vC = 100).

3.2. Baseline Network: Detailed Results for Selected Runs

Table 1 displays results for several runs of an instance
with three transparent interdictions, one trap and one decoy,

as specified by the asset cardinality vector (R̃, R̄, ¯̄R). First,
we run NTDAMIP without the traps and decoys (Case 1),

i.e., (R̃, R̄, ¯̄R) = (3, 0, 0). This case is equivalent to a stan-
dard DA model with full transparency, as in [5], where the
defender’s goal is to minimize his worst-case outcome for
any possible route the attackers might find. The defender
places transparent interdictions on arcs 118–128, 218–228,
and 328–335 (indicated by thick arrows in Fig. 2) to decrease
the total attackers’ expected value from V = 78.3 (calculated
above with nominal probabilities) to V = 70.6. Naturally,
given the structure of DA models, the pseudo-optimal routes
for the attackers match the cognizant ones, that is, this plan
ensures attackers cannot improve this expectation by any
other behavior.

Cases 2 and 3 add one trap and one decoy to Case 1. In Case
2, we reoptimize the location of all interdiction assets. The
optimal interdiction plan is 112–122, 118–128, and 218–228
for transparent assets, 225 and 226 for the trap, and 328–
335 for the decoy. The result is a notable gain, V = 57.8,
if the attacker’s behavior is pseudo-optimal, as the defender
expects. The outcomes for skeptical and indifferent behav-
iors are worse, but the highest risk this plan poses is when
attackers behave cognizantly, in which case V = 74.3. To
hedge against these possible outcomes, we analyze Case 3,
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FIG. 1. Baseline test network (left) and detailed probabilities of interdiction for one portion of the network
(right). Best nominal routes for attackers are depicted as dotted lines. Nominal probabilities (pij) shown for
oblique arcs are rounded to three decimals. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

where the defender fixes his transparent interdictions as in
Case 1, and then deploys the traps and decoys optimally.
This idea is similar to that of secrecy in [4]. The trap is
again allocated to arc 225 and 226 and the decoy to arc
112 and 122 (Fig. 2). We observe that the attackers’ value
under the assumption of pseudo-optimal behavior remains
V = 57.8, but the defender’s worst case (cognizant attack-
ers) improves to V = 70.6 (as in Case 1). From this, it is clear
that Case 3 is superior to Case 2, and that the latter has multi-
ple optimal solutions which should not be overlooked when
analyzing multiple behaviors. Reference [2] acknowledges
this issue and describes an alternative formulation to choose

the worst-possible of these solutions (from the defender’s
perception).

Cases 4 and 5 explore two traps (and no decoys). Both
cases render the same solution whether transparent assets are
deployed before or simultaneously with traps. From Cases 2
to 5 it may seem that it could be beneficial to deploy trans-
parent assets first, but the next example demostrates that this
result cannot be generalized.

In Cases 6 and 7 (Fig. 3), the defender has two decoys and
no traps. Case 6 optimizes the location of all interdiction
assets simultaneously. Transparent interdictions occur on
arcs 333 and 334, 333–335, and 338–336, whereas 238–334

FIG. 2. Cases 1 and 3 (left), and Cases 4 and 5 (right). We use thick, solid arrows to depict transparent assets,
solid thin arrows for traps, and dashed arrows for decoys. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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and 328–335 become the arcs selected for decoys. Here,
the defender is blocking the access to both “C∗” targets
for attacker “C.” Because of the intelligent use of decoys,
in fact, the attacker is expected to traverse a transparent
interdiction on arc 338–336 as his best choice to arrive at tar-
get “335.” This strategy produces an overall pseudo-optimal
value V = 62.6, but if “C” realizes the decoys the worst-case
would be V = 78.3 (as in the non-interdicted network). In
contrast, in Case 7 we fix transparent assets first as in Case 1.
Then, we deploy decoys to arcs 112–122 and 228–333, which
renders an improvement in the worst-case, V = 70.6, at the
expense of worsening the pseudo-optimal value to V = 68.0.
Thus, if we had to choose one of these two strategies, the
answer would not be obvious.

