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Worst-Case Interdiction Analysis
of Large-Scale Electric Power Grids

Javier Salmeron, Kevin Wood, and Ross Baldick, Fellow, IEEE

Abstract—This paper generalizes Benders decomposition to
maximize a nonconcave objective function and uses that decom-
position to solve an “electric power grid interdiction problem.”
Under one empirically verified assumption, the solution to this
bilevel optimization problem identifies a set of components, lim-
ited by cardinality or “interdiction resource,” whose destruction
maximizes economic losses to customers (and can thereby guide
defensive measures). The decomposition subproblem typically
incorporates a set of dc optimal power-flow models that cover
various states of repair after an attack, along with a load-dura-
tion curve. Test problems describe a regional power grid in the
United States with approximately 5000 buses, 6000 lines, and
500 generators. Solution time on a 2-GHz personal computer is
approximately one hour.

Index Terms—Failure analysis, load flow analysis, power system
security.

I. INTRODUCTION

A. Background on Interdiction Models for Power Grids

S ALMERON et al. [1] develop a bilevel optimization model
whose solution identifies critical components of an electric

power transmission grid. Specifically, [1] posits an “interdictor”
seeking an optimal subset of grid components which, if “in-
terdicted” (i.e., disabled), would maximize “disruption” to the
grid’s customers. Attacked components are critical to the grid’s
functionality, and may warrant special defensive measures.

In this “electric power grid interdiction problem,” we typ-
ically measure disruption in terms of long-term energy-shed-
ding, but can also measure it in terms of medium-term, peak
power-shedding. (As discussed below, we ignore the short-term
shedding that might result from cascading outages immediately
after an attack.) Either objective, medium- or long-term, may
weight buses and/or customer sectors differently to account for
differing economic losses.

Solution methods for this problem, except heuristics (see [1]
and Bier et al. [2]), have been unable to solve large, real-world
problems. This paper demonstrates a decomposition method
that overcomes this difficulty. The method does require one
essential assumption that does not hold in general, but we find
no violations of the assumption in practice.
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Our ultimate goal is to help electric utility companies iden-
tify critical transmission-system components whose protection
yields a system that is robust against attacks by an intelligent
adversary. Protection can involve “hardening,” adding security
personnel, stockpiling spare parts, etc. A trilevel model can be
defined to identify optimal protective measures given a limited
budget for those measures (Brown et al. [3]). Unfortunately, we
cannot yet solve such models at the scale necessary for real-
world transmission systems. Using our bilevel model, however,
will give utilities an objective means to compare how various,
proposed, budget-feasible portfolios of defensive measures will
protect against worst-case attacks.

Our approach contrasts with schemes that rank system com-
ponents using ad hoc measures of “importance” or “criticality”;
for example, see Albert et al. [4], Chassin and Posse [5], Espiritu
et al. [6], and Qiang and Nagurney [7]. Such measures are not
typically validated using standard engineering (i.e., power-flow)
models. Bier et al. [2] do measure system functionality using
a power-flow model but, in effect, rank components through a
greedy heuristic.

We do not model short-term outages that may be caused by
cascading failures (e.g., Mili et al. [9]). A cascading failure
caused by an attack on a power grid may create widespread out-
ages, and some economic distress. But, the distress caused by
medium- and long-term outages is likely to be much greater. For
instance, it may take weeks or months to replace transformers
that are damaged by an attack, while the effects of an accom-
panying cascading failure may be overcome (as best possible
given the damaged transformers) within a few hours or days.

Finally, we note that it will never be possible to identify an
adversary’s exact motivation, at least not before an attack. It is
probably better to prepare for a worst-case attack, measured in
some objective fashion, than to guess at an adversary’s motiva-
tion and prepare defenses against that. An incorrect guess may
overlook a devastating attack. (However, if the adversary’s mo-
tives should become known with certainty, then the approach
described by Motto et al. [8] may apply.)

B. Detailed Interdiction Model for an Electric Power Grid

As in [1] and [10], we measure the (medium- and long-term)
functionality of a grid using a set of linear dc optimal power
flow models (OPFs), each stated in terms of the vector of de-
mands (throughout, bold letters indicate vectors), and func-
tioning (non-interdicted) components, i.e., lines, generators and
buses. In addition to disregarding losses from cascading fail-
ures, we disregard details related to initial restoration after an
attack, e.g., unit-commitment issues that arise as service is re-
stored to different parts of the grid. The objective function for
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OPF includes terms for generation costs and for penalty costs as-
sociated with shed power or energy. The penalties approximate
both the direct and indirect costs of the corresponding unserved
demand.

