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Abstract. We consider the following problem: Given a set of projects to be executed along a multi-year
time horizon, find a sequencing and scheduling feasible solution that optimizes a merit function. A feasible
solution should satisfy availability of storable and non-storable resources with budget carrier and non-carrier
periods, and precedence, exclusivity and implication relationships among the projects. This is an NP-hard
problem, We present several Fix-and-Relax strategies which partition the set of binary variable into clusters
in order to selectively explore the branch-and-bound tree. Computational performance is favorably compared
with a state-of-the-art optimization engine over a set of real-life cases.
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Introduction

Scheduling problems arise in many practical circumstances when planning the utiliza-
tion of resources for a better project management. Often, these problems are stated as
optimization problems having the following form: given a set of projects to be exe-
cuted along a time horizon subject to various constraints, find a feasible sequencing
and scheduling solution that minimizes the value of a given objective function. Typical
elements are: budget restrictions for carrier and non-carrier periods, limited resource
availability, multi-period projects, subsets of projects with exclusivity and implication
constraints, and precedence relationships in the execution of the projects, among others.

The class of project scheduling problems studied in this work does not belong to
the type of problems known as Resource-Constrained Project Scheduling, see Pinedo
(1995), Klein (2000) and Baptiste, Le Pape, and Nuijten (2001), among others, although
they have some common structures. The problem of concern can be formulated as a 0-1
model and is NP-hard. There is a vast literature on its polyhedral analysis and on tight
0-1 formulations and facet defining inequalities identification, see e.g., Wolsey (1990,
1997, 2002), Sousa and Wolsey (1992), Constantino (1996), Miller, Nemhauser and
Savelsbergh (2003) and Waterer et al. (2002), among others. On the other hand, efficient
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heuristic algorithms for general 0-1 models have been introduced; see Balas and Martin
(1980) and Balas et al. (2000), among others.

However, it is unlikely that an algorithm is developed to solve large-scale instances
of the problem up to optimality in affordable computing effort. We present different
strategies for the Fix-and-Relax (F&R) algorithmic framework (Dillenberger et al., 1994)
for obtaining a satisfactory solution to our 0-1 model, such that the nodes of the branch-
and-bound tree are selectively explored. The variables are grouped into clusters for
branching selection, according to different criteria, and the clusters are ordered based on
given priority rules. See also Kularajan et al. (2000) for the crew scheduling problem.

Our particular application is drawn from the electric power sector in Spain. The
electric distribution grid (medium- and low-voltage assets) is responsible for carrying
electric power from transmission substations to loads (i.e., to the final customers). This
is an evolving system that requires continuous upgrade to satisfy customers demand
while complying with reliability standards. Investments (that we call “projects”) include
network expansion (e.g., building a new corridor or a new distribution substation), up-
grades (e.g., adapting a substation to remote control systems or improving protective
equipment), maintenance of all the existing assets, and other regulatory compliances.
The problem can be succinctly stated as finding the combination of projects (among
thousands) and their scheduling (over a pre-specified time horizon), with limited re-
sources, in order to maximize a given merit function. This function is basically based
on two aspects: revenue and improvement on quality of service. It is typical that these
two objectives conflict with each other, which will be discussed in detail in the section
devoted to report our computational results. The required investment to undertake any of
these projects ranges from a few thousand dollars (for minor equipment maintenance) to
the millions of dollars (for the construction of new substations). The decision of which
projects are undertaken is centralized by the distribution utility, but it is worth noting that
geographical considerations (such as “invest more where it is more needed”) and other
restrictions by type of project may apply as well.

Our motivation to explore F&R originates in the difficulty to solve realistic large-
scale instances of this problem, whose formulation is described later in the paper. Ruled-
based heuristics hardly produce satisfactory results for this problem. One reason is the
multiple types of constraints in the problem, which makes difficult to guarantee feasibility
in the “neighborhood” selection. An additional difficulty is determining valid criteria to
account for projects with negative (or zero) return on investment, yet these projects might
be needed to ensure compliance with regulation and/or to contribute to improve the quality
of service. The problem, however, lends itself to apply F&R which is implemented under
a variety of strategies. The approach cannot guarantee the solution’s optimality but the
results that we have obtained while testing it on a set of real-life cases produce quasi-
optimal solutions in reasonable computing time, where a state-of-the-art optimization
engine takes much more computing time and, frequently, fails to give a solution.

The rest of the paper is organized as follows. Section 1 states the project scheduling
problem to address. Section 2 presents the problem’s elements and introduces the 0-1
model. Section 3 is devoted to present the F&R algorithm as well as the strategies to
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use for variables’ partitioning. Section 4 reports the computational experience. Section
5 concludes. Finally, an Appendix presents some information about the data that have
been used for the test cases.