The above examples show deceptive strategies may use
transparent assets and decoys to funnel attackers into invisible
traps. Arguably, an attacker could be suspicious of his percep-
tions and conjecture traps might have been placed somewhere
along his path. In Section 4, we develop a multiobjective
model that can help address this issue.

3.3. Testing Multiple Combinations of Assets

In this section, we assess our exact approaches (solving
NTDAMIP directly and via BD) under the assumption of

pseudo-optimal behavior, on 135 combinations of (R̃, R̄, ¯̄R)

with up to eight combined interdiction assets. We also com-
pare these solutions with the heuristic result provided by the
NTDAH model.

The computational experience has been carried out on a
2.60 GHz Dell Precision M6300 dual-processor laptop (but
using only one processor), with 3.50 Gb of RAM, running
under Windows XP. All the mathematical models and auxil-
iary code have been implemented in Xpress Mosel 2.4.0 [8].
Models have been solved using Xpress Optimizer 19.00.00
[8] and/or CPLEX 11.2 [10] as the solver engines, using their
default settings. In each of these three-attacker cases, the
NTDAMIP model has 9,010 constraints and 5,675 variables
(600 binary), with coefficient matrix density 0.06%. Both
Xpress and CPLEX presolved matrices exhibit very modest
reductions (e.g., Xpress only eliminates 4% of the constraints,
4% of all the variables, and 4% of the discrete variables). The
heuristic version NTDAH has 6,375 constraints and 3,181
variables (600 binary), with coefficient matrix density 0.1%.
Presolved matrices eliminate 4% of the constraints and 12%
of the variables, but again only 4% of the discrete variables.
The CPLEX solver outperforms the Xpress solver in pro-
ducing 1% near-optimal solutions (when possible) to either
of our three approaches (direct MIP, BD, or heuristic). All
methods are run for up to 30 minutes, or until the optimality
gap reaches 1%. Results are displayed in Table 2.

There are 74 cases where both NTDAMIP and BD converge
within 1%, 40 cases where BD converges but NTDAMIP does
not, and one case where the opposite occurs. In the other
20 cases, neither exact method converges to a near-optimal
solution in the allotted time.

It is worth noting that in most cases, the NTDAH model
produces the same (or very close) solutions to those of the

exact methods. The largest improvement obtained with exact

methods over NTDAH is 8%, for case (R̃, R̄, ¯̄R) = (4, 1, 2).
The largest improvement obtained with NTDAH is 6%, for

cases (R̃, R̄, ¯̄R) = (5, 1, 2) and (R̃, R̄, ¯̄R) = (3, 1, 4). NTDAH

typically reaches these solutions in a fraction of the time
needed by the exact methods. (Computational times not listed
here; see similar comparison in Sections 3.4 and 4.2). Even
though a defender’s solution y may be suboptimal, it is impor-
tant to note that the attackers’ routes (for the given y) are
calculated correctly by our models, because x must follow
the explicit constraints derived from strong duality.

In our examples, the objective value of the NTDAMIP

model, V(R̃, R̄, ¯̄R), as a function of the number of assets
used, ranges from V(0, 0, 0) = 78.3 to V(0, 3, 5) = 37.5.
This range may allow the defender to determine sets of mini-
mum configurations which achieve a pre-specified value. For

example, V(R̃, R̄, ¯̄R) ≤ 45 for the following configurations

of (R̃, R̄, ¯̄R): (5,1,1), (3,2,1), (4,1,3), (1,5,1), (2,3,2), (5,2,0),
(4,3,0), and (1,2,4). The defender may prefer any of these
configurations over the others based, for example, on their
cost.

The trend of decrease in attacker’s value as a function of
the number of defender’s deceptive assets can be approxi-
mated by fitting the above data with two linear regression

models, V̂0(R̃, R̄, ¯̄R) and V̂1(R̃, R̄, ¯̄R). The first model consid-
ers individual contributions by asset type, whereas the second
adds pair-wise interactions.

Remark. Our models use the best known solution for each
case, whether it is provably optimal or not.