The ultimate goal is to measure how well the grid functions
following the initial restoration after an attack, and how that
functionality improves as interdicted components are repaired:
this requires the solution of multiple instances of OPF. To sim-
plify the presentation, however, we initially assume constant
demands and a single, constant repair time for any interdicted
component. Thus, only a single instance of OPF need be solved
to evaluate the effects of a given attack. (We extend to a time-
phased model in Section II-D.) The model follows.

Indices:

buses, with as the reference bus;

generating units, with units connected to
bus ;
AC transmission lines (including transformers,
which are modeled as lines);
DC transmission lines;

origin bus for line ;

destination bus for line ;

customer sectors.

Data [units]:

generation cost for unit [$/MWh];

load-shedding cost for sector at bus [$/MWh];

maximum output from generating unit [MW];

transmission capacity for line [MW];

series susceptance of AC line [ ];
loss coefficient for DC line [unitless];

load for consumer sector at bus [MW] (the
vector of demands is ).

Variables [units]:

phase angle at bus [radians].

power flow on AC line [MW];

power flow on DC line [MW];

generation from unit [MW];

load shed by customer sector at bus [MW].

Formulation:

(OPF.0)

s.t. (OPF.1)

(OPF.2)

(OPF.3)

(OPF.4)

(OPF.5)

(OPF.6)

(OPF.7)

(Note: All units above are converted into per-unit values for a
base power of 100 MVA.)

The objective function (OPF.0) minimizes generation costs
plus load-shedding costs in $/h. (However, the former will typ-
ically be negligible in an interdiction problem with load-shed-
ding.) Constraints (OPF.1) are linearized admittance constraints
that approximate active power flows on AC lines. Constraints
(OPF.2) maintain power-balance at the buses; for any DC line
we assume a fixed loss rate for flow in either direction. Con-
straints (OPF.3) and (OPF.4) set maximum power flows for
lines and maximum generating-unit outputs, respectively. Con-
straints (OPF.5) ensure that load-shedding does not exceed de-
mand. Equation (OPF.6) requires nonnegative power flows on
DC lines. Equation (OPF.7) sets the phase angle on the refer-
ence bus to 0.

OPF does not need to model substations, but the interdiction
problem does, because the buses and transformers (and other
equipment) that make up a substation could all be destroyed in a
single attack. Consequently, we assume substations have
been defined, along with these derived subsets:

buses at substation ;

lines connected to substation ;

generators connected to substation .

Other derived subsets used later in this paper are:

lines connected to bus ;

lines running in parallel to line (multiple
circuits on the same towers or in close proximity
that would be interdicted by an attack on line ).

As shorthand, will denote OPF, with the
vector incorporating all decision variables, with repre-
senting (OPF.1)–(OPF.7), and with representing (OPF.0).
In turn, the “interdict power flow model” (IPF) can be stated as

(IPF.1)

where represents resource-limited, binary
interdiction plans defined on generic components , and

represents feasible operation of the power grid with
demand vector and with operating components that are dic-
tated by . More precisely, for , if component

(i.e., line, bus, generator, substation) is attacked and disabled,
and , otherwise. The constraint set also includes 1) one
or more interdiction-resource constraints (see [1]), and 2) log-
ical constraints to prohibit “inefficient” interdiction plans that,
for instance, separately interdict bus and a line connected to
. The latter, logical constraints are optional, but tend to speed

convergence of the solution algorithm.
In summary then, IPF takes the view of an interdictor who

wishes to use his limited interdiction resources (with an as-
sumed valuation of resources necessary to disable each compo-
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nent) to maximize “disruption” to the operations of the power
grid. Nominally, disruption would measure the difference in op-
erating costs, including penalties for unserved demand, after and
before interdiction. Since the cost of operating the system before
interdiction may be viewed as a constant, IPF simply seeks to
maximize estimated post-interdiction operating costs; we con-
sider the peak operating cost rate or total cost until the system
is repaired.

