
ABSTRACT

W e describe a stochastic program
for planning the wartime, sealift
deployment of military cargo

that is subject to attack. The cargo moves
on ships from U.S. or allied seaports of
embarkation, to seaports of debarkation
(SPODs) near the theater of war where it is
unloaded and sent on to final, in-theater
destinations. The question we ask is: Can a
deployment-planning model, with proba­
bilistic information on the time and location
of potential enemy attacks on SPODs, suc­
cessfully hedge against those attacks? That
is, can this information be used to reduce
the expected disruption caused by such
attacks? We develop a specialized, stochas­
tic mixed-integer program whose solutions
answer that question in the affirmative for
realistic deployment data. Furthermore,
compared to the optimal deterministic so­
lution, the stochastic solution incurs only a
minor"disruption penalty" when no attack
occurs, and outcomes for worst-case sce­
narios are better. Insight gained from the
stochastic-programming approach also points
to possible improvements in current, rule­
based, scheduling methods.

INTRODUCTION
The United States Transportation Com­

mand (USTRANSCOM) plans the wartime
deployment of U.S. cargo ships, and their
cargo, from U.S. or allied seaports of em­
barkation (SPOEs) to overseas seaports
of debarkation (SPODs) (USTRANSCOM
2000). This command uses little optimiza­
tion to guide its planning for a deployment
and, to our knowledge, no stochastic opti­
mization to accommodate uncertainty.
The purpose of this paper is (a) to develop
a stochastic-optimization model that pro­
actively plans for potential disruptions
caused by enemy attacks on SPaDs, and
(b) to illustrate the potential benefit of using
such a model with realistic deployment data.

The Problem
A military sealift deployment is driven

by a flexible schedule of movement require­
ments contained in the Tune-Phased Force­
Deployment Data (TPFDD). The TPFDD,
with a typical timeframe of 100 days,
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describes the cargo needed in the deploy­
ment and the military units to which that
cargo belongs, e.g., a Marine Expeditionary
Force or a Naval Mobile Construction Bat­
talion. The TPFDD defines time windows
for when cargo will be available for loading
at the SPOEs, when it should pass through
an SPOD, and when it should arrive at its
in-theater destination. The hypothetical
TPFDD used in this paper, which is based
on multiple unclassified sources (see "Data"
under "Computational Results" section),
represents realistic estimates of cargo re­
quirements needed to support a major re­
gional contingency in the Persian Gulf.

Currently, TPFDD-based planning uses
software tools like the Joint Flow and Anal­
ysis System for Transportation, or "]FAST"
(USTRANSCOM 2000). However, the em­
phasis in the last few years has been on
embedding such systems within a global
command-and-eontrol system so that all
cargoes and lift assets are visible to plan­
ners who must deal with contingencies "on
the fly." Quick responses to contingencies
are important, but ]FAST is a rule-based sys­
tem that cannot optimize (or re-optimize) a
schedule with respect to an objective such
as "minimize delay." Furthermore, ]FAST
ignores potential disruptions to the deploy­
ment caused by enemy attacks (Koprowski
2005).

The deterministic mixed-integer pro­
grams of Aviles (1995) and Brown (1999),
along with the deterministic version of
the model described in this paper, address
the lack of optimization in existing sealift
deployment-planning systems. Within the
limits of modeling approximations, these
models provide an exact assignment and
routing of ships to deliver the TPFDD car­
goes as best possible. The models typically
minimize the ton-days of late cargo, which
are weighted in some fashion with respect
to the amount of lateness..

While a deterministic optimization
model is potentially useful, it ignores the
fact that an enemy may disrupt the deploy­
ment by attacking the cargo-movement
"network," probably in some forward area,
i.e., near the SPODs. The potential for such
disruptions is of increasing concern within
the U.S. military Goint Publication 3-11
2000, p. 11-3). Attacks might be carried out
by mining harbors and/or shipping chan­
nels, or by attacking SPODs with missiles
carrying conventional, nuclear, chemical
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or biological warheads, or by terrorist attack.
Therefore, our main question is: Can we plan
a sealift deployment while effectively hedging
against the potential disruption caused by
attacks on our cargo-movement network in
forward areas? Our purpose is to convince
planners that current planning tools can be im­
proved: Not only should these tools optimize,
but they should also plan proactively for po­
tential disruptions.

We build a stochastic mixed-integer pro­
gramming model, called the "Stochastic Sealift
Deployment Model" (SSDM), to address these
issues. We focus on biological attacks on SPODs,
because of special concern about such attacks
Goint Publication 3-11 2000, p. ill-30). However,
the concern about potential attacks on SPOEs
has also increased (e.g., Army Logistician 2001,
Larson and Peters 2001, pg. 119), and a "sym­
metric version" of our model could be used
to analyze this situation. However, a model to
analyze the possibility of attacks on both
SPOEs and SPODs would be substantially
more difficult to solve.

Biological weapons are not new, but their
potential for serious military use has increased
in recent years (Cohen 1997, Defense Intelli­
gence Agency 1998), and a biological attack
on an SPOD could certainly disrupt a deploy­
ment. Furthermore, biological weapons are
inexpensive to produce, and over a dozen of
the United States' potential adversaries may
possess or may be engaged in research on such
weapons (Barnaby 1999, pp. 10-11). Thus, the
threat must be taken seriously. We assume that
any biological attack is immediately detected,
as would be the case with biological warheads
delivered by ballistic missiles. This may not
be a limiting assumption because new detec-.
tion systems are capable of quickly detecting
biological warfare agents that might be surrep­
titiously spread by terrorists or an enemy's
special operations forces. (For example, see
the papers in Leonelli and Althouse 1998.) An
attacked SPOD will shut down entirely dur­
ing a decontamination period, after which
its cargo-handling capacity will return to nor­
mal gradually, following some recovery sched­
ule. The severity of the attack dictates the
length of the decontamination period and the
recovery schedule. The state of the art in deter-

mining the potential damage caused by a bio­
logical attack is not far advanced (Alexander
1999), but SSDM can be easily adjusted to ac­
count for the latest information as it becomes
available.

For simplicity, we assume at most one at­
tack will occur during the deployment period,
although that attack may strike more than
one SPOD. The timing and location(s) of the
attack are uncertain and follow a probability
distribution developed by intelligence reports
and planners. The single-attack assumption
has one significant advantage: It enables us
to model the deployment using a special type
of stochastic program, which is easier to solve
than a multiple-attack model. This assumption
is reasonable at this stage of study, because
no current deployment-planning models ac­
count for even a single attack, and because im­
portant insight can be gained by studying this
case.

We also note that· SSDM ignores airlift
assets and airlift delivery requirements. In fact,
airlift and sealift optimization may be consid­
ered separately, because the mode of transport
for each cargo "package" is specified by the
TPFDD, and the two transportation networks
share few resources. Focusing on sealift makes
sense because most cargo in a deployment
moves by sea. For instance, in the Persian Gulf
War of 1991, sealift delivered about 85% of all
dry cargo (Lund et al. 1993).

Stochastic Programming and
Military Deployments

Stochastic programming has seen limited
application in military deployment problems,
even though the study of related transportation
problems under uncertainty reaches back to
Ferguson and Dantzig (1956). A notable early
exception is an application of two-stage sto­
chastic programming for scheduling monthly
and daily airlift with uncertain cargo demands
(Midler and Wollmer 1969). Modest computa­
tional power has, presumably, impeded the ap­
plication of similar techniques to modem large­
scale military mobility systems.

Currently, simulation is the preferred me­
thod of dealing with uncertainty in deployments.
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The Warfighting and Logistics Technology As­
sessment Environment (WLTAE) links war­
fighting and logistics simulation models into
a single large simulation (Sinex et al. 1998).
The logistics modules of such simulations typ­
ically use rule-based methods like JFAST and
have limited, if any, capability for optimal re­
scheduling after an attack. However, we note
that Brown (1999) does describe re-optimization
techniques suitable for embedding in the WLTAE
simulation model. In particular, whenever a
modeled disruption in the deployment takes
place, his mixed-integer program, or a faster
heuristic, can re-schedule the next set of ships
and cargoes to be deployed.