The resulting fitted values produce:

V̂0(R̃, R̄, ¯̄R) = 81.29 − 3.99R̃ − 5.38R̄ − 4.05 ¯̄R
V̂1(R̃, R̄, ¯̄R) = 76.92 − 2.82R̃ − 2.62R̄ − 2.96 ¯̄R − 0.92R̃R̄

+ 0.06R̃ ¯̄R − 0.87R̄ ¯̄R
Coefficients of determination for these models are R2 =
0.873 for V̂0 and R2 = 0.941 for V̂1. Both models point
out that gains per transparent interdiction asset and decoy
are similar. This is reasonable given that, under the assumed
pseudo-optimal behavior, attackers view decoys as actual
interdiction points to avoid. In the first model it appears that
traps are the most valuable asset. This seems consistent with
the fact that, even if they are less effective than transparent
assets (if traversed), they are not visible to attackers, and
may be strategically placed along their expected routes. The
second model makes traps less valuable if individually con-
sidered, but again more valuable when used in conjunction
with transparent or decoy assets.

3.4. Results for Random Networks

We extend our testing to two random networks, “RN1” and
“RN2.” Both networks are generated from our baseline net-
work described in Section 3.1, by modifying the interdiction
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TABLE 2. Solution comparison for multiple combinations of assets (R̃, R̄, ¯̄R). The columns labeled “MIP%” and “BD%” show the optimality gaps for the
NTDAMIP solved directly as a MIP and via BD, respectively, after up to 30 minutes of computation.

MIP BD H MIP BD H MIP BD H MIP BD H MIP BD H

R̃ R̄ ¯̄R % % % R̃ R̄ ¯̄R % % % R̃ R̄ ¯̄R % % % R̃ R̄ ¯̄R % % % R̃ R̄ ¯̄R % % %

0 0 0 – – – 1 2 1 – – – 0 1 4 – – – 5 2 0 – – – 5 3 0 > – –
1 0 0 – – – 1 1 2 25 – – 0 0 5 – – – 5 1 1 > – 6 5 2 1 > 30 –
0 1 0 – – – 1 0 3 – – – 5 1 0 – – – 5 0 2 > > – 5 1 2 > > −6
0 0 1 – – – 0 4 0 – – – 5 0 1 – – – 4 3 0 – – – 5 0 3 > > –
2 0 0 – – – 0 3 1 – – – 4 2 0 – – – 4 2 1 > – – 4 4 0 38 – –
1 1 0 – – – 0 2 2 – – – 4 1 1 43 – – 4 1 2 > – 8 4 3 1 > – –
1 0 1 – – – 0 1 3 – – – 4 0 2 19 > – 4 0 3 > > – 4 2 2 > > –
0 2 0 – – – 0 0 4 – – – 3 3 0 – – 2 3 4 0 – – 5 4 1 3 > > −3
0 1 1 – – – 5 0 0 – – – 3 2 1 > – – 3 3 1 > – – 4 0 4 > – –
0 0 2 – – – 4 1 0 – – – 3 1 2 > – – 3 2 2 > – – 3 5 0 – – 7
3 0 0 – – – 4 0 1 – – – 3 0 3 28 – – 3 1 3 > > 4 3 4 1 > – –
2 1 0 – – – 3 2 0 – – – 2 4 0 – – – 3 0 4 > > – 3 3 2 > – –
2 0 1 – – – 3 1 1 40 – – 2 3 1 83 – 2 2 5 0 – – – 3 2 3 > > –
1 2 0 – – – 3 0 2 – – – 2 2 2 > – – 2 4 1 36 – 5 3 1 4 > > −6
1 1 1 – – – 2 3 0 – – – 2 1 3 > – 7 2 3 2 > – – 3 0 5 > > −2
1 0 2 – – – 2 2 1 60 – – 2 0 4 > – – 2 2 3 > – – 2 5 1 > 2 7
0 3 0 – – – 2 1 2 28 – – 1 5 0 – – – 2 1 4 > > 4 2 4 2 > – –
0 2 1 – – – 2 0 3 8 – – 1 4 1 – – – 2 0 5 > – – 2 3 3 > 27 –
0 1 2 – – – 1 4 0 – – – 1 3 2 > – 2 1 5 1 – – – 2 2 4 > – –
0 0 3 – – – 1 3 1 – – – 1 2 3 > – – 1 4 2 76 – 5 2 1 5 > > −5
4 0 0 – – – 1 2 2 – – – 1 1 4 56 – 7 1 3 3 > – – 1 5 2 > 2 7
3 1 0 – – – 1 1 3 25 – – 1 0 5 3 > – 1 2 4 > – – 1 4 3 > – –
3 0 1 – – – 1 0 4 – – – 0 5 1 – – – 1 1 5 90 – 4 1 3 4 > – –
2 2 0 – – – 0 5 0 – – – 0 4 2 – – – 0 5 2 – – – 1 2 5 > > –
2 1 1 – – – 0 4 1 – – – 0 3 3 – – 2 0 4 3 – > 5 0 5 3 – – 7
2 0 2 – – – 0 3 2 – – – 0 2 4 – – – 0 3 4 – – – 0 4 4 – – –
1 3 0 – – – 0 2 3 – – – 0 1 5 – – – 0 2 5 – – – 0 3 5 – – –