For a fixed interdiction plan , we evaluate
by first identifying the working compo-

nents of the transmission grid, denoted , and
for lines, buses, and generators, respectively. Then, we solve

, usually denoted here as
for brevity.

C. Existing Approaches for Solving IPF

To date, two basic approaches have been suggested to solve
IPF: heuristics, and direct solution of equivalent mixed-integer
programs (MIPs).

Reference [1] introduces a decomposition-based heuristic
that solves a series of OPF models. (See also the greedy
heuristic in [2].) At each iteration of the heuristic, a tenta-
tive interdiction plan is evaluated, starting with .

provides power-flow patterns, which are used to as-
sign a relative value to each component in the power grid.

A MIP then solves to produce . (Constraints
are also added so that no solution repeats.)

The heuristic procedure continues for a fixed number of iter-
ations or until a time limit is reached. The procedure can handle
large-scale models because the OPF “subproblems” and MIP
“master problem” all solve quickly, even at large scale. As with
any heuristic, however, this approach lacks the foundation of a
formal algorithm that guarantees convergence (except through
total enumeration).

The difficulty of formulating IPF as a standard mixed-integer
program stems from the non-convex, max-min nature of the
problem. One may view as simply modifying the original sets

, , and to , , and , respectively, but repre-
senting this in a MIP is difficult. For example, suppose line
can be interdicted as can its origin bus and destination bus

. Then, the original constraints (OPF.1) and (OPF.3) in OPF
may be written in IPF as in (OPF.1 ) and (OPF.3 ) at the bottom
of the page (with optional logical constraints omitted).

Note that the superscripts on the variables correspond to
component types, and the subscripts correspond to individual
components. (This convention is also used with coefficients
below.) Obviously, the product terms do not bode well for de-
veloping an efficient solution procedure based on mathematical
programming.

IPF has been converted into a MIP using two separate
methods, however. In [11], we 1) linearize any product term of
the form 2) take the dual of the modified
inner minimization, and 3) linearize the product terms that then
appear in the dualized objective function. This procedure leads
to a large, difficult-to-solve MIP, even for a small power grid.
For example, a 48-bus scenario created from the IEEE Relia-
bility Test System (see [12] and [13]) takes up to three minutes
to solve on a personal computer, depending on the amount of
interdiction resource allocated. For a realistic power grid with
a few thousand buses, the MIP equivalent for IPF cannot even
be generated because of excessive requirements for computer
memory. Alvarez [14] applies Benders decomposition (BD)
[15] to this MIP but, again, can solve only small problems.

Motto et al. [8] describe a second transformation of IPF into
a MIP. Their method also linearizes product terms of the form

, but incorporates both primal and dual vari-
ables within the same model: an explicit constraint then enforces
strong duality for the inner OPF as a surrogate for that model.
In fact, this elegant approach can model a more general situation
in which the interdictor and system operator do not have diamet-
rically opposed objective functions. Motto et al. solve the small
test scenarios also solved in [11], and report similar computa-
tional times. Thus, this approach also seems unsuited for solving
large-scale models.

In summary, to date, no formal optimization method has been
devised that can solve large-scale electric power grid interdic-
tion problems. A new approach is needed.

II. NEW APPROACH

A. Global Benders Decomposition

This section describes a new decomposition algorithm for
solving IPF. As with BD applied to a maximizing MIP [15],
the algorithm alternates between an integer-programming
master problem and one or more linear-programming sub-
problems. And, like BD, the algorithm does build a concave,
piecewise-linear approximating function to the function being
maximized (which is the optimal objective value to the OPF as
a function of variables ). Unlike BD, however, the function
being approximated need not be concave. Consequently, we
refer to the algorithm as “global Benders decomposition”
(GLBD). (“Generalized Benders decomposition,” or “GBD,”
developed in [15], still requires the function being maximized
to be concave. Thus, GLBD maybe be viewed as a further
generalization of GBD.)

A key advantage of GLBD over the MIP approach to solving
IPF is that the algorithm’s subproblems represent simple, fa-
miliar instances of the primal linear program OPF. Thus, the
user need not maintain a MIP that involves unfamiliar constructs

(OPF.1')

(OPF.3')
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from the dual of the OPF model that are complicated by inter-
actions with binary variables as in [8], [11], and [14]. In fact,
our linearized OPF model could be replaced by a nonlinear, ac
OPF model (e.g., [16]) and could include security constraints
explicitly, although the increased computational burden might
be excessive.

