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A key strategic issue in pre-disaster planning for humanitarian logistics is the pre-establishment of adequate capacity and
resources that enable efficient relief operations. This paper develops a two-stage stochastic optimization model to guide

the allocation of budget to acquire and position relief assets, decisions that typically need to be made well in advance before a
disaster strikes. The optimization focuses on minimizing the expected number of casualties, so our model includes first-stage
decisions to represent the expansion of resources such as warehouses, medical facilities with personnel, ramp spaces, and
shelters. Second-stage decisions concern the logistics of the problem, where allocated resources and contracted transportation
assets are deployed to rescue critical population (in need of emergency evacuation), deliver required commodities to stay-back
population, and transport the transfer population displaced by the disaster. Because of the uncertainty of the event’s location and
severity, these and other parameters are represented as scenarios. Computational results on notional test cases provide
guidance on budget allocation and prove the potential benefit of using stochastic optimization.

Key words: humanitarian logistics; relief operations; stochastic optimization
History: Received: November 2007; Accepted: September 2009 after 2 revisions.

1. Introduction
Humanitarian logistics is defined as ‘‘the process of
planning, implementing, and controlling the efficient,
cost-effective flow of and storage of goods and mate-
rials as well as related information from point of
consumption for the purpose of meeting the end ben-
eficiary’s requirements’’ (Thomas and Mizushima
2005). Until recently, the major thrust of the emergency
planners was on operational details. However, this
cannot be accomplished without long-term commit-
ments, the most important of which is the pre-
establishment of adequate capacity and resources that
enable an efficient response. For example, after learning
from Hurricane Katrina, U.S. Federal Emergency Man-
agement Agency (FEMA) has supplies warehoused,
routes planned, and temporary shelters designated in
the hurricane-prone region. This deals with questions
such as: What assets need to be in place in anticipation
of a disaster? And, where should they be located? We
refer to this task as ‘‘prepositioning’’ of assets such as
warehouses, medical facilities, ramp space, and tem-
porary shelter space. The term prepositioning is also
commonly employed to refer to the storage of supplies
near a potential area in anticipation of an imminent
disaster, but we use it in its long-term, strategic sense.

The need for strategic planning is recognized,
among others, by FEMA’s Response and Recovery
Division Director for Region IX, who points out that
the prescript tasks, before disaster happens, such as
medical evacuation, facility support, commodity dis-
tribution, and temporary housing have to be planned
(Fenton 2008b); by US Homeland Security Director of
Operation Analysis, ‘‘A good strategic model for
planning is necessary in the future’’ (Kapos 2007); by
US National Oceanic and Atmospheric Administra-
tion, which emphasizes the importance of response
and recovery (Reynolds 2008); by US California Na-
tional Guard’s recommendation that a system needs
to be in place for ‘‘any emergency’’ (Nelan, 2008); and,
by the Asia-Pacific Task Force for Emergency Pre-
paredness (2009) which supports a strategic plan for
more effective emergency preparedness, risk reduc-
tion, and disaster response.

This paper deals with the strategic planning and
resource allocation for humanitarian aid in future cy-
clic, natural disasters. We introduce a stochastic
optimization model to guide strategic resource allo-
cation for cyclic disasters in geographical areas, where
history tells us natural disasters occur frequently, for
example, hurricanes in the Southeastern United States
or typhoons in Southeast Asia. Its stochastic compo-
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nent enables the modeling of multiple areas, which
could be affected by disasters of different severity
about which we may only have limited, probabilistic
information. Our approach also models some opera-
tional details in order to assess the consequences of
long-term strategies.

2. Literature Survey
Some of the initial work in humanitarian aid logistics
was done in locating emergency service facilities for
fire stations or ambulances under the paradigm of set
covering problems: a demand is covered if there exists
at least one available unit within a specified distance
from its location (see, e.g., Cabot et al. 1970, Church
and ReVelle 1974, Shmoys et al. 1997, Tonegas et al.
1971). These models have evolved over time to account
for more detailed information, such as locations of
storage areas for critical emergency equipments and
supplies (Hale and Moberg 2005). Alsalloum and Rand
(2006) extend the models for the maximal covering lo-
cation problem by replacing the 0–1 deterministic
coverage with a probability of covering a demand
within the target time and then using sufficient vehicles
at each location to satisfy a required performance level.

Barbarosoglu et al. (2002) develop a mathematical
model for disaster relief helicopter mission. Baker
et al. (2002) model cargo and passenger routes during
a military airlift.

Ozdamar et al. (2004) integrate time into a planning
model for a natural disaster. They solve a dynamic,
time-dependent transportation problem at given time
intervals during ongoing delivery of humanitarian
aid. The model is deterministic at the core because it
assumes the demand, allowed to be unknown, is fixed
initially and then forecasted successively. More re-
cently, Yi and Ozdamar (2007) extend that model as a
mixed-integer, multicommodity network flow prob-
lem focused on vehicle traffic to coordinate the
evacuation and support after the disaster.

Hoffman (2006) discusses the challenges in coordi-
nating humanitarian logistics when aid is also offered
by non-government organizations and the private
sector, and the cross-learning potential. Van Wassen-
hove (2006) offers this perspective with illustrations of
numerous case studies, discussing the importance of
managing uncertainty and risk.

The literature reviewed for this study suggests that
there is an unfulfilled need for research in humani-
tarian logistics for managing the supply chain under
uncertainty. Certain assumptions such as that the ex-
istence of at least one supply center within distance
from a demand site is sufficient to cover that site’s
demand is an oversimplification of the actual prob-
lem. For example, in a relief operation demands often
require response from multiple units and locations.

Our stochastic optimization model is driven by the
expected number of survivors rescued from (possibly)
affected areas (AAs). While the abovementioned work
by Yi and Ozdamar (2007), Hale and Moberg (2005),
Ozdamar et al. (2004), Barbarosoglu et al. (2002), and
Baker et al. (2002) address goals similar to ours, all of
them do so with a deterministic model and most of
them from an operational point of view, such as, how
pre-established relief units and assets will respond to
disaster relief operations. Thus, the level of detail is
catered more toward operational logistics and does
not determine the strategic positioning and sizing of
relief units and assets. A preliminary version of the
model developed in this paper was introduced by Ee
Shen (2006) and tested by Heidtke (2007). In this pa-
per, we have enhanced Ee Shen’s mathematical model
by adding a survival rate, a third type of population,
and nested a second objective function. We have also
created different scenarios and analyzed the model’s
results to prove its robustness to changes in critical
parameters, among others. Fenton (2008a) points out
that planners have initiated efforts in a similar direc-
tion as our model, but without the formal use of
stochastic optimization.

3. The Problem

3.1. Overview
Our problem posits possible AAs that ‘‘may be’’ hit by
a disaster (since no disaster has occurred yet), and
candidate relief locations (RLs), where resources al-
ready exist or can be prepositioned. RLs are not
necessarily located away from the AAs (if collocated,
we allow certain relief assets to become unavailable
when a disaster hits that specific area).