A dash “-” indicates the gap is less than 1%, and a “>” symbol indicates it is greater than 100%. The column labeled “H %” shows the percent difference
between the best solution produced by either exact approach and the NTDAH solution: A dash indicates this difference is under 1%; if positive, either the
NTDAMIP direct solution or the BD solution improve the NTDAH solution by that percentage; if negative, NTDAH produces the best solution of the three
methods.

probabilities of each interdictable arc as follows: In RN1, we
set pnij = 0.001 + Unij(0, 0.3); p̃nij = 0.5 + Ũnij(0, 0.5);
p̄nij = 0.5p̃nij; and, ¯̄pnij = 0.8p̃nij, where both Unij(a, b)

and Ũnij(a, b) denote independently generated random vari-
ables, uniformly distributed on the interval (a, b). RN2 also
generates pnij randomly as in RN1. However, probabilities
for all other assets are replaced by expected values, that is,
p̃nij = 0.75; p̄nij = 0.375; and, ¯̄pnij = 0.6.

For each of six selected configurations of (R̃, R̄, ¯̄R) we
create ten samples of RN1 and RN2. Each sample instance is
run for up to 1 hour, or until the gap of the NTDAMIP and BD
solutions reaches 1%. Results are summarized in Tables 3
and 4 for RN1 and RN2, respectively.

In both cases, BD outperforms solving NTDAMIP directly.
However, there are sample instances that do not converge
in the allotted time, especially for certain combinations of
interdiction assets.

For RN1, combinations with one decoy or one transparent
asset exhibit better solvability. For these sample cases, BD
converges in 34 of 40 instances, and achieves moderate gaps
(after one hour of computation) in the other six instances. On
the contrary, convergence is poor in the 20 cases from samples

with one trap and multiple decoys and transparent assets. In
these instances, average gaps are high even after excluding six
cases where a relative gap is not available (because the lower
bound provided by the master problem is negative after the
allotted time.) Solving NTDAH is faster and it provides better
solutions than BD in several of the instances where BD does
not converge. For RN2 the effectiveness of each approach is

very similar to that of RN1 for the same (R̃, R̄, ¯̄R). That is, the
specific interdiction probabilities do not affect the difficulty
of the problem as much as the available number of each type
of interdiction asset.

4. THE MULTIOBJECTIVE MODEL

The detailed examples from Section 3.2 show that the
defender may need to balance the potential improvement
from strategies that assume pseudo-optimal behaviors and
the risk should the attackers behave differently and/or be
suspicious about apparent “holes” in the defense system.
In this section, we address this issue by developing multi-
objective optimization extensions of the models introduced
in Section 2, and illustrate them with a detailed example.
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TABLE 3. Computational results for random network RN1. We run ten samples of each instance of (R̃, R̄, ¯̄R) with each approach.