The decomposition relies on a sequence of upper-bounding
(i.e., optimistic) piecewise-linear functions for the interdictor’s
objective, . The maximum of those functions must converge
to the optimal solution of IPF since only a finite number of in-
terdiction plans exist; however, practical use of the decomposi-
tion rests on verifiably close-to-optimal solutions being found
quickly.

Again, let index generic grid components. Then, for
each , we can find coefficients such that the affine
function

bounds from above for all feasible , i.e.,

(MP.1)

Inequality (MP.1) leads to the following master problem:

(MP.2)

where denotes an enumerated set of feasible vectors
in . IPF is equivalent to when . Otherwise,

, i.e., provides an upper bound on the op-
timal objective function value of IPF.

The following algorithm implements GLBD for IPF, although
the reader will see that it applies to a much broader class of
problems.

Global Benders Decomposition Algorithm (GLBDA)

Input: Grid data, interdiction data, and optimality tolerance
.

Output: an -optimal solution to IPF, with cost .

Initialization:

; /* Initial interdiction plan, assumed feasible */

; /* Initial subset of feasible interdiction plans */

; /* Current best plan for the interdictor */

; /* Lower bound on cost of best plan */

; /* Upper bound on cost of best plan */

Subproblem:

Solve OPF( ) for power-flow solution and objective value
.

If then and ;

If , then report as the -optimal solution
to IPF and halt;

;

Master Problem:

Use to compute coefficients satisfying
(MP.1), and add the following generalized Benders cut to

:

;

Solve for new interdiction plan and for objective
value , and set ;

If , then report as the -optimal solution
to IPF and halt;

Return to Subproblem step;

(End of Algorithm)

To better understand the need for GLBD versus standard BD,
consider first the standard decomposition of a simple, profit-
maximizing MIP. The following MIP represents a capacity-ex-
pansion problem in which variables correspond to strategic
capacity-expansion decisions, and variables describe system
operation:

The (linear-programming) Benders subproblem, for a speci-
fied , is

(LP.1)

For simplicity, suppose that is bounded and feasible
for any , and define as the optimal dual variables
for constraints (LP.1). Then, defining for all

, becomes the standard Benders master problem
for this model. In this case, is a piecewise-linear, concave
function (when its argument is viewed as a continuous vector,

), and defines a piecewise-linear, concave
(outer) approximation of that function. Thus, GLBDA applied
to CE can correspond to a standard BD algorithm.

IPF is not, however, a pure, maximizing optimization
problem, but rather a bilevel, max-min optimization model for
planning interdictions. The interdiction analog of CE, with a
cost-minimizing operational model, is
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(A linearized version of IPF is more complicated than CI, but
that fact does not alter the conclusions here.) Accordingly, the
natural subproblem becomes

(LP.2)

Now, is a piecewise-linear convex function which (gen-
eralized) Benders decomposition cannot maximize as it can the
concave function in CE. But, GLBDA will still optimize this
function as long as two requirements are met: 1) is easy
to evaluate for fixed , and 2) valid and useful cut coefficients

can be defined for . Requirement 1) certainly
holds, as evaluation of involves the solution of a straight-
forward LP, but requirement 2) demands more thought. We con-
sider two cases in this development: and .

If , then can only change to 0, and this adds units
of capacity to the minimizing subproblem . This im-
plies a relaxation, so will not increase with such a change.
Thus, is a valid cut coefficient.

On the other hand, if , then a change to re-
moves capacity in , and may increase. Suppose that
component has “flow” given , and problem structure
implies that a loss of all capacity on component can lead to at
most units of unserved demand. If the unit cost for unserved
demand is at most , then is a valid cut coefficient
for GLBD.

More information about a problem could yield tighter cut
coefficients, resulting in a tighter master-problem bound and a
more efficient decomposition algorithm. Regardless, we have a
theoretically convergent algorithm: computational tests will de-
termine its practical efficiency.

B. Cut Coefficients for Decomposing IPF

We would like to use analogs of the cut coefficients just devel-
oped for CI when solving IPF by decomposition. Those analogs
are not strictly valid, however, without the following two-part
assumption.

Assumption 1: Ignoring short-term load-shedding due to in-
terdiction-caused cascading failures, (a) the interdiction of a set
of components , each carrying MW of power, leads
to the shedding of at most MW of demand, and (b)
the restoration of an interdicted component does not increase
load-shedding.