Our discussions with US emergency planners
(Eisner 2007, Fenton 2008a, Nelan 2008, and others
in the humanitarian community), based on lessons
learned from events like Hurricane Katrina, California
wild fires, and Hurricane Gustav, make us confident
of the representative partition of the affected popula-
tion into three categories: critical population, which
refers to those in need of emergency medical evacu-
ation to RLs; stay-back population, which includes those
who may stay at the AAs but require delivery of cer-
tain commodities from RLs for survival; and transfer
population, needing only evacuation due to short-term
displacement to RLs.

When a person from the critical population is not
evacuated, we assume his health deteriorates and re-
sults in death. Likewise, we estimate that a certain
percentage of stay-back population who are not sup-
plied with commodities will perish. This reflects the
need for aggregate essential supplies, which could
include potable water in flooded areas, or self-admin-
istered vaccines in case of a disease, to be delivered to
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the AAs. Our first objective function, due to life and
death considerations, consists of minimizing total ca-
sualties from these two populations. For simplicity,
we assume that everybody in the critical population
has the same priority, though in principle, they could
have varying degrees of emergency. Evacuating the
transfer population to temporary shelters, though not
as critical as the above, is also important, and becomes a
secondary objective in our test cases. (We do not model
the subsequent problem of long-term displacement.)
Our approach allows this hierarchy to be flexible by
letting the planner decide the threshold of achievement
for the first objective while optimizing the second ob-
jective. Combining these objectives is pertinent because
the organizations involved in the relief effort share the
resources, and the transportation activity shares the
time line (Fenton 2008b, Nelan 2008).

Consistent with our strategic approach, decision
variables are divided into two stages. The first one
deals with strategic decisions that must be imple-
mented well before a disaster strikes. These involve
the location and capacity expansion of assets like:
health care providers at hospitals, for the critical pop-
ulation; warehouses for storing commodities and
ramp space to deliver them by aircraft, for the stay-
back population; and temporary shelters at RLs, for
the transfer population.

The consequences of strategic decisions are of sto-
chastic nature because they can be realized after only
a disaster has occurred. This is reflected by our sec-
ond, operational stage, which spans the first 3 days
after the event. Though nowhere stated formally,
humanitarians agree on the fact that the first 72 hours
after a disaster are critical to provide relief since com-
munities are not expected to stand on their own for
much more than that time (Balcik et al. 2008, Fenton
2008a, Weitz 2006). Decisions for this stage include the
engagement and use of Means of Transportation
(MoT) in order to evacuate critical and transfer pop-
ulation to the relief hospitals and shelters, as well as
delivering of commodities to the stay-back population
in the AAs.

3.2. Deterministic and Probabilistic Inputs
Deterministic inputs include: a network of AAs and
RLs, with nominal travel times between them (which,
of course, may vary by MoT); ramp space for com-
modity delivery by aircraft, in each AA; health care
providers and hospital facilities, and warehouses at
each RL; MoT with associated capacity for people (in-
cluding critical and transfer populations as well as
relief workers) and/or commodities; penalty (number
of casualties in the stay-back population) per unit of
unmet commodities; and pre-positioning cost of ad-
ditional health care providers, warehouses, ramp
space, and post-disaster engagement of MoT.

We model uncertainty about the location and mag-
nitude of the disaster by assuming that the following
information is scenario-dependent, i.e., known only in
terms of a probability distribution: critical, stay-back,
and transfer populations by AA; required relief work-
ers needed to handle the commodities; increased
transportation times, such as those due to roads
washed away after major flooding; and survival rate
for rescued critical population. We assume the prob-
ability distribution can be devised by subject matter
experts or emergency planners. The creation of these
scenarios and the agreement on their characteristics
and probabilities is probably the most delicate aspect
of the input data, along with the choice of penalties
for unmet delivery of commodities.

3.3. Transportation
The logistics problem is conceived as follows: critical
population is picked up only by special mission MoT.
These MoT include a small medical team and are
configured with a special layout that allows the trans-
portation of severely injured victims, but not com-
modities. On the other hand, a general mission MoT is
configured to transport cargo and relief workers from
RLs to the AAs, as well as transfer population from
AAs to RLs.

We disallow select MoT from using certain RLs.
This could be the case, e.g., of helicopters in the ab-
sence of an adequate helipad. Air-based MoT require
ramp space at any AA in order to deliver commod-
ities, whereas land-based MoT are assumed to unload
and deliver commodities directly to the people. To
reduce the complexity of the model, we assume that
there are no internal flights or ground transportation
between AAs or between RLs. That is, trips for both
special mission and general mission MoT start at an
RL, travel to an AA, and continue to a (possibly
different) RL. For the purpose of strategic planning,
we deem it reasonable to assume each MoT will be
capable of performing multiple trips, as long as these
are restricted by its available operating hours, and no
attempt is made to employ a fine-grained model for
the detailed schedule of each individual truck or air-
craft. While this can be viewed as a model limitation,
we believe it is reasonable because of the long-term
focus of the approach. However, we acknowledge
that, in an actual relief operation, the number of
working hours may be hindered by poor planning,
long decision cycles from policy makers, other logistic
delays, and social unrest.

Commodities, which are aggregated as volume,
require relief worker’s intervention, especially for un-
loading and distribution in AAs. Therefore, each ton
(or equivalent volume unit) of commodities arriving
at a certain RL is associated with a prescribed number
of relief workers.
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4. The Prepositioning Optimization
(PO) Model

In this section we introduce our PO model, a multi-
objective, two-stage, stochastic, mixed-integer pro-
gram. Units are stated within square brackets [.] at the
end of each of the definitions. We use the unit ‘‘ve-
hicles’’ to refer to land-vehicles, aircraft, or vessels.

Indices and index sets

A Set of affected areas; a 2 A

L Set of starting and drop off relief locations;
l 2 L

T Set of MoT (e.g., CH-53 aircraft, HMVV
land-vehicle); t 2 T

Tl Subset of MoT that can depart from (and
drop off at) relief location l

TR Subset of MoT that require ramp space for
delivery of commodities (aircraft assets)

O Set of disaster scenarios; o 2 O

Deterministic parameters (units)

h0
l ; h

max
l ,

cH
l

Initial capacity for health personnel at re-
lief location l (persons), maximum capacity
expansion (persons), and variable expan-
sion cost ($/person)

sH Critical population that one health care
provider can handle (persons)

s0
l ; smax

l ;
cS

l

Initial capacity for critical population at
relief location l (persons), maximum ca-
pacity expansion (persons), and variable
expansion cost ($/person). (These are
based on the initial health personnel,
maximum health personnel expansion,
variable health personnel cost, and sH)

r0
a ; rmax

a ;
cR

a

Initial ramp space capacity at affected area
a (ft3�1000), maximum capacity
expansion (ft3�1000), and variable expan-
sion cost ($/ft3�1000), respectively

m0
l ; mmax

l ;
cM

l

Initial capacity for commodities at relief
location l (ft3�1000), maximum capacity
expansion (ft3�1000), and variable expan-
sion cost ($/ft3�1000), respectively

u0
t ; umax

t ;
cU

t

Initial number of units of MoT t (vehicles),
maximum capacity expansion (vehicles),
and variable expansion cost ($/vehicle),
respectively

d0
l ;

dmax
l ; cD

l

Initial shelter capacity for transfer popula-
tion at relief location l (persons), maximum
capacity expansion (persons), and variable
expansion cost ($/person)