NTDAMIP BD NTDAH

# Avg. CPU Avg. gap # Avg. CPU Avg. gap # # Avg.

(R̃, R̄, ¯̄R) conv. conv. (s) not conv. conv. conv. (s) not conv. worse better CPU (s)

(5,3,1) 0 n/a >100% 8 1,252 28.8% 1 0 195
(5,1,3) 0 n/a >100% 0 n/a 41.8%∗ 2 4 1, 165
(3,5,1) 7 1,864 14.9% 10 92 n/a 0 0 75
(3,1,5) 0 n/a >100% 0 n/a 51.8%∗ 0 4 1, 455
(1,5,3) 9 2,068 7.8% 10 147 n/a 1 0 78
(1,3,5) 0 n/a >100% 6 1,479 10.6% 0 2 200

For NTDAMIP and BD we report the number of samples that converge within 1% in one hour of computation, the average computational time for those cases,
and the average gap for the cases which did not converge, respectively. For NTDAH we report the number of samples where the heuristic solution was found
to be worse than 1% with respect to the NTDAMIP or BD solutions, and the number of samples where it was 1% better than both of those solutions, along
with the average computational time of all samples. (*) indicates that the average shown disregards at least one case in which BD’s gap was not available
because the last lower bound provided by the MP was negative.

4.1. Development

We seek to simultaneously minimize all of the objective
values associated with each attacker’s behavior. However,
given that some of these objectives are conflicting with each
other, we may only generate nondominated solutions (also
known as Pareto or efficient solutions). We use the well-
known method of weighted sum objectives (see, e.g., [7],
pp. 24, 65–75), even though we cannot guarantee generating
the entire efficient frontier because NTDAMIP is not a convex
model.

To develop this extension, we define the set of behaviors,
B = {pseudo-optimal, indifferent, cognizant}, and let the
defender specify weights λb ≥ 0, ∀b ∈ B, where

∑
b∈B λb =

1. (The skeptical behavior is excluded because it cannot be
modeled explicitly.) Below, data and variables indexed by b
retain their original meaning with the added qualifier “for
behavior b.” The multiobjective problem we need to solve
can be stated as

min
y∈Y

∑
b∈B

λbf (y; xb), (26)

where f (y; xb) represents the expected value obtained by the
attacker with behavior b and response xb, given the defender’s
interdiction plan y. In its original nonlinear version, we state

the above as the following multiobjective NTDLNL model,
MO-NTDANL:

MO-NTDANL : min
y∈Y ,Z

∑
b∈B

λb
∑
n∈N

vnZb
n (27)

s.t. Zb
n =

∏
(i,j)∈A

q
xb

nij

nij r̃
xb

nij ỹij

nij r̄
xb

nij ȳij

nij , ∀n ∈ N , ∀b ∈ B,

(28)

where xb
n solves Fb

n, the flow problem for the nth attacker
under behavior b:

Fb
n :




max
xb

n∈ℵ∗
n

∏
(i,j)∈A

q
xb

nij

nij r̃
xb

nij ỹij

nij
¯̄rxb

nij
¯̄yij

nij , for b = pseudo-optimal,

max
xb

n∈ℵ∗
n

∑
(i,j)∈A

−dnijx
b
nij, for b = indifferent,

max
xb

n∈ℵ∗
n

∏
(i,j)∈A

q
xb

nij

nij r̃
xb

nij ỹij

nij r̄
xb

nij ȳij

nij , for b = cognizant.

(29)

We now proceed as in the development of the NTDAMIP

model to formulate MO-NTDAMIP. For example, this model

TABLE 4. Computational results for random network RN2.

NTDAMIP BD NTDAH

Avg. CPU Avg. gap Avg. CPU Avg. gap Avg.

(R̃, R̄, ¯̄R) Conv. conv. (s) not conv. Conv. conv. (s) not conv. Worse Better CPU (s)

(5,3,1) 0 n/a >100% 9 1,119 50.2% 1 1 200
(5,1,3) 0 n/a >100% 0 n/a 48.3%* 3 3 1, 084
(3,5,1) 7 1,751 12.1% 10 114 n/a 0 0 68
(3,1,5) 0 n/a >100% 0 n/a 54.6%* 0 3 1, 316
(1,5,3) 8 2,047 47.2% 10 249 n/a 1 0 67
(1,3,5) 0 n/a >100% 5 1,059 25.0% 0 2 267

See Table 3 for column description.
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FIG. 3. Cases 6 (left) and 7 (right). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

must contain the dualized version of the attacker’s problem
(14)–(16) with xnij replaced by xb

nij for each behavior b ∈ B:

∑
(i,j)∈A

gb(ỹij, ȳij, ¯̄yij) xb
nij = ub

n,sn
− ub

nt , ∀n ∈ N , ∀b ∈ B,

(30)

ub
ni − ub

nj ≥ gb(ỹij, ȳij, ¯̄yij),

∀n ∈ N , ∀(i, j) ∈ A, ∀b ∈ B
[
πb

nij

]
, (31)

ub
ni − ub

nt ≥ 0, ∀n ∈ N , ∀i ∈ Tn, ∀b ∈ B, (32)

where:

gb(ỹij, ȳij, ¯̄yij)

=



cnij + c̃nij ỹij + ¯̄cnij ¯̄yij, for b = pseudo-optimal,
−dnij, for b = indifferent,
cnij + c̃nij ỹij + c̄nij ȳij, for b = cognizant.

(33)

To linearize decision variable products in (30) we proceed in
the same way as we did for (14) using (17). Specifically, we
replace any occurrence of type ỹxb, ȳxb, and ¯̄yxb by x̃b, x̄b,
and ¯̄xb, respectively:

∑
(i,j)∈A

(
cnijxnij + c̃nij x̃

b
nij + ¯̄cnij ¯̄xb

nij

) = ub
n,sn

− ub
nt ,

∀n ∈ N , b = pseudo-optimal, (34)
∑

(i,j)∈A

−dnijx
b
nij = ub

n,sn
− ub

nt , ∀n ∈ N , b = indifferent,

(35)

∑
(i,j)∈A

(
cnijxnij + c̃nij x̃

b
nij + c̄nij x̄

b
nij

) = ub
n,sn

− ub
nt ,

∀n ∈ N , b = cognizant, (36)

and use the following set of logical constraints:

0 ≤ x̃b
nij ≤ ỹij

[
π̃

1,b
nij

]
; x̃b

nij ≤ xnij
[
π̃

2,b
nij

]
; x̃b

nij ≥ ỹij + xb
nij − 1;

0 ≤ x̄b
nij ≤ ȳij; x̄b

nij ≤ xnij; x̄b
nij ≥ ȳij + xb

nij − 1;

0 ≤ ¯̄xb
nij ≤ ¯̄yij

[ ¯̄π1,b
nij

]
; ¯̄xb

nij ≤ xnij
[ ¯̄π2,b

nij

]
; ¯̄xb

nij ≥ ¯̄yij + xb
nij − 1,

∀n ∈ N , ∀(i, j) ∈ A, ∀b ∈ B. (37)

The last step consists of replicating the generalized network
(described by (7)–(13)) for each of the behaviors, therefore
replacing any occurrence of x and xP variables by xb and xP,b,
respectively:

FIG. 4. Interdiction plan for λ = (1, 0), and attacker routes for both behav-
iors. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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FIG. 5. Interdiction plan for λ = (0.75, 0.25), and attacker routes for both
behaviors. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

∑
j|(sn,j)∈A∗

n

xP,b
n,sn,j = 1, ∀n ∈ N , ∀b ∈ B, (38)

∑
j|(i,j)∈A∗

n

(
xP,b

nij + x̃P,b
nij + x̄P,b

nij + ¯̄xP,b
nij

)

=
∑

j|(j,i)∈A∗
n

(
qnjix

P,b
nji + q̃njix̃

P,b
nji + q̄njix̄

P,b
nji + qnji ¯̄xP,b

nji

)
,

∀n ∈ N , ∀i �= sn, t, ∀b ∈ B, (39)
∑

j|j∈Tn

(
xP,b

njt + x̃P,b
njt + x̄P,b

njt + ¯̄xP,b
njt

)
= Zn, ∀n ∈ N , ∀b ∈ B,

(40)

x̃P,b
nij ≤ ỹij, ∀n ∈ N , ∀(i, j) ∈ A∗

n, ∀b ∈ B
[
π̃

P,b
nij

]
, (41)

x̄P,b
nij ≤ ȳij, ∀n ∈ N , ∀(i, j) ∈ A∗

n, ∀b ∈ B
[
π̄

P,b
nij

]
, (42)