A series of optimization models for plan­
ning sealift deployment has been developed
at the Naval Postgraduate School (Aviles
1995, Theres 1998, Alexander 1999, Brown
1999, Loh 2000, Koprowski 2005). All of these
contribute to our understanding of the prob­
lem, but all have significant limitations. For
instance, Theres (1998) ignores uncertainty;
Aviles (1995) and Brown (1999) plan using de­
terministic models that assume no disruptions
will occur and then re-opti.mize after a simulated
disruption (an attack) does occur; Alexander
(1999) and Loh (2000) have explicit stochastic
models, but can handle only small problems
and have unrealistic limitations on, or relaxa~

tions of, post-attack recourse. Kaprowski (20OS)
models only worst-case attacks and does not
solve those models optimally.

Deterministic airlift optimization models,
analogous in concept to the above sealift mod­
els, have been developed by Killingsworth and
Melody (1995), Rosenthal et al. (1997) and
Baker et al. (2002). These linear programs model
aircraft movements by continuous variables
rather than the integer variables with· which
we model ship movements. A continuous ap­
proximation of many, relatively small, cargo
aircraft is probably appropriate, but such an
approximation is inappropriate for fewer and
much larger ships. Goggins (1995) developed
a stochastic program with "simple recourse"
(e.g., Ziemba 1974) to extend the deterministic
optimization model that appeared in Rosenthal
et al. (1997) to incorporate aircraft reliability. This
entails modeling an airbase's capacity using an
elastic constraint and paying a penalty whenever
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that capacity is violated in a future scenario.
Granger et al. (2001) also study the effects of air­
craft reliability, and apply queuing-network
approximations, developed for manufacturing
systems, to a Simplified version of the determin­
istic model of Baker et al. Unlike SSDM, neither
of these models allows dynamic re-routing. Mul­
vey et al. (1995) and Mulvey and Ruszczynski
(1995) describe a two-stage stochastic program,
called "STORM," that assigns aircraft to routes
in the first stage and, after realizing random
point-to-point cargo demands, assigns cargo
to aircraft. In contrast to STORM, our schedul­
ing paradigm does not require an a priori com­
mitment to the vehicle routing schedule over
the entire planning period. Powell (2005) de­
scribes techniques based on simulation and dy­
namic programming to handle uncertainty in
airlift deployments.

Whiteman (1999) investigates a network­
interdiction problem with uncertain interdic­
tion effects using the following general ap­
proach: (a) He first solves the deterministic
model, an integer program, using mean values
for uncertain parameters, (b) he then investi­
gates the solution for acceptability (sufficient
reduction in expected network capacity) using
Monte Carlo simulation, and (c) if it is unac­
ceptable, he finds some near-optimal solutions
to the deterministic problem and performs the
same objective-function estimation procedure
until an acceptable solution is found. The near­
optimal solutions typically interdict more
network components than does the original
solution and are therefore, intuitively, more
robust to some failed or partially successful
interdictions. While the technique may lead to
a good solution that satisfies a specified proba­
bilistic criterion (e.g., expected capacity is re­
duced by at least 80%), there is no guarantee
that the solution is near-optimal. When the un­
derlying problem is convex (e.g., a linear pro­
gram), convex combinations of candidate
solutions are feasible and hence sometimes ad­
vocated. But again, there is no guarantee that
such an approach will yield an optimal or even
acceptable solution.

More generally, sensitivity analysis, param­
etric programming, and scenario analysis have
often been suggested as ad hoc methods of
handling uncertainty in mathematical programs
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(e.g., Ravindran et al. 1987, pp. 55-58), but
these methods lack theoretical foundations
and can lead to arbitrarily poor decisions
(Wallace 2000). Stochastic programs, and par­
ticularly multi-stage stochastic programs, can
be computationally expensive to solve. Un­
doubtedly, this fact has played a role in leading
analysts to resort to the kind of approaches out­
lined above.

Two-stage, and multi-stage, stochastic pro­
grams of time-dynamic systems often model
many time periods but fewer stochastic stages,
again in order to maintain computational trac­
tability. Stages are distinguished by the fact
that they are separated by pre-specified, deter­
ministic points in time at which (some of) the
stochastic parameters become realized. So, in
a two-stage stochastic program, the first- and
second-stage decisions are made, respectively,
before and after this pre-specified moment in
time, and the second stage decisions are made
in what is then a deterministic environment.
Our SSDM departs from this paradigm in that
the time at which the uncertain event occurs
is random. Unlike a typical two-stage sto­
chastic program, our first-stage represents a
decision (deployment) plan for the entire plan­
ning period, but one that will be followed
only until the randomly timed attack occurs,
if it does occur. If no attack occurs, we imple­
ment the plan to the end of the time horizon.
Otherwise, we make a second-stage re-deploy­
ment decision in what is then a deterministic
environment because a second attack cannot
occur.

We view SSDM as a model that falls be­
tween standard two-stage and multi-stage sto­
chastic programs for multi-period problems.
Mathematically, we can view it as a multi-stage
stochastic program defined on a special type of
scenario tree that has at most one uncertain
event. More importantly, from the decision­
making perspective, we view it as a two-stage
stochastic program in which the timing of the
stage is random. The siz~ of a standard two­
stage program with a fixed number of sce­
narios grows linearly in the number of time
periods, while a multi-stage stochastic program
grows exponentially with the number of time
stages. As we describe in detail below, because
SSDM has at most one uncertain event, it

exhibits quadratic growth as a function of the
number of time periods. Infanger (1994, pp.
43-47) describes a different class of multi-pe­
riod problems in which capacity-expansion
decisions with long lead-times result in a
two-stage stochastic program, with these prob­
lems again growing only linearly in size with
the number of time periods. In fact, restricting
the solution space is commonly used to help
create tractable, multi-stage stochastic optimi­
zation problems of various sorts. For
example, optimizing over the class of time­
stationary policies can help yield computation­
ally tractable stochastic dynamic programming
models (e.g., Bertsekas, 1987, Chap. 5). In a
similar spirit, Mulvey et al. (2000) use non­
linear programming to search the class of
"fixed-mix" investment policies in a multi­
period asset-liability management model; see
also Fleten et al. (2002) and Gaivoronski and
de Lange (2000).

Outline of the Paper
We begin the remainder of the paper by

first describing SSDM in general terms, and
then in mathematical ones. We then describe
our simulation of current, rule-based planning
methods, which we use to compare to results
from SSDM. We present computational results
using data that represent a deployment simi­
lar in scope to that of the Desert Shield/
Desert Storm deployment of 1991. The last sec­
tion of the paper provides conclusions and
points out areas for further development of
SSDM.

THE STOCHASTIC SEALIFT
DEPLOYMENT MODEL (SSDM)

Introduction
SSDM builds upon similar models formu­

lated by Alexander (1999) and Loh (2000).
Our model consists of four main entities, a ship­
movement sub-modeL a cargo-movement sub­
model, linking constraints, and non-anticipativity
constraints (Wets 1980). For simplicity, we be­
gin by modeling a single type of ship, but later
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decontamination, and then ramps back up to
its pre-attack level over a period of time. Be­
cause of permanent losses to personnel, post­
attack cargo-handling capacity might never
reach its pre-attack level, but this possibility
is ignored for the sake of simplicity. (If the
post-attack capacity is assumed known/ the
model can be trivially modified to handle this.
If this capacity is uncertain, it adds scenarios to
be considered.)

Linking constraints ensure that sufficient
ship capacity is scheduled to carry the cargo
being moved from SPOE to SPOD, being re­
routed between SPODs and being moved from
outside an SPOD into that port to be unloaded.
Cargo is not assigned to a specific ship, so the
combination of linking constraints and flow­
based sub-models does imply a relaxation of
real-world constraints: In effect, cargo can
move between ships waiting outside an SPOD;
however, this does not occur in any of our com­
putational examples.

The model/s variables and constraints are
indexed by scenario, which encompasses the
time and location(s) of the attack, or indicates
that no attack occurs. A solution to SSDM is said
to be implementable (Rockafellar and Wets 1991)
if under any pair of scenarios a and a' / with at­
tack times ta S tao / all decision variables are
identical through time ta-I. Non-anticipativity
constraints ensure that this is the case.

The fact that we consider only a single at­
tack substantially reduces the size of our sto­
chastic program. Figure 1A shows a typical .
multi-stage scenario tree in which, after the
first period, an attack may occur in any time
period (at a given SPOD, say) during a four­
period horizon and may occur any number of

A

extend the model and computational tests to
handle multiple types.