�st Capacity for critical population of special
MoT t (persons/vehicle�trip)

�mt, �wt Capacities for commodities (ft3�1000/ve-
hicle�trip) and relief workers (workers/
vehicle�trip), respectively, of general
MoT t

�dt Capacity for transfer population of general
MoT t (persons/vehicle�trip)

ht Available hours during the planning time
for each unit of MoT t (hours/vehicle)

b Total budget allocated ($)

q Penalty for unmet commodities (i.e., q of
the stay-backs are assumed to perish per
unit of unmet commodities) (persons/
ft3�1000)

a relaxation level for the first objective when
the second objective is optimized (fraction)

Scenario-dependent parameters (units), all under scenario o

mo
a Demand for commodities in affected area a

(ft3�1000)

soa Critical population in affected area a (per-
sons)

loa Survival rate for critical population res-
cued in affected area a (fraction)

do
a Number of transfer population in affected

area a (persons)

ho
tla Trip time (hours) for MoT t to travel from

relief location l to affected area a (hours/
trip) (The same time is assumed from a to l,
so only ho

tla is defined.)

wo
a Relief workers required to handle com-

modities at affected area a (workers/
ft3�1000)

po Probability of scenario o occurring

Derived sets

LS, LM,
LD, AR

Subset of relief locations, supply locations,
shelter locations and affected areas with
ramp space, respectively. For example,
LS ¼ fl 2 Ljs0

l 40 or smax
l 40g

TG; TS Subsets of general mission MoT (i.e.,
�st ¼ 0; �mt � 0; �wt � 0; �d � 0) and special
mission MoT (i.e., �st40; �mt ¼ �wt ¼ �dt ¼ 0),
respectively.

K Subset of four-tuples (t, l, a,l 0) where MoT t
can travel from l to a and then to l0:
f t; l; a; l0ð Þ 2 T � L� A� Ljho

tla þ ho
tl0a � tt;

t 2 Tl \ Tl0 g, where tt is the operating
range of t.

KG; KS Subsets of four-tuples (t, l, a,l0) where gen-
eral mission MoT t and special mission
MoT t, respectively, can travel from l to a,
and then to l0:

Salmerón and Apte: Stochastic Optimization for Natural Disaster Asset Prepositioning
564 Production and Operations Management 19(5), pp. 561–574, r 2009 Production and Operations Management Society



KG ¼ fðt; l; a; l0Þ 2 Kjt 2 TG; l; l0 2 LM [ LDg;
KS ¼ fðt; l; a; l0Þ 2 Kjt 2 TS; l0 2 LSg

First-stage decision variables (units)

Dsl Expansion for health capacity for critical
population at drop off relief location l
(persons)

Dml Expansion for commodities at relief loca-
tion l (ft3�1000)

Dra Expansion for ramp space at affected area a
(ft3�1000)

Ddl Expansion for transfer population at relief
location l (persons)

Second-stage decision variables (units), all under scenario o

Duo
t Additional units of MoT t needed (vehi-

cles)

So
tlal0 Critical population rescued by MoT t

traveling from l to a and then l0 (persons)

So
ta Total critical population rescued by MoT t

at affected area a (persons)

USo
a Unmet critical population at affected area a

(including rescued but not surviving)
(persons)

Mo
tlal0 Commodities delivered by MoT t traveling

from l to a and then l0 (ft3�1000)

Mo
ta Total commodities delivered by MoT t to

affected area a (ft3�1000)

UMo
a Unmet commodities at affected area a

(ft3�1000)

Do
tlal0 Transfer population transported by MoT t

traveling from l to a and then l0 (persons)

Do
ta Total transfer population transported by

MoT t from affected area a (persons)

UDo
a Unmet transfer population at affected area

a (persons)

No
tlal0 Number of trips from l to a and then to l0

by MoT t (trips)

Wo
ta Number of relief workers carried by MoT t

to affected area a (workers)

z1; z2 Objective value for the first goal (persons)
and second goal (persons), respectively

Formulation:
Objective 1 (minimize): expected casualties from

critical and stay-back populations

z1 ¼
X
o

po
X

a

USo
a þ qUMo

a

� �
; ð1Þ

Objective 2 (minimize): expected unmet transfer
population

z2 ¼
X
o

po
X

a

UDo
a ; ð2Þ

BudgetX
l2LS

cS
l Dsl þ

X
l2LM

cM
l Dml þ

X
l2LD

cD
l Ddl þ

X
a2AR

cR
a Dra

þ
X

t

cU
t Duo

t � b; 8o; ð3Þ

MoT available and trips

Duo
t � umax

t ; 8t;o ð4Þ
X

ðl;a;l0Þjðt;l;a;l0Þ2K

ðho
tla þ ho

tl0aÞNo
tlal0

� htðuo
t þ Duo

t Þ; 8t;o; ð5Þ
X

ðl0;aÞjðt;l0;a;lÞ2K

No
tl0al ¼

X
ða;l0Þjðt;l;a;l0Þ2K

No
tlal0 ; 8l; t 2 Tl;o; ð6Þ

Critical population and its transportation

Dsl � smax
l ; 8l 2 Ls ð7Þ

X
ðt;aÞjðt;l;a;l0Þ2KS

So
tlal0 � so

l þ Dsl; 8l; l0 2 Ls; 8o; ð8Þ

So
tlal0 � �stN

o
tlal0 ; 8ðt; l; a; l0Þ 2 KS; 8o; ð9Þ

So
ta ¼

X
ðl;l0Þjðt;l;a;l0Þ2KS

So
tlal0 ; 8a 2 A; t 2 TS; 8o; ð10Þ

X
t2TS

loa So
ta þUSo

a ¼ soa ; 8a;o; ð11Þ

X
t2TS

So
ta � soa ; 8a;o: ð12Þ

Delivery of commodities for stay-back population

Dml � mmax
l ; 8l 2 LM; ð13Þ

X
ðt;a;l0Þjðt;l;a;l0Þ2KG

Mo
tlal0 � mo

l þ Dml; 8l 2 LM; 8o; ð14Þ

Mo
tlal0 � �mtN

o
tlal0 ; 8ðt; l; a; l0Þ 2 KG; 8o; ð15Þ

Mo
ta ¼

X
ðl;l0Þjðt;l;a;l0Þ2KG

Mo
tlal0 ; 8t 2 TG; 8a;o; ð16Þ

X
t2TG

Mo
ta þUMo

a ¼ mo
a ; 8a;o: ð17Þ

Sheltering transfer population

Ddl � dmax
l ; 8l 2 LD; ð18Þ
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X
ðt;l;aÞjðt;l;a;l0Þ2KG