¯̄xP,b
nij ≤ ¯̄yij, ∀n ∈ N , ∀(i, j) ∈ A∗

n, ∀b ∈ B
[ ¯̄π2,b

nij

]
, (43)

xP,b
nij + x̃P,b

nij + x̄P,b
nij + ¯̄xP,b

nij ≤ xb
nij,

∀n ∈ N , ∀(i, j) ∈ A∗
n, ∀b ∈ B. (44)

The complete MO-NTDAMIP model becomes:

MO-NTDAMIP : min
y∈Y , Z, xb∈ℵ∗ , ub ,

xP,b , x̃P,b , x̄P,b , ¯̄xP,b ,

x̃b , x̄b , ¯̄xb

∑
b∈B

λb
∑
n∈N

vnZb
n ,

s.t. (31)–(44).

Multiobjective versions of the BD approach, the heuristic
model and the robust model, MO-BD, MO-NTDAH, and
MO-RNTDAMIP, respectively, can be derived analogously.
MO-NTDAH solution cannot be guaranteed to be optimal
when |B| > 1 or |N | > 1.

4.2. Example

We now demonstrate the value of the multiobjective
model. To simplify the presentation, we focus on attacker “A”

only, whose target nodes are “134” and “135,” and the pseudo-
optimal and cognizant behaviors (i.e., we set λindifferent = 0).

We posit a defender with assets (R̃, R̄, ¯̄R) = (4, 4, 0). We
ignore the single attacker’s value vA because it does not affect
the optimization, so we report Zb

A for each behavior b, and
redefine V = ∑

b∈B λbZb
A as the objective function value.

The size of this multiobjective model is roughly |B|
times that of the single-objective (i.e., the number of behav-
iors simultaneously optimized). However, since the number
of binary variables remains the same, solvability is not
remarkably more challenging than the single-objective case.

First, we show the optimal interdiction plan when all the
weight is given to the pseudo-optimal behavior (Fig. 4), that
is, using λ = (λpseudo-optimal, λcognizant) = (1, 0). Corre-
sponding attacker’s routes for both behaviors are depicted
as dotted lines. Clearly, under the expected pseudo-optimal
behavior, the attacker avoids transparent interdictions but
falls into all four traps along the way. He chooses target
“134” but actually succeeds with probability Zpseudo-optimal

A =
27.8%. On the other hand, if his behavior were cognizant,
he would be able to devise a route to target “135” that
avoids all interdictions, and would succeed with probability
Zcognizant

A = 68.8%.
We now examine the case where λ = (0.75, 0.25) (Fig. 5).

One transparent interdiction moves from arc 111 and 112 to
arc 123 and 124 (where there was a trap in the λ = (1, 0)

case). Traps move closer to both targets. These changes can be
explained because in the previous case a cognizant behavior
was completely irrelevant, but as it gains weight the defender
must make sure cognizant routes become “longer” (i.e., less
likely to succeed with nominal probabilities). For this case,
Zpseudo-optimal

A = 28.7% and Zcognizant
A = 64.1%.

The solution we obtain for both cases λ = (0.5, 0.5) and
λ = (0.25, 0.75) (Fig. 6) shows transparent and trap assets
surrounding both targets and effectively blocking access to
them. Both routes for the attacker are identical up to node
“122,” and both arrive at target “135.” As opposed to pre-
vious cases, even the cognizant route is forced to traverse
interdicted arcs (three traps in this case). For this case,
Zpseudo-optimal

A = 38.4% and Zcognizant
A = 53.3%.

FIG. 6. Interdiction plan for λ = (0.5, 0.5) and λ = (0.25, 0.75), and
attacker routes for both behaviors. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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FIG. 7. Interdiction plan for λ = (0, 1), and attacker routes for both behav-
iors. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

In our final case (Fig. 7), only the cognizant behavior
prevails, that is, λ = (0, 1). All four transparent assets
“surround” the targets, forcing the cognizant route to pass
through one of them. Here, Zpseudo-optimal

A = 46.9% and

Zcognizant
A = 50.9%.