Assumption 1(a) does not hold in general. For example,
Baldick [17] describes a dispatch condition in which a gener-
ator is producing 1250 MW, and is contributing to counterflow
on a constrained line. Interdicting that generator could result in
curtailment of more than 1250 MW of demand if the removal
of the counterflow also requires other generators to reduce
production.

Assumption 1(b) may not hold either. Although restoration
relaxes OPF by adding capacity, it also restricts the model by
enforcing an admittance constraint (OPF.1). For example, con-
sider a system consisting of two buses joined by two transmis-
sion lines of equal admittance, but with capacities 10 MW and
100 MW. With the 100-MW line in service and the 10-MW line

interdicted and out of service, the system can transmit 100 MW.
But, if the 10-MW line is brought back into service, at most 20
MW can be transmitted.

Despite the counterexamples, we find Assumption 1 to hold
in practice, and have empirical evidence of the validity of the cut
coefficients it generates. In particular, we have run thousands of
GLBDA iterations; have generated cuts based on Assumption
1; have solved the resulting OPFs (after interdictions derived
from ); and have never found an optimal subproblem
objective value that exceeds the master-problem upper bound.
Consequently, we feel secure in using the cut coefficients for
IPF described next.

To develop these coefficients, we first rewrite the generalized
Benders cut (MP.1) to account for specific component types
(where the superscripts on the variables again correspond to
component types, and the subscripts correspond to individual
components)

Now, let and denote, respectively, the functioning
and non-functioning components in the grid given interdiction
plan ; define analogous subsets, as functions of , for
and ; and make these additional definitions:

power generation from generator in solution to

power flow on line in solution to ;
lines whose origin or destination, resp., is bus ;

“frontier lines” originating or terminating at
substation , respectively;
upper bound on the cost, in $/h, to shed 1 MW of
demand; this paper uses .

Given feasible interdiction plan , cut coefficients can now be
defined for (MP.1) that are valid under Assumption 1:

(IPFC.1)
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To illustrate, suppose line is not interdicted. Then coefficient
represents an optimistic bound (for the interdictor) on

the cost of the load that would be shed if line , currently in
operation, were interdicted. This is computed as a function of a
bound, , on the total disruption that interdiction of line
might cause, given Assumption 1:

Clearly then, an upper bound on the cost of disruption is
. Similarly, is an optimistic bound

on the cost of unmet demand incurred by interdicting generator
. Computing involves all generators and lines injecting

power at bus (thus, the need to distinguish the direction of
power flow). We compute (for substations) in a similar
fashion, except that only frontier lines are involved, to avoid
double-counting.

C. Logical Constraints in

Other constraints can be added to in order to speed conver-
gence, although they are unnecessary from a theoretical point
of view. We have already mentioned one type of constraint in
Section I-A: constraints that forbid interdiction plans that are
clearly “inefficient” for the interdictor. As another example,
consider

where is an already-evaluated interdiction plan, and again
indexes all components. This constraint forces any new solution

to differ from in at least one component; such a “super-
valid inequality” [18] guarantees not to eliminate any -optimal
solution unless the incumbent solution is already -optimal.

D. Time-Phased Model and Algorithm

Two considerations motivate the extension of IPF to multiple
time periods.

1) Repair Times: As a power grid is repaired after inter-
diction, its functionality, measured through OPF, will tend to
improve.

2) Demand Variation Over Time: OPF should accommodate
intra-day demand variations. We use a three-segment staircase
function to represent a daily load-duration curve (LDC). (For
simplicity of presentation, we assume no inter-day variations in
demands.)

IPF extends to handle these temporal issues (not including
unit commitment) through simple numerical integration in-
volving the solution of a set of independent OPF models
for each fixed . We make the following definitions for this
purpose:

ordered set that indexes distinct repair
times for components;
distinct repair times for components, ,
each measured in days, with ;
1 if component , having been interdicted at
time , would be operating by time ; and

otherwise;
segments of daily LDC;

demand vector for segment of the LDC;

fraction of time during a day that the LDC applies
as the relevant demand vector ;

the optimal objective-function value for

, i.e., .