Do
tlal0 � do

l0 þ Ddl0 ; 8l0 2 LD; 8o; ð19Þ

Do
tlal0 � �dtN

o
tlal0 ; 8ðt; l; a; l0Þ 2 KG; 8o; ð20Þ

Do
ta ¼

X
ðl;l0Þjðt;l;a;l0Þ2KG

Do
tlal0 ; 8t 2 TG; 8a;o; ð21Þ

X
t2TG

Do
ta þUDo

a ¼ do
a ; 8a;o: ð22Þ

Ramp space

Dra � rmax
a ; 8a 2 AR; ð23Þ

X
t2TR

Mo
ta � ro

a þ Dra; 8a 2 AR; 8o: ð24Þ

Relief workers versus commoditiesX
t2TG

Wo
ta � wo

a

X
t2TG

Mo
ta; 8a;o; ð25Þ

�wtM
o
ta þ �mtW

o
ta � �wt �mt

X
ðl;l0Þjðt;l;a;l0Þ2KG

No
tlal0 ;

8t 2 TG; 8a;o:
ð26Þ

Domain for decision variables

Dml; Dsl; Dra; Ddl; Mo
tlal0 ; Mo

ta; UMo
a ; So

tlal0 ; So
ta;

USo
a ; Do

tlal0 ; Do
ta; DMo

a � 0; 8t; l; l0; a;o;
ð27Þ

Duo
t ; No

tlal0 ; Wo
ta � 0 and integer; 8t; l; l0; a;o: ð28Þ

PO is a multi-objective model comprising two op-
timization problems hierarchically arranged. In the
first one, PO-1, we minimize expected casualties re-
sulting from non-rescued (and rescued but not
surviving) critical population and the stay-back casu-
alties due to unmet commodities, as given by
Equation (1). The second model, PO-2, minimizes un-
met demand for transfer population (2):

PO-1 : z�1 ¼min z1

s:t:

(
ð1:1Þ

ð2Þ-ð9:2Þ

PO-2 : z�2 ¼min z2

s:t:

ð1:2Þ

ð2Þ-ð9:2Þ

z1 � ð1þ aÞz�1:

8>><
>>:

ð29Þ

Notice that PO-1 might be seen as a bi-objective
problem itself, since it seeks to meet the demand of
two different groups of people. Our assumption is
that both groups are equally important in the sense
that failing to meet either demand results in persons
to perish. Specifically, (1) accounts for casualties from
the critical population, along with a fraction of those
who do not receive commodities (q casualties per
ft3�1000). PO-2 minimizes unmet demand for transfer

population, but with the additional constraint (29) as
an aspiration level based on PO-1’s optimal solution.
(In our test cases we set the aspiration level to a5 1%.)

All of the remaining constraints are shared by both
models. Equation (3) is the budget constraint. Most of
the budget allocation is expected to occur during the
first stage (expansion of medical facilities, ware-
houses, shelters, and ramp space). The remaining
budget can be allocated to the engagement of addi-
tional MoT from the available fleet, usually
commercial transportation, arranged beforehand to
become available during a disaster, with contractual
cost based on the level of utilization (thus, scenario-
dependent). It is precisely these constraints that link
decision variables involving critical population and
commodities. Here, we note a possible enhancement
would be to capture the influx of additional funding
after the disaster has occurred. While part of this
funding may be provided by private donors at the
onset of a disaster for different purposes (such as fi-
nancial help to individuals, reconstruction, etc.), we
note that it is not complicated to accommodate an
anticipated extra budget, bo, particular to each sce-
nario, by simply adding bo to the right-hand side of
Equation (3). (This extension has not been explored in
our experiments, i.e., we assume bo 5 0 for each o.)

Constraints (4) bound the maximum capacity ex-
pansion for MoT, whereas (5) ensure travel time per
MoT does not exceed their available operating hours.
Constraints (6) are flow-balance constraints in and out
of each of RL. This is a global balance equation by
MoT type, understanding that the actual schedule
details of each individual vehicle, aircraft, or vessel
cannot be anticipated and would become an unnec-
essary complication for long-term planning purposes.

Constraints (7) limit the allowable increase in health
care providers located in the respective RLs. Con-
straints (8) limit the amount of critical population that
can be treated by available health providers. Con-
straints (9) ensure these people are carried by an MoT
configured for special mission, traveling on a given
route, but not exceeding the capacity. Constraints
(10)–(12) account for ‘‘met’’ and ‘‘unmet’’ demand of
critical population at each AA. Specifically, the sur-
vival rate in (11) reflects that part of the critical
population rescued will perish.

Constraints (13) limit warehouse expansion. Con-
straints (14) limit delivery from eligible warehouses.
Constraints (15) ensure the commodities are carried
by existing MoT configured for general mission on
each route. Constraints (16) and (17) account for met
and unmet demand of commodities for stay-back
population at each AA. Likewise, (18)–(22) are con-
straints for sheltering transfer population.

Constraints (23) and (24) restrict ramp space ex-
pansion, which in turn limits commodities delivered
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by aircraft. Constraints (25) ensure that relief workers
arrive at the AAs at a given rate based on the amount
of commodities supplied to each AA. Constraints (26)
depict total capacity of an MoT on a general mission
as a linear function of relief workers and commodities.
For example, on every trip a CH-53 could carry up to
W ¼ �w ¼ 55 relief workers, or M ¼ �m ¼ 1:53 ft3�1000
commodities, or any linear mix of these such as
W ¼ 50; M ¼ 0:139.

Finally, (27) and (28) define the appropriate do-
mains for the decision variables.

An important observation is that the model is not
intended to plan for a single-occurrence event. Since
the formulation is in terms of expected value, the an-
swers it provides are valid independent of the number
of times the different events being modeled occur, as
long as: (a) the given probability distribution for the
scenarios is representative of the frequency with
which the actual events occur, (b) no two events are
ever simultaneous (if they could be, we should define
a new scenario with the information of the compound
event and its associated probability), and (c) there is
no loss of resources, original or expanded, after an
event. That is, the optimal prepositioning of assets
before a (hypothetical) first disaster should also be
optimal after that disaster. This would not be the case
if such disaster significantly changes the demograph-
ics of the AAs and/or makes us reassess the
probability distribution of the events.

5. Test Case Description
In this section, we describe our test case and the as-
sumptions under which it is developed. The test case
posits a hurricane striking six possible areas with
different severities. For the specific data we use public
sources cited in Ee Shen (2006) and Heidtke (2007),
and direct consultation with humanitarians (Eisner
2007, Fenton 2008b), among others.

The underlying network is depicted in Figure 1. The
same travel time is assumed for all AAs within the
same region. Data used for the RLs are given in Table
1. For each category, we provide the initial capacity,

the maximum capacity expansion, and its unit cost.
For health facilities, capacity reflects the number of
personnel at the RL who may provide health care to
critical population. In this case, expansion refers to
physical capacity and/or contractual obligations for
additional health care providers to help in the relief
effort should they be needed. In our examples, we
assume sH ¼ 5 patients can be treated by each health
care provider, existing or added.