The ship-movement sub-model routes a
ship from an SPOE where it is loaded, to an
SPOD to be unloaded, and then back to an
SPOE, not necessarily its origin. But, it also
allows a ship to be re-routed from one SPOD
to another in response to an attack, provided
the ship has not entered a berth, but is waiting
for one just outside the SPOD. Ships nominally
require a fixed amount of time to unload their
cargo, and they return to some SPOE imme­
diately after unloading where they can be di­
rectly reloaded for another delivery, or wait
until needed. If an attack occurs during unload­
ing/ the unloading period is extended by the
decontamination period. For simplicity, ships
become available for initial use according to a
pre-specified schedule, once the deployment
commences. (Most of these ships are civilian,
converted to military use for military contingen­
cies/ according to established agreements.)

The cargo movement sub-model is similar
to that for ship movement but incorporates
separate constraints for each commodity called
a "cargo package." For simplicity, we assume
that each package is available at its assigned
SPOE whenever the model decides to move
it. This sub-model also adds an·echelon of var­
iables to move cargo from SPODs to final desti­
nations. Typically, trucks or railcars, which are
modeled through a single, generic transporta­
tion mode, would move this cargo. Side con­
straints control the movement of cargo out of
the SPODs and reflect cargo-handling capacity
of the port in various situations: Cargo-handling
capacity reduces from its nominal value to zero
immediately following an attack and during

14

Figure 1. A standard scenario tree represents multiple attacks on a single SPOD (Figure lA) and a specialized
tree represents SSDM's assumption of at most one attack (Figure IB).
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times. For instance, the left-most leaf of the tree
represents the "no-attack scenario" and the
right-most leaf represents the "attack-in-every­
time-period scenario." Figure lB illustrates
the scenario tree for SSDM assuming at most
one attack will occur. The number of nodes
and scenarios in the tree of Figure 1A grows ex­
ponentially with the number of stages while, in
Figure 1B, the number of nodes grows quadrat­
ically and the number of scenarios grows line­
arly. To be more precise, let B denote the
number of attack types and tmax be the number
of time periods. Here, an attack type specifies
which combination of SPODs are attacked
and could be extended to include the severity
of the attack. (B = 1 and tmax = 4 in Figure lB.)
A scenario tree that allows repeated attacks
has (B+1)1..,.,.-1 scenarios and ((B+1)1..,.,.­
1)/B nodes while a scenario tree that allows
an attack in at most one time period has only
(tmax - 1)B + 1 scenarios and !~ - (! - 1)
tmax nodes.

Of course, if the number of attack types B is
too large, even the single-attack problem can
become intractable. The data we analyze in this
paper has two SPODs located in the Middle
East. We allow a simultaneous attack on both
SPODs or on either SPOD and not the other,
so that B = 3. We could also incorporate vary­
ing attack severity because of the weapons
used or environmental factors, which would
translate into longer or shorter decontamina­
tion periods and recovery schedules, and in
doing so B would grow. For simplicity, this se­
verity is fixed in our computations.

Mathematical Description of 880M
This section introduces the SSDM formula­

tion for a single ship type. We generalize to
handle multiple types of ships in "Multiple
Ship Types" within our "Computational Re­
sults" section.

Indices and index sets

e E E seaports of embarkation (SPOEs)
dE D seaports of debarkation (SPODs)
f E F final destinations (geographic locations

where cargo is delivered)

c E C cargo packages, i.e., cargo moving from
the same SPOE to the same final destina­
tion with identical available-to-load

-_ dates, and required delivery dates
e(c) fixed, originating SPOE for cargo package c
f(c) fixed, final destination for cargo package c

t E T time periods, T = {1, ... , tmax + 1}; tmax is
the end of the time horizon and tmax + 1 is
a fictitious time period

Te(e) ~ T allowable shipping periods for cargo c from
SPOE e(c) (depends on cargo availability
dates, shipping delays and latest acceptable
delivery date, which are defined below)

a E A attack scenarios. In addition to timing, the
scenario contains the information on the
SPOD or SPODs attacked, and could con­
tain the post-attack decontamination time
and recovery schedule. This set also in­
cludes the "no-attack scenario" denoted ao

t. attack time of scenario a (1 < t. s tmax) for
a*ao; tao = tmax +1

T. ~T time periods that run from the first period
up to but not including the attack time for
scenario a, Le., T. ={1, ... , t. -1}

Tdt• ~T Set of periods t' such that if a ship enters
SPOD d at time t' then it will still occupy a
berth there at time t under scenario a
(depends on unloading time and any
necessary decontamination)

Ta" ~T time periods, if any, during which SPOD
d remains contaminated under scenario a
(computed using t. defined above, and
Sy'. defined below)

Data (units in parentheses)

s~ one-way travel time from SPOE e to just
outside SPOD d (time periods)

S~e one-way travel time from SPOD d to
SPOE e (time periods)
one-way travel time from just outside
SPOD d to just outside SPOD d' (time
periods)

S~f travel time from SPOD d to final destina­
tion f (time periods)
available-to-Ioad date for cargo c. This
is the earliest date (time period) the
cargo is available at its SPOE for
loading
required delivery date for cargo c at its final
destinationf(c) (time period)
cargo delivered later than 'T~RD + SMAX is
deemed unmet demand for cargo c (time
periods)

Military Operations Research, V14 N2 2009
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T - (e, d) earliest-possible-arrival date (time period)
for cargo e at its destinationf(e) given
that it travels through SPOD d; computed
using ~LD, 8~(e),d and 8~f(e)

T+ (c) latest-possible-arrival date (time period)
for cargo e at its destinationf(e); defined
as T~RD + 8MAX

LPENedt late-delivery penalty (penalty units/ton)
for cargo e leaving SPOD d in period t.
The penalty is based on the difference
between actual and required delivery
dates: LPENedt = [max{O, (t + 8~,f(e) ­

T~RD)}]a, with a> 0; a> 1 used in practice
UPENe penalty for not delivering a required

ton of cargo e within its required time
window (penalty units/ton);
UPENe > maxd,t{LPENedt}

81 small penalty to discourage unnecessary
ship voyages (penalty units/ships)

82 small penalty to discourage unnecessary
re-routing of ships (penalty units/ships)

XTOTe total amount of cargo e required (tons)
VCAP capacity of a ship (sq. ft.)

re conversion rate from tons of cargo e to
square feet (sq. ft./ton)

VBTHd berthing capacity at SPOD d (ships)
VINVet number of ships entering inventory at

SPOE e at time t (ships)
8Yta unloading time for a ship that enters

SPOD d in period t under scenario a (time
periods); includes decontamination time
if an attack occurs during unloading.
Since ships are not allowed to enter an
SPOD during decontamination, this pa­
rameter is defined only for t E T - T,j"

XCAPdta capacity of SPOD d to handle cargo at
time t under scenario a (tons/time pe­
riod); the nominal capacity drops to zero
after an attack and during decontamina­
tion, and progressively returns to its
nominal or near-nominal level after
decontamination

4>a probability that scenario a occurs

Variables (under scenario a)

vieta number of ships in inventory at
SPOE e at time t

VSedta number of ships starting voyages
from SPOE e to SPOD d at time t

vbdta number of ships at waiting area
outside SPOD d at time t

vrrdd'ta number of ships re-routed from
SPOD d to SPOD d' *d at time t

Military Operations Research, V14 N2 2009

vhdta number of ships entering berth at
SPOD d at time t

Vrdeta number of ships returning from
SPOD d to SPOE e at time t

XSedta tons of cargo e shipped at time t
from SPOE e(e) to SPOD d

xbedta tons of cargo e at waiting area out­
side SPOD d at time t

xrredd'ta tons of cargo ere-routed from SPOD
d to SPOD d' *d at time t

xhedta tons of cargo e entering berth at
SPOD d at time t

xiedta tons of cargo e in inventory at SPOD
d at time t awaiting shipment to its
final destination f (e)

XWedta tons of cargo e transported to its
destinationf(e) from SPOD d at
time t

XUca tons of unmet demand for cargo e

Formulation

minimizeL L L L <PaLPENcdtXWcdta
a edt

+ L L <PaUPENcxuca
a c

+ e1 L L L L <PaVSedta
a edt

+ e2 L L L L <PaVrrdd'ta
a d d'""d t

(1)
subject to:

- vie,t - 1,a - L vrde,t - 8i,a + L VSedta
d d

+vieta=VINVet Ve,t,a (2)

vhdta - L vSed,t-8~,a + vbdta - vbd,t-l,a
e

+ L vrrdd'ta - L vrrd'd,t-8~'d,a = 0 V d, t,a
d'""d d'""d

(3)

-vhdta + ~vrdet+8u a=O Vd,a,tET-T;aL....J , dtal
e

(4)

L Vhdt'a:5 VBTHd V d, t,a (5)
t'ETdta

vhdta =0 Vd,a,t E T;' (6)
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Description of the Formulation
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L L L LPENcdtXWcdta + L UPENcxuca ,
edt c

specified delivery time windows, although this
will probably not be possible given limited
system capacities, especially after attacks. This
component of the objective function (1),

measures the disruption associated with sce­
nario a. The first term corresponds to late deliv­
eries with the per-ton penalty LPENcdll which
will increase as the function or", where (X is pos­
itive and T is the number of periods the cargo is
late. We use (X > 1 to express, roughly, "One
ton of cargo late for t periods is worse than t
tons of cargo late for one period." The second
term in (20) strongly penalizes cargo not arriv­
ing during an acceptable delivery window:
Such cargoes are absorbed as unmet demand
with a penalty that exceeds the penalty for
the latest acceptable delivery. Thus, ignoring
the last two terms, the objective function meas­
ures the total expected disruption for a deploy­
ment plan. We note that large inventories of
early-arriving cargo could be vulnerable to at­
tack, but explicit penalties are not required
to compensate. If early-arriving cargo is vul­
nerable, it ends up being delayed in one or
more attack scenarios and is therefore "penal­
ized" appropriately. The last two terms of the
objective function are small factors to eliminate
unnecessary ship movements.

The ship-movement sub-model is repre­
sented by constraints (2)-(7) and associated
variables. The cargo-movement sub-model is
represented by constraints (8)-(12) and associ­
ated variables. Constraints (13)-(15) link the
two sub-models and constraints (16) account
for non-anticipativity and ensure implement­
ability of the decision variables with respect
to the various scenarios. Note that, although
these constraints are written for every pair
(a, a'), it suffices to enforce them for appropri­
ately defined pairs of "consecutive scenarios."

Of course, all variables are non-negative
and the ship variables are required to be inte+
ger; see constraints (17) and (18), respectively.
Additionally, variables with time indices out­
side of T do not represent true model entities
and must be fixed to 0; see constraints (19).

(9)

(10)

(11)

(12)

L XWcdta :5 XCAPdta V d, t, a
c

T + (c) - a~/(')

- L L XWcdta - xUca
d t = T - (c,d) - a~f(c)

= - XTOTc VC,a

-xhcdta +xicdt+au a-xicdt+au -1a
'dial 'dttJ'

+ XWcdt+aU ,a:5 0 "'Ie, d, t,a
, dta

L rcXScdta - VCAP VSedta :5 0 "'Ie, d, t, a
cle(c) = e

L rcxrrcdd'ta - VCAP vrrdd'ta :5 0 V d, d' *d, t, a
c

L rcxhcdta - VCAP vhdta :5 0 Vd, t, a (15)
c

Vrdeta == 0V d, a, t E T;a (7)

L L XScdta:5 XTOTc Vc, a (8)
d tET,(,)

xhcdta - xScd t-a' a+ xbcdta - xbcd t -1 a+
I ~(c)d' 1 ,

Lxrrcdd'ta - LxrrCd'd,t-a;'d,a =0"'1 c,d,t,a
d'*d d'*d

All variables are non-anticipative, e.g.,

vieta , = vieta "'Ie, a, a' , t E Tan Ta' (16)

All variables are non-negative (17)

Ship variables are integer:

vieta ,VSedta, vbdta ,vrrdd'ta, vhdta ,Vrdeta (18)

Any variable with a time index not in T is fixed
to 0, e.g.,

The basic premise of the model is to meet
demands for cargo of various types during
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Constraints (2) are ship-supply constraints
for each SPOE. The supply of ships at time t
includes those ships that become available via
VINVet according to a pre-designated plan
which does not depend on the scenario a; it
includes those ships that have returned from
earlier deliveries (vrde,l- ~i ..); and it includes
those ships that have previously been put into
"inventory" at the SPOE awaiting assignment
(Vie,I-1.. )' The supply of ships is used to deliver
cargo (VSedla) or is held in inventory (vieta ).

Constraints (3) are flow-balance constraints
for the ships just outside the SPODs. A ship can
arrive from an SPOE (VSed,l- ~~ ..) or by being re­
routed from another SPOD (vrrd'd,l- ~~'d")' A
ship that arrives can wait outside the SPOD
for an available berth (Vbdla ), it can enter the
SPOD and berth (Vhdla ), or it can be re-routed
to an alternate SPOD (vrrdd'la).

Constraints (4) ensure that a ship entering
an SPOD (Vhdla ) does not leave and return to
an SPOE (vrde,1 + ~~.. ,a) until it has time 13Yta to un­
load, and decontaminate if necessary. Con­
straints (5) ensure that berthing capacity is
not exceeded by the ships that have entered
the SPOD. Constraints (6) and (7) ensure that
no ships enter or leave a contaminated SPOD.

Constraints (8) are supply constraints for
cargo; they are inequalities because, under cer­
tain scenarios, it may be determined that cer­
tain cargo cannot reach its destination within
the allotted time window, and thus it will not
be shipped at all. Constraints (9) balance flow
of cargo just outside the SPODs, analogous to
constraints (3) for ships.

Constraints (10) are inequality versions of
flow-balance constraints for cargo inside the
SPOD. Cargo that enters the SPOD at time t
(Xhcdla ) becomes available to enter inventory
(xicd,1 H'f,.,a) or be shipped out to its final desti­
nation (XWcdlHu a) after it has been unloaded,
and possibly d~~ontaminated, at time t + 13Yta'
Cargo in inventory from an earlier unloading
is also available for shipment (xicd,1 + ~:;.. - 1,a)'
These constraints are inequalities because it is
possible for cargo to arrive so late, or be trap­
ped for decontamination inside the SPOD so
long, that it cannot reach its final destination
in time to be of any value. In effect, such cargo
is unloaded at the SPOD and is subsequently
ignored by the model.
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Constraints (11) limit shipments of un­
loaded cargo out of the SPOD depending on
that SPOD's cargo-handling capacity. The nom­
inal capacity for each SPOD drops to zero im­
mediately after an attack and during subsequent
decontamination. The capacity then increases
toward the nominal capacity during a post-de­
contamination period following some recovery
schedule. Constraints (12) are simply the de­
mand constraints for each cargo, with variables
XUca absorbing unmet demand.

Constraints (13), (14) and (15) ensure that
cargo is transported only if there is sufficient
capacity on the ships that must move that
cargo. These constraints cover cargo moving
from SPOE to SPOD, from one SPOD to an­
other, and from just outside an SPOD into its
docks, respectivel~

SIMULATING RULE-BASED
PLANNING

Ideally, we would like to compare deploy­
ment plans developed through optimizing
SSDM to plans developed through current
rule-based planning methods. SSDM explicitly
incorporates and evaluates the total expected
disruption across all scenarios, but to evaluate
rule-based planning we would have to perform
the following steps for a given "test case," i.e.,
combination of data and probability distribu­
tions for when and where potential attacks
might occur:

• Use rules to create a baseline deployment
plan, "PlanO," under the no-attack scenario ao.

• For each scenario a =1= ao: Evaluate the cargo
movements using PlanO up to the time of the
attack, simulate the disruption caused by
the attack, and then plan the (re-) deploy­
ment of ships and cargo from the attack time
onward using a rule-based procedure.

• Compute the total expected disruption us­
ing the disruption values computed above
and the given probability distribution.

We cannot perform the above procedure ex­
actly because no actual deployment-planningsoft­
ware is available to us. However, we can simulate
that procedure by replacing rule-based plans with
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optimization-based plans. In particular, PlanO is
determined by solving a single-scenario variant
of SSDM under the no-attack scenario-call this
model DSDM(ao). The redeployment is deter­
mined through another single-scenario model
running from ta through the end of the horizon
given the simulated effects of an attack at time
ta-<:all this model DSDM(alao). The entire proce­
dure, or "deterministic heuristic," is denoted
DSDH.