The time-dependent variant of IPF can now be written as

where denotes the component-wise maximum of and .
The notation used for IPFT deemphasizes the min-

imization involved in evaluating various instances of
, but it should be clear that evaluating

for fixed involves the solution of a set of (at most
) separate instances of OPF. That is, GLBDA applied

to IPFT will solve subproblems that decompose by repair time
and LDC segment.

To completely define GLBDA for IPFT, we need only define
appropriate cut coefficients. This involves straightforward inte-
gration as with the objective function. For instance, for a non-
interdicted line , we compute

where denotes the cut coefficient from (IPFC.1), for

interdiction plan and constant demand .

III. RESULTS

A. Implementation

We have implemented GLBDA using the Xpress-MP 2006
optimization suite [19] on a 2-GHz laptop computer with 2 GB
of RAM. Some key aspects of our implementation are that:

• At every iteration of GLBDA, the first OPF model (for
and ) is solved using Xpress-MP’s Newton barrier algo-
rithm: this is substantially faster than primal or dual algo-
rithms for this problem. Subsequent OPFs are solved using
an advanced starting basis and the dual simplex algorithm
in Xpress-MP.

• Master problems are generated with Xpress-MP, but solved
using the CPLEX 9.0 [20], because of notable computa-
tional savings over the Xpress-MP solver.
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TABLE I
OPTIMIZED DISRUPTION VALUES FOR THE RTS-96 TWO-AREA SYSTEM1

B. Testing on IEEE Reliability Test System RTS-96

The IEEE Two-Area 1996 Reliability Test System (RTS-96;
see [12] and [13]) defines our first test grid.

For purposes of comparison, we use the interdiction data pre-
sented in [1]: an overhead line requires one unit of interdiction
resource to attack, a transformer two, and a bus or substation
three; generators and underground lines are assumed invulner-
able. Also as in [1], constant demands are assumed. We solve
multiple scenarios that depend on amount of interdiction re-
source , and whether the interdictor seeks medium-term or
long-term effects. In a “medium-term scenario,” the interdictor
seeks to maximize peak power-shedding and solves IPF with
a single vector of peak demands. (For consistency with earlier
work, the constant demand vector is also interpreted as the
peak demand vector.) In a “long-term scenario,” the interdictor
seeks to maximize energy-shedding and takes repair times into
account by solving IPFT. We assume that an interdicted line re-
quires 72 h (three days) to repair, a bus 360 h (15 days), and a
transformer or substation 768 h (32 days). Table I shows results
for a number of scenarios. Note that “disruption” corresponds
to amount of power or energy shed, and represents a simple sur-
rogate for objective-function value.

Naturally, for some values of interdiction resource, solutions
to GLBDA improve upon earlier ones identified by the heuristic
in [1], and match those produced by the exact MIPs in [11] and
[18]. (Comparisons with [8] for some medium-term scenarios
show minor discrepancies in disruption values, possibly due to
transcription errors in data.)

A long-term scenario solves more quickly than its medium-
term counterpart because the effective solution space, both for
the overall problem and for any individual master problem, is
smaller in the former case. For example, we implicitly have

for all lines in a long-term scenario, because lines
have such short repair times.

1“�” denotes interdiction resource, and “Iters.” denotes the number of major
iterations in GLBDA. The optimality tolerance is 1%. Each medium-term sce-
nario solves in at most 170 s; each long-term scenario solves in at most 30 s.

C. U.S. Regional Test System

We have created a realistic test system, which we call “U.S.
Regional Grid” (USRG), from data provided by one of NERC’s
reliability councils. USRG comprises over 5000 buses, 5000
lines, and 1000 transformers. Total system load is close to
70 000 MW, and generating capacity exceeds 90 000 MW from
more than 500 generating units.

These data omit substation information, so we define a sub-
station as a maximal group of transformers that share one or
more buses. This produces over 500 substations, with one to fif-
teen transformers each.

The original data give total peak demand by bus. We use these
values to create a three-segment LDC at each bus, consisting of
1) a peak period, with demand as given, covering 20% of each
day, 2) a normal period with demand equaling 75% of peak de-
mand and covering 50% of each day, and 3) a valley period with
demand equaling 45% of peak demand and covering 30% of
each day. We also set penalties to depend on the LDC segment,
with values 1000, 800, and 500 $/MWh, respectively. Both the
LDC and penalties apply to each of about 3000 buses with load.