All cities have little initial warehouse capacity.
Large urban cities have limited possibility for expan-
sion, and at a much higher cost, than the medium
urban and small rural cities. Likewise, our test case
hypothesizes that additional capacity of health care
providers and shelter space is less expensive to es-
tablish in rural areas, where there exists substantial
room for expansion and lower costs of living.

Data for AAs include ramp space and its possible
expansion, as shown in Table 2. Ramp space is re-
quired by all aerial MoT in order to land and deliver
commodities. Other data depend on the scenario lo-
cation and severity, as shown in Tables 3 and 4. We
postulate five plausible scenarios, with probabilities
given in parenthesis.

Region 2:
a5, a6 

Region 1:
a1, a2, a3, a4 

l2

l3

l5
l4

l1

4.0

0.5 3.5

1.52.0 2.0

   1.0
3.0

1.0

5.0

Figure 1 Network of six possible affected areas (a1, . . . ,a6) and five relief locations (l1, . . . ,l5). Numbers on the arcs are travel times (hours) for a CH-53
helicopter. RL l1 and l2 are large and urban; l3 and l4 are medium-sized and urban, and l5 is small and rural.

Table 1 Relief Location

Asset attributes

Large

urban

Medium

urban

Small

rural

l1, l2 l3, l4 l5

Warehouses:

Initial capacity (ft3�1000) 150 100 0

Optional expansion (ft3�1000) 500 2000 4000

Expansion cost ($/ft3�1000) 200,000 150,000 100,000

Health facilities:

Initial capacity (health care providers) 1000 600 600

Optional expansion (health c. p.) 1000 2000 2000

Expansion cost ($/health c. p.) 2000 1500 1500

Shelters for the displaced:

Initial capacity (persons) 1000 500 0

Optional expansion (persons) N/A 2000 5000

Expansion cost ($/person) N/A 1000 1000
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For example, Table 3 describes scenario o1 as a
mass flooding in Region 1, which may occur with a
probability of 20%. This scenario would make air
transportation of commodities to AA a2 impossible,
and would increase ground transportation times to
AAs a3 and a4 by 50% with respect to the nominal
values. Similarly, Table 4 shows larger critical, stay-
back and transfer populations in AAs a1, . . ., a4 under
scenario o1, which contrasts with AAs a5 and a6,
where no damage is envisaged.

In our baseline model, we set to q 5 37 casualties
per ft3�1000 of unmet commodities. This figure is, for
example, equivalent to 1.0 casualties per metric ton if
we assume an average commodity density of 1.3 g/
cm3. For simplicity, we employ a unique survival rate
l ¼ loa ¼ 1 8a;o. Clearly, more detailed information
could further refine our results by combining different
rates by area and/or scenario. We also set wo

a ¼ 10
relief workers required to handle each ft3�1000 of
commodities, regardless of the scenario and area. Fi-
nally, our baseline case budget is $30 million. Later,
we perform sensitivity analysis for a range of budget
levels and values of and l and q.

Table 5 summarizes the data used for MoT. Nom-
inal travel times are calculated based on the speed
of MoT and the distance between RLs and AAs (see
Figure 1). However, as stated above, certain scenarios
contemplate delayed or even impeded routes from an
RL to certain AAs, making travel times different. We
also assume that MoT are ready-to-use and no main-
tenance issues or breakdowns occur. We limit the
operation for all MoT to 20 or 21 per day. The re-

maining time is assumed for gas refill and change of
shift for the flight and land operators. For example,
during a 3-day horizon, a CH-53 could make 30 round
trips between RL l2 and AA a1. The rescue CH-53S and
MV-22S capacities are based on the maximum number
of patients (from the critical population) the aircraft
can carry. Worker capacity refers to the number of
relief workers that can be carried. For example, the
tractor trailer and the box van can carry a small num-
ber of relief workers in the main cab, but the
passenger van can carry a full complement.

6. Computational Results
We have implemented the PO model using the gen-
eral algebraic modeling language (GAMS, Brooke
et al. 1998), using Cplex 11.0 (ILOG 2008) as the solver
engine, on a 2 GHz laptop computer with 2 GB of
RAM. The objectives we report below are the values
of z1 and z2 after having solved PO-2 using an aspi-
ration level a ¼ 1%.

6.1. Solution Interpretation and Analysis

6.1.1. Baseline Test Case and Related Results. Table
6 shows the achieved objective values. The expected
value of perished critical population is 698. Given the
survival rate (l5 1), this figure is due exclusively to
non-rescued critical population. Unmet demand for
commodities causes the remaining 678 casualties.
The combined objective is z1 ¼ 1376 perished. For the
second objective, the expected number of transfer

Table 2 Ramp Space Data by Affected Area

Ramp space attributes a1 a2 a3 a4 a5 a6

Initial capacity (ft3�1000) 30 10 10 30 20 10

Optional expansion (ft3�1000) 100

Expansion cost ($/ft3�1000) 12,000

Table 3 Scenarios, Probabilities, and Type of Impact

Scenario Description

o1ðpo1 ¼ 0 :2Þ Region 1 (a1, a2, a3, a4) affected severely

(Mass flooding, Region 1) Airport in a2 flooded, 50% road delays into a3

and a4

o2 ðpo2 ¼ 0 :3Þ Region 1 (a1, a2, a3, a4) affected moderately

(Moderate flooding, Region 1)

o3ðpo3 ¼ 0 :1Þ Region 2 (a5, a6) affected severely

(Mass flooding, Region 2) Relief location l3 not available

o4ðpo4 ¼ 0 :2Þ Region 2 (a5, a6) affected moderately

(Moderate flooding, Region 2)

o5 ðpo5 ¼ 0 :2Þ No area is affected

(No flooding)

Table 4 Data for Affected Areas and Scenarios

Characteristics

of affected

areas

o1ðpo1

¼ 0 :2Þ
o2 ðpo2

¼ 0 :3Þ
o3ðpo3

¼ 0 :1Þ
o4ðpo4

¼ 0 :2Þ
o5 ðpo5

¼ 0 :2Þ

Critical population

(persons)

a1, a4 8000 2000 0 0 0

a2, a3 2000 0 0 0 0

a5, a6 0 0 8000 2000 0

Commodities

(ft3�1000)

a1, a4 300 50 0 0 0

a2, a3 100 25 0 0 0

a5, a6 0 0 400 100 0

Transfer population

(persons)

a1, a4 20,000 5000 0 0 0

a2, a3 5000 0 0 0 0

a5 0 0 10,000 2000 0

a6 0 0 15,000 3000 0
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population that cannot be transported to shelters is
z2 ¼ 15; 400.

We notice that almost all the critical population
can be rescued except in the most severe scenario,
o1, which affects all the areas in Region 1. There is a
small amount of unmet demand for commodities in
the severe scenarios, o1 and o3, and none in the
other scenarios. Overall, the expected value of non-
rescued critical population and perished stay-backs
due to unmet commodities are about 9% and 5% of
the total, respectively. Thus, PO-1 has balanced
efforts for these two populations, but additional re-
sources are still necessary to cover the most severe
scenarios (especially o1) and the transfer population.