In some of our test cases, attacks can only
occur late in the time horizon and it seems that
planners could probably take this information
into account to make the rule-based deploy­
ment plan more robust against attack. In such
cases, common sense dictates that we push
the cargo through the system as quickly as pos­
sible so as to minimize the amount that is sus­
ceptible to attack in later time periods. We
modify DSDM(ao) to reflect this by adding a
negative penalty (Le., a benefit) into the objec­
tive function for early cargo arrivals. In partic­
ular, if one ton of cargo package c whose
required delivery date is T~RD actually arrives
in period t < T~RD, it incurs a "penalty" of
- f3( T~RD - t)", for some f3 > 0, but if it arrives

after T~RD, it incurs the usual penalty of
(t - T~RD)". Model DSDM(ao) with this modifi­
cation is denoted DSDM'(ao), and the overall
deterministic heuristic that uses this initial
model is denoted DSDH'.

We have found that a single small value of
f3 will yield solutions to DSDM' (ao) that are op­
timal with respect to the original objective of
DSDM(ao), but do push cargo through more
quickly. Thus, there are multiple optimal solu­
tions to DSDM(ao) and we are taking advantage
of that fact. In effect, we are solving the goal
program that (a) optimizes one objective, Le.,
it minimizes disruption, (b) adds a constraint
that requires all solutions be optimal with re­
spect to that objective value, and (c) then opti­
mizes a secondary objective of pushing cargo
through quickly.

By using DSDH', we are trying to find an
acceptable solution to our stochastic program
from among multiple-optimal deterministic
solutions, yet in the introduction we warned
that this might be impossible. However, if this
can be accomplished, we will have shown that
current deterministic methods can be improved

in the short term, and will have provided a sto­
chastic-programming baseline for testing those
improvements. We still argue that such heuris­
tics should be replaced in the long term, and
will substantiate this argument through com­
putational results presented in the next section.

Complementing our rule-based planning
methods, we devise a procedure, called D+,
to compute a lower bound z+ on the optimal
objective value of SSDM. The value z+ is com­
puted by solving, for each a E A, DSDM(a),
which is the deterministic version of SSDM
with the effect of the scenario a attack incorpo­
rated. The expected disruption computed over
all scenarios is z+. This is an example of the
well-known "wait-and-see bound" (e.g., Birge
and Louveaux 1997, p. 138), because in each
scenario the optimizing planner is assumed to
know if, when and where an attack will occur.

COMPUTATIONAL RESULTS
This section describes computational

results for SSDM, DSDH, DSDH', and D+. All
computation is performed on a 2 GHz Pentium
V processor with 2 Gb of RAM, running under
Microsoft Windows XP. Models are generated
using GAMS (Brooke et a1. 1999) and solved us­
ing CPLEX Version 9.0 (ILOG 2006), with a 1%
relative optimality tolerance.

Data
The data describe a hypothetical deploy­

ment to the Middle East requiring the move­
ment of about 3,000 ktons of cargo, in 11
different packages, over the course of 100 days
aggregated into 50 two-day time periods. The
cargo is required between periods 7 and 45 of
the deployment and the maximum-lateness
parameter (8MAX

) is 7 periods. There are four
SPOEs and there are two SPODs, denoted d1

and dz, in close proximity to each other in the
Middle East. For initial tests, we model only a
single generic cargo ship, specifically, a Roll­
On/Roll-Off (RoRo) vessel with capacity of
150,000 sq. ft. of cargo per trip. (Typically;
floor space, rather than volume or weight, is
the limiting factor for military sealift capacity.)
This ship is typical of those used in planning
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exercises (Alexander 1999, Surface Deployment
and Distribution Command 2(02). The travel
time between SPOEs and SPODs ranges from
3 to 12 periods. 158 ships become available at
the four SPOEs to load cargo according to a
pre-specified schedule over the course of the
first 15 periods.

This hypothetical deployment is much like
the one executed under Operation Desert
Shield/Desert Storm in 1990 and 1991, al­
though the time frame is compressed by about
50% to reflect more modern requirements (Al­
exander 1999), and the SPOEs are aggregated.
The deployment represents the movement of
five Army Divisions plus one Corps Support
Command; one Marine Division plus two Ex­
peditionary Brigades, one Air Wing and one
Force Service Support Group; a few small units
such as Navy Construction Battalions; and,
pre-positioned afloat materiel, including am­
munition. The data are derived from a number
of unclassified sources including Army Field
Manual 100-17-3 (Department of the Army
1999); the Deployment Planning Guide (Surface
Deployment and Distribution Command 2(01);
the Army's Operational Logistics Planner
(United States Combined Arms Support Com­
mand 1997); a paper on Naval Expeditionary L0­
gistics (National Academy Press 1999); a paper
on logistics requirements for Desert Shield/De­
sert Storm by Matthews and Holt (1992); the
World Port Database (2006); and others.

In Desert Shield/Desert Storm, 95% of U.S.
sealift cargo arrived at two SPODs in Saudi
Arabia, Al Jubayl and Ad Dammam, which
are situated about 100 kIn from each other on
the Persian Gulf. Hence, our modeling of two
proximate SPODs is realistic. Most of the Army
and Marine Corps cargo originating in the
continental U.S. came from Kentucky, North
Carolina, Georgia, Florida, and Texas and left
primarily via the ports of Newport News, VA,
Wilmington, NC, Southport (Sunny Point),
NC, Savannah, GA, Jacksonville, FL, Houston
TX, and Beaumont, TX. Those ports handled
over 80% of the cargo originating in the conti­
nental U.S.; personnel flew to their destina­
tions. Two of our SPOEs represent aggregated
versions of these ports. The third SPOE repre­
sents the U.S. military base of Diego Garcia in
the Indian Ocean. "In DESERT SHIELD/
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STORM, the transportation time was IIU.n1­

mized because of the foresight in preposition­
ing ordnance aboard ships in Diego Garcia"
(Naval Historical Center 2006). The Vllth Army
Corps, based in Germany, generated the bulk
of the cargo originating outside of the continen­
tal U.S. and deployed primarily through these
North Sea ports: Bremerhaven, Emden, and
Nordenham Germany; Amsterdam and Rotter­
dam, The Netherlands; and Antwerp, Belgium.
(These ports accounted for over 75% of all
cargo originating outside of the continental
U.S.) The fourth SPOE represents the aggre­
gation of these ports, which we believe is rea­
sonable given their geographical proximity.
Matthews and Holt (1992) is the primary refer­
ence for the above discussion.

Under normal conditions, a ship is un­
loaded in two periods and the port has 150
ktons/period of cargo-handling capacity to for­
ward that cargo to its final destination. Any at­
tack on an SPOD, however, will close the port
for a number of periods for decontamination,
during which the cargo-handling capacity is
lost entirely and the unloading process halts.
Decontamination commences immediately af­
ter the attack and, upon completion, ships
continue to unload at their standard rate. How­
ever, other cargo-handling capacity at the port
only returns to normal gradually, according to
a given recovery schedule. We consider a fixed
decontamination period of seven periods with
capacity recovering at a rate of 25% per period
after decontamination.

The objective function of SSDM, equation
(1), measures total expected disruption to the
deployment (see previous section "Description
of the Formulation"). Disruption resulting
from late deliveries is measured in terms of
"weighted kton-periods." Specifically, k ktons
of cargo that are 7 periods late incur a penalty
of kX7 1.5. Disruption resulting from an unmet
delivery of k ktons of cargo from package c is
k X 7;·5, where 7 c is a strict upper bound on
the number of periods late that package c is still
considered worth delivering.

Test Cases and Results
In the following, we analyze the benefits

of the stochastic solution using combinations
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of attack types and probability distributions,
which we call test cases. In practice, analysts
would develop these from intelligence reports.
The attack types are:

pl,2 = {{dl }, {~}}: An attack occurs atSPOD
dl or at SPOD d:u but not both, or no attack occurs;

pl,12 = {{dIl, {db ~}}: Mutually exclu­
sively, an attack occurs at dl , both SPODs are
attacked simultaneously, or no attack occurs; and

pl,2,12 = {{dIl, {~}, {db ~}}: Mutuallyex­
clusively, dl is attacked, ~ is attacked, both dl and
~ are attacked simultaneously, or no attack occurs.