None of the above cases matches the two-phase process
of deploying transparent assets first, and then fixing those
before deploying the traps for a pseudo-optimal behavior.
That process would lead to the same four locations for trans-
parent assets around the targets, and two of the traps on arcs
117 and 118 and 118–128. Since that suffices for the pseudo-
optimal route (because such a route uses all interdicted arcs
117 and 118, 118–128, and 128–135), it leaves no guidance
on how to locate the two remaining traps.

As in the single-objective case, the MO-NTDAMIP

requires notable computational effort to be solved directly.
Table 5 shows results regarding this issue, and compares
MO-NTDAMIP with MO-BD and MO-NTDAH for weights
in increments of 0.25. MO-BD can solve the λ = (1, 0) and
λ = (0, 1) cases in a few seconds, and all others in less than
150s. MO-NTDAH obtains feasible solutions in less than ten
seconds, which, given that |N | = 1, are guaranteed to be
optimal when |B| = 1, that is, for λ = (1, 0) and λ = (0, 1).
Objective values produced by MO-NTDAH are the same or
better than MO-NTDAMIP after 100 seconds and, except in

TABLE 5. Results for MO-NTDAMIP (solved directly), MO-BD and
MO-NTDAH after several computational times.

MO-NTDAMIP

MO-BD MO-NTDAH

λ 100 s 1,000 s 10,000 s (gap %) 150 s 10 s

(1, 0) 27.8 27.8∗ 27.8∗ 27.8∗
(0.75, 0.25) 41.2 37.9 37.5∗ 37.5∗ 37.9
(0.50, 0.50) 48.8 46.0 45.9 (34%) 45.9∗ 46.4
(0.25, 0.75) 50.5 49.6 49.6 (64%) 49.6∗ 49.6
(0, 1) 53.0 51.0 51.0 (80%) 51.0∗ 51.0∗

Objective function values shown are the attacker’s weighted evasion prob-
abilities. Solutions marked with an asterisk (*) are guaranteed to be
optimal.

one case, after 1,000 seconds too. MO-NTDAMIP requires a
long time to converge, as noted by large gaps after 10,000 sec-
onds in some cases. This occurs even in the fully transparent
case, λ = (0, 1).

To complete the multiobjective analysis, Figure 8 displays
an approximation of the efficient frontier of the problem with
solutions generated for weights in increments of 0.10, and the
corresponding objective values.

5. CONCLUSIONS

This article extends the study of network interdiction
with asymmetric information. Under the hypothesis that the
defender has credible information about the attackers’ behav-
iors, he can devise deceptive interdiction tactics which are
more efficient than those resulting from completely cog-
nizant (i.e., transparent) models. The multiobjective exten-
sion strikes an adequate balance among good choices for
several behaviors simultaneously considered. It reproduces
the cognizant results for a full risk-averse strategy, and oth-
erwise realizes tradeoffs which cannot be obtained with a
single-objective model.

The resulting problems are more challenging than those
for standard DA models, especially due to the different
expressions governing the defender’s and attacker’s objec-
tives, and the necessary manipulations to convert the model
into a MIP. BD helps solve many instances, but further

FIG. 8. Plot of approximated efficient frontier and associated objective values. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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research is needed to find stronger representations of the prob-
lem that improve convergence. A heuristic approximation
has also helped us to obtain fast, empirically good, feasible
solutions.

This article considers four classes of behaviors for the
attacker, including that of what we call a skeptical attacker.
Further research may also represent other behaviors, such as
attackers who may realize a fraction of the deceptive assets,
or use near-optimal routes, among others. In any case, the
behavior’s weight is an input to the problem. An interesting
extension may consider an attacker whose class of behavior
is also influenced by the defender’s strategy. For example,
if the optimal path (as perceived by the attacker) remains
unchanged after the attacker observes the visible defenses, he
may become skeptical and randomize his route. Incorporat-
ing this information in the defender’s and attacker’s strategies
would require notably complicated data assumptions, and
also appears beyond the capabilities of current optimization
techniques, except perhaps by combining them with simula-
tion. Alternatively, it would be useful to devise a stochastic
optimization model that explicitly accounts for uncertainty
in the attacker’s behavior and/or estimates of perceived prob-
abilities, producing robust solutions for a modest number of
scenarios.
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