At the budget level of $30 million, warehouse ex-
pansion occurs at 237,000 ft3 at l5. Approximately
1500 health care providers are added at l5, 5000 at l2,

and 5300 at l3. The ramp space expansion is 1000 ft3

at a3, 3000 ft3 at a4, 80,000 ft3 at a5, and 40,000 ft3 at a6.
Expansion of shelters, if any, is very small and six
tractor trailers are also added under scenario o1.

6.1.2. Exploration of Budget Levels. We vary the
budget from $10 million to $100 million in increments
of $10 million holding all other input values constant.
(We also enforce expenditure persistence, i.e., a
minimum expenditure in each category given by the
solution for the previous budget level.)

Figure 2(a) shows the budget allocation to each
expansion category, and Figure 2(b) depicts the per-
centage of expected unmet goals. Allocation levels
increase progressively in warehouses and shelters,
and remain fairly constant for expansion of ramp
space and health facilities. The pronounced slope for

Table 5 Summary of Means of Transportation Data (Heidtke 2007)

Name Type

Initial

units

available

vehicles

Maximum

expansion

vehicles

Expansion

cost (variable)

($ per ft3

�1000)

Capacity

commodity

(ft3�1000)

Capacity

critical

population

(persons)

Capacity

relief worker

(persons)

Capacity

transfer

population

(persons)

Available

hours

Operating

range

(hours)

CH-53S Rescue helicopter 15 20 2,600,000 0 24 0 0 60 8

CH-53G General purpose

helicopter

5 20 2,600,000 1.530 0 55 55 60 8

MV-22S Rescue VSTOL aircraft 15 20 4,160,000 0 12 0 0 60 10

MV-22G General purpose

VSTOL aircraft

5 20 4,160,000 0.858 0 24 24 60 10

C-130J Cargo aircraft 5 36 70,314 4.551 0 92 92 60 5

C-17 Cargo aircraft 5 36 174,908 8.736 0 102 102 60 5.33

B747 Cargo aircraft 1 4 254,620 6.190 0 366 366 60 14.23

DC-10 Cargo aircraft 3 8 277,176 4.618 0 0 0 60 6.14

A300 Cargo aircraft 4 11 19,896 13.822 0 0 0 60 5.47

MD-11 Cargo aircraft 4 10 66,350 21.100 0 0 0 60 8.21

Tractor trailer Cargo vehicle 25 300 27,968 5.256 0 3 3 63 16.5

Box van Passenger vehicle 25 500 75,384 1.300 0 3 3 63 10

Passenger bus Passenger vehicle 25 250 6000 0 0 56 56 63 12

Table 6 Objective Function Terms

Terms in the objective functions o1ðpo1 ¼ 0 :2Þ o2 ðpo2 ¼ 0 :3Þ o3ðpo3 ¼ 0 :1Þ o4ðpo4 ¼ 0 :2Þ o5 ðpo5 ¼ 0 :2Þ Expected value

Critical population 20,000 4000 16,000 4000 0 7600

Rescued 16,520 4000 15,984 4000 0 6902

! Perished 3480 0 16 0 0 698

Stay-back population commodities 800 150 800 200 0 325

Delivered 739 150 739 200 0 307

Unmet 61 0 61 0 0 18

! Stay-back perished 2260 0 2260 0 0 678

Transfer population 50,000 10,000 25,000 12,000 0 17,900

Transported 3125 3125 3125 3125 0 2500

! Not transported 46,875 6875 21,875 8875 0 15,400

z1 is the expected value of perished (from the critical and stay-back populations). z2 is the expected value of non-transported from transfer population.
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warehouse expansion is a clear indication that initial
conditions in warehouse capacity are the most com-
pelling limitation to minimize casualties. For the
lowest budget ($10 million), however, the budget al-
location in health facility expansion slightly exceeds
that of warehouses. The reason is that the initial ca-
pacity for special mission MoT is sufficient for most
(over 90%) of the critical population, but there are
not enough health care providers to take care of
them. Thus, PO-1’s strategy is to match MoT and
health care providers first, because otherwise (with-
out the medical resources) the large initial fleet of
special MoT is useless. While not all medical emer-
gencies from critical population have been met, the
remaining ones would require the allocation of bud-
get to both additional special mission MoT and
health facility expansion, whose combined costs do
not offset the penalties for undelivered commodities.
Likewise, the expansion of ramp space is justified by
an initial fleet of general mission MoT, which re-
quires more ramp space than initially available.
Humanitarians can derive valuable lessons from
these tradeoffs between increased budgets, their dis-
tribution, and how they affect expected casualties.

The high cost to rescue the remaining critical pop-
ulation also justifies the bottleneck shift to ware-
house expansion, until the budget is $40 million, in
order to decrease the unmet demand for commod-
ities. Given some of the MoT that transport the com-
modities are also used to provide transportation out
of the AAs for transfer population, we also observe a
modest but progressive, nearly linear investment in
shelter space. Beyond the $40 million budget, addi-

tional allocation to expand special MoT capacity and
health facilities occurs again. This enables transpor-
tation and health care to the remaining 9% of critical
population.

Allocation to shelter increases until the expansion
capacity is exhausted: Total shelter space in all five
RLs after maximum expansion is 12,000. There are
two scenarios where there is more transfer popula-
tion than this number: 50,000 (20% probability) and
25,000 (10% probability), so even after expanding up
to maximum shelter space, on the average, there still
will be (50,000� 12,000)�0.21(25,000� 12,000)�0.1 5

8900 transfer population left behind at AAs. Thus, as
shown in Figure 2(a), all the allocations stabilize after
a budget of $70 million.

6.1.3. Effects of Survival Rate, l, and the Penalty
q. Our excursions on these parameters allow l5 1
(baseline case), 0.8, 0.6, 0.4, and 0.2, and q 5 18.5, 37
(baseline), 55.5, 74, 92.5, and 111. All other data are
kept constant. Overall results (see Table 7) show that,
as the survival rate decreases, so does the picked-up
critical population and the investment in health
expansion. In the baseline case, 6902 persons (out of
an expected maximum of 7600) are rescued. Since
l5 1 in this case, all of them are assumed to survive.
However, as we decrease the survival rate down to
0.2, pick-ups decrease by up to 15.9% (i.e., 5806
persons, of whom only 0.2�5806 5 1161 will actually
survive). The drop in pick-ups could be much more
dramatic if there was not an existing health and
transportation infrastructure to accommodate this
fraction of critical population to be rescued. This is
evident from the fact that, at l5 0.2, there is no
investment in health expansion, but the investment
increases in warehouse capacity, ramp space, and/or
transportation. In other words, our critical population
is using all of the initial capacity of special MoT and
health care providers because this capacity ‘‘is already
there,’’ but expansion in this category has been
discouraged by the low survival rate and the need
to meet other exigencies. This effect becomes more
noticeable as the penalties for unmet commodities
increase, where even for larger values of l we observe
the investment in health is, in general, a lesser priority.