The probability distributions for the test
cases are defined by (a) the probability of no at­
tack, cPao = 0.5, (b) by the assumption that in
any given period, an attack of any element of,
e.g., D1,2,12, is equally likely, and (c) the follow­
ing conditional distributions for the timing of
an attack:

U1: Uniform distribution over periods 4
through 40,

T1: Triangular distribution over periods 4
through 40 with mode 22,

U2: Uniform distribution over periods 4
through 18,

T2: Triangular distribution over periods 4
through 18 with mode 11,

U3: Uniform distribution over periods 26
through 40, and

T3: Triangular distribution over periods 26
through 40 with mode 33.

The first distribution, U1, is the "baseline dis­
tribution" accounting for almost no informa­
tion. T1 employs the same range of periods
but gives more likelihood to attacks occurring
in the middle of the deployment. U2 and T2
represent a situation in which planners believe
the enemy will strike early in the deployment:
Perhaps the enemy believes, and our intelli­
gence suggests, that early strikes will have a
strong psychological effect against us and com­
pound our scheduling problems in a way that a
later strike would not. U3 and T3 represent the
anticipation of late strikes: Perhaps intelligence
reports indicate that the enemy will experience
some delay in deploying his biological weapons,
or may only want to use them as a last resort.

Table 1 describes the set of test cases and
associated model statistics. Table 2 displays

the computational results for the test cases un­
der the various models and solution proce­
dures: SSDM, DSDH and DSDH', as well as
the lower-bounding procedure D+.

The SSDM column of Table 2 reports the
total expected disruption. (More precisely it
reports the optimal objective function value of
SSDM, including the terms El and E2, but these
additional terms make up at most 0.1% of
the reported value.) For the other models, we
report the percent deviation with respect to the
SSDM solution. Specifically, Table 2 shows 100
X (z(model) - z(SSDM))/bound, where z(model)
represents the objective function value of model,
and bound equals z(D+) when reporting D+, but
equals z(SSDM) when reporting DSDH or
DSDH' . In summary, the results show that:

1. SSDM reduces total expected disruption
over the simulated rule-based planning of
DSDH by an average of 22% with a range
of 1% to 47%. With respect to the improved
heuristic DSDH', SSDM reduces expected
disruption by an average of 8%, with a range
of 1% to 14%.

2. Even though DSDH' was intended to im­
prove results with late attacks (U3 and T3),
it also performs well relative to DSDH when
the attack can occur over the widest range of
periods (U1 and Tl). Under early attacks (U2
and T2), DSDH outperforms DSDH', but
all such differences are small, i.e., at most
0.3%; thus, we only discuss DSDH' in what
follows.

3. The lower bound provided by D+ is below
the near-optimal solution value of SSDM by
an average of 29%. This indicates that even
if DSDH' does provide a good solution, we
still must solve SSDM to verify its quality.

4. Early-attack cases leave the least flexibility
for SSDM to improve upon rule-based plan­
ning. The average reduction in disruption of
SSDM over DSDH' is 3%, with a range of 1­
6% for the six U2 and T2 cases.

5. Conversely, the stochastic program has the
greatest leverage when attacks can only oc­
cur late in the deployment. The analogous
average and range for the six U3 and T3
cases are 12% and 8-14%. Finally, the range
and average for the U1 and T1 cases are
8% and 5-11%.
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Table 1. Problem definitions and sizes for the stochastic sealift deployment model SSDM and its deterministic
counterpart DSDM(ao), which assumes no attack occurs. Each test case is described by: (a) The subsets of SPODs
where the attacks may occur (e.g., {{di }, {di , tit}} represents a case where either di , or diand tit, may be attacked,
but not It, alone), and (b) the conditional probability distribution for the time of attack, given that an attack oc­
curs. The number of scenarios IAI is also shown. Problem sizes are given in terms of numbers of structural con­
straints m, continuous variables ni and integer variables in 112.

Problem Sizes

SSDM DSDM(ao)

Attack types Distributions IAI m nl n2 m nl n2

{d1},{d2} Ul,Tl 75 605,346 672,399 44,260
U2, T2

31
165,170 229,013

18,300
U3, T3 321,410 320,965

{d1},{di ,d2} U1, Tl 75 605,346 672,399 43,890
U2, T2

31
165,170 229,013

18,150
2,691 5,254 596

U3, T3 321,410 320,965
{d1},{d1},{d1,d2} Ul,Tl 112 906,674 1,003,004 65,720

U2, T2
46

264,410 339,270
27,000

U3, T3 480,770 475,908

We explain the general dominance of sense to push cargo through the system as
DSDH' over DSDH (result 2 above) as follows: quickly as possible because, if an attack occurs,
Even if attacks can occur at any time, it makes delayed cargo has as much slack time as

Table 2. Results for SSDM in ktons X days1.5 of total expected disruption, and for related models in percent
deviation with respect to SSDM. All models are solved with a 1% optimality gap. Overall, stochastic planning
with SSDM reduces disruption significantly over basic rule-based planning with DSDH and the improved
deterministic heuristic DSDH'. DSDH' leads to smaller disruption than DSDH except in the "early attack"
cases of U2 and T2. Average run times for D+, SSDM, DSDH and DSDH' are 89, 280, 48, and 45
seconds, respectively.

Objective-function values

Attack types Distribution IAI D+ SSDM DSDH DSDH'

{d1}, {d2 } Ul 75 -52% 4,648 22% 5%
Tl 75 -44% 4,896 13% 5%
U2 31 -67% 4,426 1% 1%
T2 31 -80% 4,755 1% 1%
U3 31 -49% 4,491 47% 14%
T3 31 -49% 4,386 41% 8%

{d1},{d1,d2} Ul 75 -11% 12,118 23% 10%
Tl 75 -7% 13,022 18% 11%
U2 31 -24% 9,877 6% 6%
T2 31 -22% 11,189 4% 5%
U3 31 -4% 12,768 44% 13%
T3 31 -1% 12,507 43% 13%

{d1}, {d2 }, {d1,d2}. Ul 112 -18% 9,750 23% 7%
Tl 112 -11% 10,483 18% 10%
U2 46 -33% 8,301 4% 4%
T2 46 -31% 8,979 2% 2%
U3 46 -9% 10,084 42% 12%
T3 46 -7% 9,894 40% 10%
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Table 3. Results for special scenarios for SSDM solutions and solutions of DSDH', all in ktons X daysl.5 of dis­
ruption. Legend is as follows: No-attack scenario: Disruption (objective function value) for the stochastic plan­
ning method when no attack occurs, and percent improvement when we plan assuming no attack will occur.
Worst-case scenarios: Worst disruption, across all scenarios, for the given method, with the DSDH' percentage
again being relative to SSDM. Columns under "No-attack scenario" show that only a small penalty is paid for
hedging against potential attacks when none occurs. "Worst-case scenarios" show that the worst disruption ob­
served with the stochastic model is usually better than the worst disruption observed under rule-based
planning (DSDH').

possible to reach its destination. However,
pushing cargo quickly is a "double-edged
sword": The higher disruption for DSDH' com­
pared to SSDM is largely explained by the fact
that DSDH' moves cargo too fast to the SPODs
in a few scenarios, and a large quantity becomes
trapped in the attacked SPOD(s) in those sce­
narios and cannot reach its destination in time.
SSDM better balances the speedy arrival of
cargo against the flexibility to reroute cargo
waiting outside an SPOD that may be attacked.

Table 3 helps investigate the behavior of
the various procedures under likely and espe­
cially disruptive scenarios. Since the no-attack
scenario is likely to occur, we want to know if
the solutions from the stochastic model are ro­
bust in this scenario. The table shows that they
are. The table also shows that the worst-case
scenarios for the stochastic model are usually

less disruptive than the worst-case scenarios
for rule-based planning.

The results above indicate that the stochas­
tic-pr()gramming approach may yield substan­
tial improvements over rule-based planning.
Indeed, because we have simulated rule-based
planning with a "tuned," deterministic optimi­
zation model-that optimization model is
likely to give better results than any rule-based
heuristic-the actual improvements may be
even greater than those demonstrated.