A complete scenario also requires definition of these interdic-
tion data pairs for each component type: (amount of interdiction
resource required, repair time in hours). These values are (1, 48)
for lines, (2, 96) for transformers, (2, 180) for buses, and (3,
360) for substations; generators are assumed invulnerable. We
realize these repair times are generally optimistic, and use them
only for demonstration.

We run GLBDA for 60 minutes or until an optimality gap of
1% is achieved, and report the best solution found. All long-term
scenarios achieve the 1% gap, but medium-term scenarios leave
an average gap of 6.5%, with a maximum of 10.9%. Table II
shows detailed results for a medium-term “baseline scenario,”
defined as having ; Table III shows results for the anal-
ogous long-term baseline scenario. We list both medium-term
and long-term effects for both scenarios to emphasize how the
solutions differ with the interdictor’s intentions. Table IV sum-
marizes results for .

The medium-term baseline scenario (Table II) shows these in-
terdicted components: six lines, all with thermal ratings between
1000 and 2000 MW; three buses (with an average of eight lines
connected to each bus, with each line averaging 1400 MW of ca-
pacity); and, one substation with four transformers. Load-shed-
ding is nearly 8.4 GW. Long-term effects are ignored, as seen
by the facts that: after 48 h, disruption has dropped substantially,
and is limited to peak hours; and after 180 h, disruption vanishes
completely, even though the interdicted substation is still offline.
This contrasts with the solution to the long-term, baseline case
(Table III), which interdicts five substations. That results in the
shedding of 1095 GWh of energy, substantially higher than the

2With � � ��, GLBDA makes 164 iterations in 60 min and halts with an
optimality gap of 10.9%. The table shows strong medium-term effects but weak
long-term effects. Compare with the long-term-scenario results in Table III.

3With� � ��, GLBDA halts after reaching an optimality gap of 1%, taking
389 iterations in 57 min.

4“��� �� ��” represents the number of interdicted lines, buses and substations,
respectively.
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TABLE II
USRG RESULTS, MEDIUM-TERM BASELINE SCENARIO2

TABLE III
USRG RESULTS, LONG-TERM BASELINE SCENARIO3

TABLE IV
RESULTS FOR USRG WITH INTERDICTION RESOURCE� VARIED4

232.3 GWh from the medium-term scenario, even though peak
power-shedding is about 33% higher in that scenario.

Starting with (see Table IV), the medium-term sce-
narios reveal marginal increases of 60%, 102%, 39%, 33%, and
14% for each additional three units of interdiction resource, re-
spectively. These figures become 45%, 28%, 36%, 41%, and
21% for the long-term scenarios. As with the RTS-96 scenarios,
we see that an interdictor seeking to maximize medium-term
harm would choose a different strategy than one looking to
cause long-term harm.

D. Results With Stronger Assumptions

Given the empirical validity of Assumption 1, one is tempted
to make an even stronger assumption, which should lead to
stronger cut coefficients and shorter solution times for GLBDA.

Assumption 2: Ignoring short-term load-shedding due to in-
terdiction-caused cascading failures, the interdiction of a set of
components , each carrying of power, leads to

the shedding of at most of demand, where
is chosen such that .

If Assumption 2 can replace Assumption 1(a), valid cut coef-
ficients result from simply multiplying the coefficients defined
in Section II-B by . For example, for , the results for
the long-term, baseline USRG scenario described in Table III
are reproduced exactly, but solution time reduces by an order
of magnitude. Unfortunately, as we make smaller and smaller
( suffices here), the bounding function described by
(MP.1) will eventually become invalid. Furthermore, it may or
may not be obvious when has become “too small”; see [18].

IV. CONCLUSIONS AND FUTURE WORK

This paper has introduced global Benders decomposition
(GLBD) for solving large-scale, electric power grid interdiction
problems. The purpose in solving these problems is to identify
components in a power grid that are the most critical to the
grid’s functionality. We demonstrate that a GLBD algorithm
can solve problems defined on a real-world transmission grid
with thousands of components.

Future work will attempt to improve computational efficiency
for GLBD. In particular, we also hope to improve the master-
problem bound by identifying nonzero cut coefficients for inter-
dicted components. This may be possible by exploiting special
problem structures. Similarly, we may be able to create tighter
cuts by reducing currently defined nonzero coefficients.
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