Figure 3 shows the investment in all categories for
select budget levels of $10 million, $30 million and
$50 million, but varying q 5 37 and 74 (casualties per
ft3�1000), and survival rates levels, l, equal to 1.0,
0.8, 0.6, 0.4, and 0.2. The investments in health
capacity expansion shown in Figure 2(a) occur again
in Figure 3, except when l is very low (0.2), or me-
dium (0.4, 0.6) combined with a larger q (74) or a low
budget. Additional warehouse capacity is always
accompanied by a fairly constant investment in
ramp-space, regardless of the budget level, q and l.
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Figure 2 Baseline case: (a) Budget allocation; (b) Unmet goals
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This occurs because no investment in additional air-
based MoT is sought, especially at lower budget
levels. (The gap to reach the $50 million mark in
these cases is due to the fact that, under some sce-
narios, we do not need to spend all the budget left
from the first stage.) Finally, investment in shelter
space increases with the budget, tends to be the same
or less as q increases (to allow for additional ware-
house expansion), and decreases as the survival rate
increases.

6.2. Assessing the Stochastic Model
In this section we assess the benefit of using the sto-
chastic PO solution over other solutions obtained
from deterministic versions of PO, hereafter POD.
POD is defined as a restricted version of PO,
where |O| 5 1, i.e., the scenario to occur is known
with certainty.

Let us assume a planner has a validated, POD-like
optimization tool. The question is what value the sto-
chastic version of such tool could add to the planning

Table 7 Solution Sensitivity to Changes in Survival Rate and Penalty for Unmet Commodities

S 5 Average critical population rescued (maximum is 7600 persons) M 5 Average commodities delivered (maximum is 325 ft3�1000)

l q 5 18.5 37 55.5 74 92.5 111 l q 5 18.5 37 55.5 74 92.5 111

1.0 0.0 6902 0.0 � 1.2 0.0 � 14.7 1.0 0.0 307 0.0 0.0 0.0 3.9

0.8 � 0.2 � 0.2 � 0.2 � 0.2 � 14.7 � 14.7 0.8 0.0 0.0 0.0 0.0 3.9 3.9

0.6 0.1 � 0.1 � 0.1 � 14.7 � 14.7 � 14.7 0.6 0.0 0.0 0.0 3.6 3.9 3.9

0.4 � 1.2 � 6.6 � 14.3 � 15.9 � 15.9 � 15.9 0.4 � 4.6 0.7 2.6 2.9 3.3 3.6

0.2 � 6.5 � 15.9 � 15.9 � 15.9 � 15.9 � 15.9 0.2 0.0 2.3 3.3 3.3 3.3 3.3

H 5 Investment in health ($ million) W 5 Investment in warehouses ($ million)

l q 5 18.5 37 55.5 74 92.5 111 l q 5 18.5 37 55.5 74 92.5 111

1.0 0.0 4.2 0.0 � 14.3 � 14.3 � 95.2 1.0 � 1.3 23.8 0.0 2.9 3.4 17.6

0.8 0.0 0.0 0.0 0.0 � 95.2 � 95.2 0.8 1.3 0.0 0.4 0.4 17.6 17.2

0.6 0.0 0.0 0.0 � 95.2 � 95.2 � 95.2 0.6 � 1.3 � 0.8 � 0.4 16.8 16.8 17.2

0.4 � 14.3 � 50.0 � 88.1 � 100.0 � 100.0 � 100.0 0.4 � 18.5 3.4 12.6 14.3 16.8 17.2

0.2 � 50.0 � 100.0 � 100.0 � 100.0 � 100.0 � 100.0 0.2 0.8 10.9 14.7 15.1 15.5 16.0

The value for the baseline case (highlighted) is shown in the original units. Other values represent the percent variation with respect to that value.
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process. From our baseline case, we carry out two
standard comparisons between POD and PO: ‘‘Wait-
and-See’’ (W&S) analysis and ‘‘Value of Stochastic
Solution’’ (VSS) analysis (Birge and Louveaux 1997,
pp. 137–152), as explained below. In order to do this,
we need to define some additional notation:

PODo, deterministic optimization model for sce-
nario o.

z�1ðPODoÞ; z�2ðPODoÞ, optimal objective function
values for deterministic model PODo:

z�1ðPOoÞ; z�2ðPOoÞ, optimal objective function values
for scenario o in stochastic model PO.

PO=D̂, stochastic PO model where first-stage vari-
ables have been fixed as ðD̂m; D̂s; D̂d; D̂rÞ.

z�1ðPOo=D̂Þ; z�2ðPOo=D̂Þ, optimal objective function
values for PO=D̂ model under scenario o.

EOð:Þ, expected value of the argument over the
probability space defined by O.

z�ð:Þ; optimal solution pair z�1ð:Þ; z�2ð:Þ
� �

for the prob-
lem in the argument.

The W&S analysis compares the best possible solu-
tion for each individual scenario, z�ðPODoÞ, with the
stochastic solution for that scenario, z�ðPOoÞ, and the
average over all scenarios. From Table 8, the expected
value of perfect information for objective z1 is 24%,
and for objective z2 is 25%. The worst case is for low-
probability, severe scenario o3, for which z1 is 47%
worse in the stochastic solution than with perfect in-
formation. However, as we shall see, the PO solution
will still be attractive when all scenarios are consid-
ered simultaneously.

Given that we do not expect the PODo solution to
be suitable for other scenarios than o itself, we now
assess the value of the stochastic solution (VSS). Solv-
ing PODô yields a first-stage solution, D̂ô, which
permits us to solve PO=D̂ô and assess differences with
respect to PO. For some scenarios, z�ðPOo=D̂ôÞ might
be preferred to z�ðPOoÞ (this is more likely to occur if
o is close to ô). The difference between the objective

values of both solutions is called VSS, which in this
case has two components, one for each objective. By
design, we know that it must be z�ðPOÞ � z�ðPO=D̂ôÞ,
on the average.

The last three columns in Table 8 show how differ-
ent PODô (for certain ô) perform under scenarios
o ¼ o1; . . .o5, in comparison with z�ðPOoÞ for those
same scenarios. We try: (a) ô ¼ o1; (b) ô ¼ o3; and (c)
ô built from an average of o1; . . . ;o4 (denoted o1234),
where the fifth ‘‘no-disaster’’ scenario has been ex-
cluded so it does not reduce the average demand and
resource allocation.

We observe that, by planning for o1 only, we im-
prove the first goal by 19% (as anticipated by our
above analysis on perfect information). However, this
solution neglects o3, which suffers 383% more than it
would if the PO solution were implemented instead.
This can be explained by the fact that scenario o1

affects Region 1, whereas o3 affects Region 2 (see Ta-
bles 3 and 4, and Figure 1). Thus, o1 consolidates most
of its relief assets at RLs l1 and l2, which are far from
Region 2 (allowing fewer trips within the 72-hour
span). Also, medium urban RL l3 (which is far from
Region 1, but attractive in terms of expansion of
warehouse and health facilities) would become un-
available under o3. On average, the VSS of the PO
plan compared with the D̂o1 plan is 47%. Likewise,
when we plan for o3 only, D̂o3 severely neglects the
scenario o1. In this case, VSS 5 61%. Finally, in the
customized plan for the average scenario o1234, all
individual comparisons are favorable to the PO plan,
and VSS 5 256%.