It is important to understand when the
need for using a model such as SSDM is most
acute. As described above, when SSDM has
the most time prior to the attack to hedge
(i.e., the U3 and T3 distributions), the value of
the stochastic solution is the largest. We test
this sensitivity with respect to the distribution
governing the time of attack by considering a
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Attack types

Objective-function values

No-attack scenario Worst-case scenarios

Distribution IAI DSDH' SSDM DSDH' SSDM

Ul 75 -9% 2,154 20% 14,468
T1 75 -2% 2,004 20% 14,468
U2 31 0% 1,974 0% 14,060
T2 31 -2% 2,017 0% 14,102
U3 31 -2% 2,004 11% 15,767
T3 31 -3% 2,034 11% 15,767
Ul 75 -3% 2,034 14% 60,253
T1 75 -6% 2,089 14% 60,253

TaU2 31 -2% 2,017 3% 46,212
T2 31 -11% 2,185 3% 46,212

ne
di:

U3 31 -5% 2,077 16% 54,803 D'
T3 31 -2% 2,004 24% 58,701

-Ul 112 -4% 2,049 14% 60,253
T1 112 -4% 2,049 14% 60,253
U2 46 -2% 2,017 3% 46,212
T2 46 -2% 2,017 3% 46,212
U3 46 -5% 2,064 16% 54,803
T3 46 -2% 2,004 24% 58,701
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Table 4. Results for the three types of attacks under a modified triangular distribution for time of attack. The
new distribution for the time of attack, T3', results from changing the mode of the original triangular attack-time
distribution T3 from period 33 to period 40. As before, the probability of no attack is 1/2. Average run times for
D+, SSDM, and DSDH' are 41, 122 and 12 seconds, respectively.

Objective Function Values

Test Case IAI D+ SSDM DSDH'

{{d1},{dz}}-T3' 31 -41% 3,682 25%
{{d1},{d1.dz}}- T3' 31 -6% 10,989 14%
{{d1},{dz},{d1.dz}}- T3' 46 -13% 8,780 12%

Page 33

One-way travel time for ship 5 from SPOD
d to SPOE e (time periods)
One-way travel time for ship 5 from just
outside SPOD d to just outside SPOD d'
(time periods)
Unloading time for ship 5 that enters
SPOD d in period t under scenario a (time
periods)
Capacity of ship type 5 (sq. ft.)
Number of ships of type 5 entering in­
ventory at SPOE e at time t (ships)

VCAPs
VINVset

(2')

- vise,t -104 - L vrsde,t - 8;"04 + L VSsedta + viseta
d d

= VINVset'tis, e, t, a.

Variables:
We add the index s to variables to obtain:

viseta , VSsedta, vbsdta, vrrsdd'ta, vhsdta, vrsdda, XSscdta,

xbscdt,,, xrrscdd'ta, xhscd/Q' Each variable retains its
original meaning with the added qualifier
"for ship type s." The only variables that do
not require an additional index are xicdta ,

XWcdta and xUca'

According to these modifications, the ob­
jective function (1) and constraints (2HlO),
(13H16) and (18)-(19) should be generalized
to accommodate ship types. For example, con­
straints (2) become

We consider three ship types in the Department
of Defense's surge sealift fleet (Congressional
Budget Office 1997): Fast Sealift Ship (FSS),
Large Medium-Speed Roll-on/Roll-off Ship
(LMSR), and the same RoRo container ship
used in the initial tests. (More ship types, such
as Breakbulks or Special-purpose ships, may be

Set of ship types, e.g., {FSS, RoRo, LMSR}
Allowable shipping periods for cargo c
from SPOE efc)using ship 5

Set of periods, t' such that if ship 5

enters SPOD d at time t' then it will
still occupy a berth there at time t
under scenario a
One-way travel time for ship 5 from SPOE
e to just outside SPOD d (time periods)

Tsdta

SES
Tse(c)

triangular distribution, denoted T3', in which
we change the mode of the triangular distribu­
tion from 33 to 40. The associated computa­
tional results for each of the three attack types
are shown in Table 4. The expected disruption
of SSDM's solution is better than that of simu­
lated rule-based planning by 25%, 14%, and
12% for the three types of attack. (These values
have increased from 8%, 13%, and 10%, re­
spectively, for the original T3 distribution.) These
results are consistent with the trend in Table 3 of
SSDM solutions becoming more valuable as we
move from early attack times, to the widest
range of attack times, to late attack times.

Multiple Ship Types
SSDM can be extended to accommodate

multiple ship classes, with different capacities
and speeds. This lends more realism to results,
but does tax our computational machinery.
Nonetheless" we cart still show substantial
improvements over deterministic alternatives.
The modifications to the model presented in
the previous "Mathematical Description of
SSDM" section follow:

Additional or modified sets and data:

122009,
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added to our model, as needed, at an addi­
tional computational cost.) While capacity and
speed may vary for vessels within the same
ship class (Military Sealift Command Ship In­
ventory 2006), we assume those to be the same
for this testing; see Table 5.

To allow us to compare with the single­
ship case, port capacities remain the same, as
does the total square footage of ship capacity
in the fleet. In particular, 158 RoRo ships X
150,000 sq. ft./ship = 23,700,000 sq. ft. converts
to 7 FSSs, 116 RoRos and 14 LMSRs. Fewer ves­
sels are needed due to the higher capacity of
the FSSs and LMSRs. Remark: We can easily
model the fact that FSSs and LMSRs require
more berthing space than RoRos, by modifying
constraint (5) as follows:

L L SIZEs vhdt'a $ SIZEVBTHd 'if d, t, a,
SES t'ET"j"

(5')

where SIZEs is the size of ship type s, and
SIZEVBTHd is the berthing capacity at SPOD
d. For simplicity, we maintain the original con­
straint (5) in our testing, Le., port capacity is
limited by the number of ships, rather than
by their aggregate size.

As shown in Table 5, initial lift capacity as
ships become available (by period, at each
SPOE) also remains the same. Even with fixed
ship capacity, we expect a solution with less

expected unmet demand, because an intelli­
gent plan can exploit the higher speeds of FSSs
and LMSRs to deliver more cargo during the
planning period.

Test case V1,2 = {{dt}, {d2 }} with uniform
distribution U3 corresponds to one of the single­
ship cases from Table 2 where the stochastic
solution most strongly outperforms that ob­
tained using heuristics. To reduce the size of
the associated multiple-ship model, we test a
variant of this problem in which we modify
the scenario tree by modeling attacks only
on even-numbered periods from periods 26
to 40. The resulting scenario tree has 17 leaf
nodes instead of 31, including one no-attack
scenario. Before turning to the multiple-ship
version of this model, we note that the sin­
gle-ship models under these two scenario
trees render stochastic solutions within 1% of
each other, and similar bounds are also found
by the heuristics (see Table 6), justifying the
use of the smaller scenario tree for the multi­
ple-ship problem: The stochastic model still
has over 445,000 constraints and 466,000 vari­
ables, including 30,000 discrete variables.

The utility of a tractable, reduced-size, sce­
nario tree is further corroborated by our "out­
of-sample" assessments from Table 6 (last two
rows). Here, the SSDM solution, which is based
on 17 scenarios, is tested against two cases
with 31 and 91 scenarios, respectively. The
31-scenario problem allows attacks on every

T
u
S>

2
t
s
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Table 5. Ship data: Number of sealift ships under the control of the U.S. Transportation Command and their
readiness status. For example, four LMSR (large, medium-speed, roll-on/roll-off) sealift ships become available
in period two (i.e., on day three or four) of the planning time at some of the four SPOEs (the specific breakdown
by SPOE is not shown for simplicity). Characteristics: Days Port Procedure (OPP) needed to load/unload; Ca­
pacity (sq. ft.); Speed (knots). Travel times (days) from each SPOE (W, E in the U.S., Fl at Diego Garcia and F2 in
Europe) to either spon In comparison with the original case (only RoRo ships) there are fewer vessels in the
multiple-ship case, but initial lift capacity is maintained for every period and even for every SPOE (not shown).
For example, in period 1, twelve of the 58 RoRos from the original case are replaced by two FSSs and four LMSRs
in the multiple-ship case.