6.3. Model Statistics
Table 9 describes a number of model instances and the
challenges they present in terms of tractability. Our
baseline instance is called Run #0. This problem has
approximately 14,000 constraints and 20,000 variables,
of which 7000 are integer, but it solves very rapidly for

Table 8 ‘‘Wait and See’’ and ‘‘Value of Stochastic Solution’’ Assessments

o po z�ðPOoÞ: stochastic model z�ðPODoÞ: W&S solutions (%) z�ðPOo=D̂o1 Þ (%) z�ðPOo=D̂o3 Þ (%) z�ðPOo=D̂o1234 Þ (%)

o1 0.2 z1 5 5740 � 19 � 19 83 167

z2 5 46,875 0 0 0 � 19

o2 0.3 z1 5 0 0 0 0 0

z2 5 6875 � 100 1 2 � 100

o3 0.1 z1 5 2276 � 47 383 � 47 703

z2 5 21,875 0 0 0 � 41

o4 0.2 z1 5 0 0 0 0 0

z2 5 8875 � 100 0 2 � 100

Expected value z1 5 1376 � 24 47 61 256

z2 5 15,400 � 25 0 1 � 42

Percentages refer to the difference with respect to the PO solution for the given scenario, or in expected value.
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both objectives. Runs #1 through #10 vary the number
of AAs, RLs, or scenarios. We maintain the number of
MoT types as in our baseline case because we feel it is
representative of most problems of interest. In each
new run, data for AAs, RLs, and/or scenarios are
randomly generated based on the existing data for an
analogous entity in the baseline case multiplied by a
random factor uniformly distributed on the interval
(0.5, 2). For example, if AA a1 is used to instantiate a
new area, a given datum in the new area will follow
that of a1 affected by the abovementioned generated
random factor. A similar procedure is used for new,
multiple-indexed data (such as trip times).

We observe a rapid, exponential growth in the
problem size as we increase the size of AAs, RLs, or
scenarios. Cplex preprocessor reduces this size con-
siderably; for example, for Run #2, the post-processed
model has 513,000 variables and 143,000 constraints
(half and a fifth of the original, respectively). Even
with these reductions, we find several issues: In Run
#5, the model is generated by GAMS but cannot be
loaded into Cplex; in Run #7, Cplex produces a fea-
sible solution, but runs out of memory before
optimality; in Run #8, the model cannot be generated
by GAMS. Thus, the largest PO instances we have
been able to solve by directly employing commercial
solvers are for 20 AAs, 10 RLs, and 25 scenarios, or for
6 AAs, 5 RLs, and 100 scenarios.

In all of these runs, we have also observed that little
computational time is spent in the mixed-integer pro-
gramming (branch and bound algorithm) itself: the
linear relaxation is normally strong. This is expected
given the nature of the integer variables in the prob-
lem (such as the aggregate number of trips made by
each MoT type between each RL and each AA), which
are usually zero or large. If a near-optimal integer so-
lution can be easily found after the continuous
solution, the essential difficulty is the course of di-
mensionality for the continuous PO model. This also
suggests the use of decomposition schemes such as

Benders partitioning (Benders 1962), suited to tackle
two-stage stochastic programs (see, e.g., Birge and
Louveaux 1997, p. 157, Escudero et al. 1999, Marin
and Salmeron 1998), because it relies on the iterative
solution of one scenario at a time (which we can do for
a large number of AAs and RLs, as shown in Runs #9
and #10). Other decomposition strategies could be
used to split the problem into two separate models
involving variables for critical population and com-
modities, respectively. To do this, the budget linking
constraints in (3) must be eliminated, e.g., by La-
grangean relaxation, or by parametric search on the
portion of the total budget b that is allocated to each
group of variables.

7. Summary, Conclusions, and Future
Research

We have introduced a stochastic optimization model,
PO, to plan the strategic arrangement of budget-lim-
ited supplies and assets in advance of major disasters.
Our analysis reflects:

(a) A marked trend in the allocation of our budget
to the different categories of expansion based
on: (i) the mismatch between the initial MoT
capacity and that of health providers, ware-
houses, and ramp spaces, (ii) the budget level,
and (iii) planners’ estimates for survival rates
and penalties (casualties) for undelivered com-
modities; and,

(b) The benefits of using stochastic optimiza-
tion over simpler, deterministic models to deal
with uncertainty in the disaster’s location and
severity.

Since both the modeling and data employed have
been based on input and feedback from experts, we
have confidence in the strength of these conclusions.
Emergency planners can gain insights into their own

Table 9 Model Statistics

Run # |A| |L| |T| |O| Remarks Variables (integer) (�1000) Constraints (�1000) CPU z1 (sec) CPU z2 (sec)

0 6 5 13 5 Baseline 20 (7) 14 0.8 1.1

1 20 10 13 5 117 (49) 77 4.0 5.7

2 40 20 13 5 1096 (390) 708 89.5 180.7

3 6 5 13 25 106 (36) 72 4.9 8.4

4 20 10 13 25 1021 (359) 668 63.4 151.1

5 40 20 13 25 5603 (1990) 3621 Unable to load

6 6 5 13 100 427 (145) 291 26.2 57.8

7 20 10 13 100 3289 (1153) 2155 Suboptimal

8 40 20 13 100 Unable to generate

9 100 25 13 1 Dense 636 (228) 408 322.0 740.7

10 100 25 13 1 Sparse 636 (228) 408 48.6 104.6
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planning problem by using PO to analyze their own
sets of data.

The analysis of the results for our baseline case and
a number of excursions suggest, for example, that
matching existing transportation capacity and health
capacity for critical population is a must-do unless the
survival rate is very low or penalties for unmet com-
modity delivery are high combined with a low
budget. As more budget becomes available, expan-
sion of warehouses and delivery of commodities takes
priority, because the cost for additional special trans-
portation and health facilities for the last pockets of
critical population is too expensive.

All of our analysis is based on stochastic optimiza-
tion, which allows the planner to enter a variety of
scenarios (e.g., by severity or location of the disaster).
The solution rendered by our model exhibits substan-
tial benefits by accounting for all of the scenarios
simultaneously, but without being subordinated to
any of them.

Our model can be further enhanced in a number of
ways by: incorporating alternative objectives, such as
the total budget itself (for a desired level of perfor-
mance on the other goals); employing a survivability
curve of critical population over time, and assigning
different priorities among survivors; expanding the
scope of needs to incorporate security and communi-
cation; and, considering a time horizon over which
budget becomes a decision variable, leading to a
multi-stage model, in which capacity is built over the
horizon as additional resources become available, and
events which may occur over the years influence sub-
sequent budgetary and infrastructure decisions.
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