Total number of ships in readiness Travel time from
status (period ready) Characteristics each SPOE

Ship type 1 2 3 5 10 18 Total OPP Cap Sp W E Fl F2

SL-7 FSS 2 2 2 1 0 0 7 4 200,000 27 16 11 3 8
RoRo 46 24 16 6 11 13 116 4 150,000 18 24 17 5 12
LMSR 4 4 4 2 0 0 14 4 350,000 24 18 13 4 9
Total 52 30 22 9 11 13 137 (23,700,000)
Original case (only RoRo) 58 36 28 12 11 13 158 4 150,000 18 24 17 5 12

Military Operations Research, V14 N2 2009; Military
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(*) Out-of-sample assessment using the solution from SSDM 17-scenario case. 1,375 is the optimal value for 31
scenarios, but this takes too long to compute, so we compare to the 17-scenario case, which has an optimal value
of 1,473.

Objective function values

Test case D+ SSDM DSDH DSDH'

Single-ship (only RoRo). -49% 4,491 47% 14%
31 scenarios
Single-ship (only RoRo). -49% 4,539 56% 11%
17 scenarios
FSS, RoRo and LMSR. -148% 1,402 273% 61%
17 scenarios
FSS, RoRo and LMSR. -163% 1,473· 256% 57%
31 scenarios
FSS, RoRo and LMSR. -196% 1,657" 210% 52%
91 scenarios
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whereas the DSDH and DSDH' heuristics yield
solutions approximately 56% and 11% worse,
respectively. For the multiple-ship case, our hy­
pothesis that unmet cargo would be substan­
tially reduced is confirmed: The new SSDM
solution improves from 4,539 to 1,402 ktonsx
daysl.5, or 224%.

Relatively speaking, the heuristics DSDH
and DSDH' perform worse when solving mul­
tiple-ship instances than for single-ship cases.
Specifically, the DSDH and DSDH' solutions
are 273% and 61% worse than for SSDM, re­
spectively. (The analogous percentages for
out-of-sample testing are smaller but not dra­
matically different.) This behavior can be at­
tributed to two facts: First, planning for the
no-attack scenario is even more inefficient now,
because ships trapped at an attacked SPOD
cannot be easily "replaced" now that fewer to­
tal ships are available. And, since new FSSs
and LMSRs have higher capacity, losing one

period from periods 26 through 40; the 91­
scenario problem expands that problem by in­
corporating three equally-likely decontamina­
tion scenarios of 8, 10 and 12 periods. In both
cases, the SSDM solution substantially out­
performs the solutions obtained using the
heuristics, DSDH and DSDH'. While a 1%­
gap solution to the 17-scenario SSDM can be
achieved in approximately 800 seconds, a solu­
tion of similar quality to the 31-scenario SSDM
takes several hours. If several hours is too long,
the solution to the 17-scenario problem might
be acceptable. For example, the 1%-gap solu­
tion to the 31-scenario SSDM has a value of
1,375, while the value realized by the 17-scenario
problem applied to the 31·scenario out-of-sample
tree is 1,473. But, 1,473 still indicates a substantial
improvement over the solutions provided by
the heuristics.

From Table 6 (row 3), the single-ship SSDM
yields a solution with objective value 4,539,

Table 6. The first case is from Table 2: We use RoRo ships only, with attack type '01•1 ={{dl }, {~}}, and discrete
uniform distribution "U3" over periods 26, 27,...,40 (in addition to a no-attack scenario with probability 0.5). The
second case is a simplification of the first, where attacks are allowed only on even-numbered periods (26,
28,... ,40). These SSDM solutions are within 1% of each other. The third case uses the same simplified scenario
tree to incorporate multiple ship types, showing a significant improvement for the stochastic solution, and a
substantial degradation in the relative quality of the heuristic solutions provided by DSDH and DSDH'. This
multi-ship SSDM solves in approximately 800 seconds within 1% of optimality. The fourth case has all 26,
27,... ,40 attack days. In the interest of tractability, the SSDM method shows the SSDM 17-scenario solution eval­
uated against the 31 scenarios of this case. Even though we have left out some attack days to build our SSDM
solution, it still outperforms those provided by heuristics. The last case replaces the deterministic decontami­
nation time of 10 periods by three equally-likely scenarios of 8, 10 and 12 periods. Note: This is reflected in
our 8~ta (unloading time) parameter. Again, even though the SSDM solution is based on the 17-scenario case,
it retains its significant improvement with respect to those from the heuristics.

Military Operations Research, V14 N2 2009'09
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of these to an attack is a more important set­
back. Second, the incentive for pushing cargo
through early, which motivates DSDH', does
not yield results that are as good as for the
RoRo-only scenarios because FSSs and LMSRs
are faster vessels.

In summary, our results suggest that even a
small fleet of FSSs and LMSRs replacing a ca­
pacity-equivalent number of RoRos would pro­
vide substantial planning flexibility and less
expected disruption. But, this benefit can be
fully realized only if stochastic programming
is used to guide planning.

CONCLUSIONS
This paper has devised a specialized, sto­

chastic mixed-integer programming model for
planning the delivery of sealift cargo in a war­
time deployment, subject to possible enemy
attacks on one or more seaports of debarkation
(SPODs). The attacks are simulated by halting
berthing, and cargo handling, until decontami­
nation is complete at an attacked SPOD, and by
then modeling cargo-handling capacity that
gradually returns to normal. The timing and lo­
cation of an attack are uncertain. We focus on
the effects of a single biological attack (possibly
on two SPODs simultaneously), but the model
could be modified for multiple attacks or con­
ventional, nuclear or chemical attacks.

The stochastic program SSDM and two
(simulated) rule-based planning schemes have
been tested with data from a realistic wartime
deployment with 158 ships becoming available
at different times during the deployment, 11
cargo types, four seaports of embarkation where
cargo is loaded and two SPODs where cargo is
unloaded before reaching its final destination.
Our test cases assume there is a substantial
probability of no attack, but if an attack does oc­
cur, it occurs with known probability distribu­
tion for timing and location.

Expected cargo lateness, measured in
weighted ton-periods, improves by up to 25%
for a single-ship-type deployment, but up to
60% with multiple ship types, depending on
data and probabilistic assumptions. These
improvements are relative to expected results
obtained using a simulation of current, rule-

based planning techniques. (In fact, we com­
pare against a "tuned" rule-based technique
that is rooted in a deterministic optimization
model and may overestimate the efficacy of
rule-based techniques; hence, our comparisons
are conservative.) However, there is little price
to pay in terms of cargo lateness for the sto­
chastic solution if no attack occurs. In conclu­
sion, hedging against a possible attack can
provide substantial benefits if an attack occurs,
and incurs only a minor disruption penalty
otherwise.

Our simulations of current rule-based
plans have shown that it may be possible to
establish rules that are more robust against
potential attacks early in the deployment
horizon, without using a special stochastic­
programming model. In these cases, SSDM
improves over rule-based planning, designed
to push cargo through the system as quickly
as possible, by only an average of 3%. This con­
trasts, however, with larger averages of 8%
when an attack may occur at almost any time
(uniform distribution for attack time), and
11% and 17% for two sets distributions that
model attacks that can only occur late in the de­
ployment. Except in the case of early attack, it
may be impossible to adjust a rule-based sys­
tem to behave nearly as well as a stochastic
one. But it is probably impossible to know
how well rule-based planning is performing
without an optimal, stochastic solution to serve
as a baseline lower bound. So, while computa­
tionally cheaper rule-based systems can be im­
proved, stochastic programming provides a
superior approach with respect to provable so­
lution quality.

The current emphasis in the U.S. military's
deployment planning is for providing up-to­
the-minute tracking of all cargo and transporta­
tion assets, with the ability to quickly respond
to contingencies. This is no doubt important,
but planners can expect more timely arrival
of cargo into a theater of war if they proactively
plan for those contingencies.

Further testing and development of SSDM
are warranted. The model should be tested
against wartime deployment situations in other
parts of the world. Conceptually, the model is
easy to expand for other sources of uncertainty
such as the location of the cargo-carrying ships

Military Operations Research, V14 N2 2009 Milita
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when deployment planning is commenced.
SSDM currently assumes that if an attack
occurs during the deployment, there will only
be one, although it may affect more than one
SPOD. We argued that SSDM may be viewed
as a two-stage stochastic program in which
the stage occurs at a random time, and that
the size of the model grows quadratically with
the number of time periods. This idea could be
extended to allow at most two attacks, Le., a
three-stage multi-period model with random
stage timing. The size of that model would
grow with the cube of the number of time peri­
ods. As the models grow larger in this manner,
their solution will require the development of
specialized algorithms.
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