1. Problem statement

Let a set of projects to be executed along a given time horizon. The projects have time
windows for their execution, if any. An execution time interval is given by a number
of (consecutive) time periods, so-called legs, without preemption. Let us term macro
project to a subset of projects such that if one project from the subset is executed, then,
all projects in the same subset must been executed (probably, in a different time interval).
Some macro projects are distributed in the so-called missions, such that it can be required
that a given number of macro-projects must be selected to accomplish a given mission.
The projects that belong to a macro-project can be called conditional mandatory projects.
A very frequent case is a mission with alternative macro projects in the sense that one and
only one of these subsets of projects can be executed. It is worth noting that the projects
can only belong to one macro-project, if any, and the macro-projects can only belong to
one mission, if any. Figure 1 shows a case where the macro-project {P1, P2, P3} does not
belong to any mission, and the macro projects {P4, P5, P6}, {P7} and {P8, P9} belong
to the same mission. For example, if project P4 is to be executed then the projects P5
and P6 must also be executed, and none of the projects P7, P8 or P9 can be executed
in case of alternative macro-projects. On the other hand, if project P1 is to be executed
then the projects P2 and P3 must also be executed. Additionally, there are so-called non-
mandatory projects. This class of projects will only be executed if their schedule satisfies
given constraints and contributes to the objective function value improvement, or if they
are essential to satisfy any other requirement. Non-mandatory projects do not belong to
any macro project. Another class of projects is the so-called unconditional mandatory
projects. This class of projects does not belong to any macro-project or mission, but they
have to be executed.

Some types of precedence relationships in the execution of the projects are also con-
sidered. We represent them by an acyclic directed graph where the nodes are associated

(a) (b)

Figure 1. Macro-project (figure 1(a)) and Mission (figure 1(b)).
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with the projects and the arcs refer to the existence of precedences between the projects
represented by the from-nodes and the to-nodes. Two types of precedences are consid-
ered. The first type forces a minimum time lag (i.e., number of time periods) between the
execution’s starting of any two projects. The second type of precedence forces a maxi-
mum time lag between the starting of both executions, in case that the second project in
the pair starts after the first one.

As stated above, a set of resources is required to undertake the selected projects. Two
types of resources are allowed, namely resources that can be stored from one time period
to the next one, and resources that cannot be stored (i.e., the unused labor hours at the end
of a period cannot be used in subsequent periods). There is a maximum availability for
the non-storable resources. On the other hand, a given amount can be made available for
the storable resources at (the beginning of) any time period. Some resources can require
the consumption of a given minimum amount per period.

It is assumed that each project has assigned a dedicated resource (e.g., management
team, working station) for its execution. Let us say that the projects with the same
dedicated resource belong to the same fype, such that the simultaneous execution of
the projects is not allowed. A setup in a dedicated resource is required between the
consecutive executions of two projects.

The projects can be assigned to budget categories. A category is a set of projects
that are classified under a specific attribute. An attribute can be associated with a physical
circumstance, such as the geographical zone or environmental location where the project
can impact. It is also frequent to consider attributes related to the origin of the project
proposal. In this case, the categories can be the different technical, administrative and
management levels that can be influenced by the accomplishment of the projects. In
addition, there is a total budget for each period that applies to all the projects under study.

There is a maximum availability for the total budget and, independently, for the
budget categories for the so-called non-carrier periods (i.e., time periods whose budget
surplus at the end of the period cannot be used in the next periods). Additionally, a given
amount can be made available in both types of budgets for the carrier periods. In any
case, a minimum budget can be required to be used for certain categories of projects
(e.g., maintenance works, geographical zones, etc.) as well as for the total budget.

A setof executable categories can also be defined, such that lower and upper bounds
on the number of projects to execute must be satisfied for each category. This requirement
can be easily accommodated by using the resource object model.

The goal consists of determining the projects’ selection and scheduling, such that
the given constraints are satisfied and the chosen objective function is optimized. Let
the following two types of functions: minsum functions (e.g., the total project execution
cost to minimize, the total benefit to maximize, etc.) and minmax functions (e.g., the
makespan to minimize, etc.). In case of several functions, one of them is optimized and
the others ones (so-called goals) are appended to the constraint system for forcing to
reach certain levels.

Application cases of this class of project scheduling problems can be found in
energy generators maintenance planning (see Escudero, 1981), other production units
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maintenance scheduling (see Escudero, 1982) and production sequencing and scheduling
(see Escudero, 1988; Wolsey, 1990, 1997, and Sousa and Wolsey, 1992, among others).
Escudero, Gémez, and Salmerén (1997) study an investment selection and scheduling
problem in an electric distribution network. In any case, all of these works only consider
the deterministic version of the problem. See in Alonso-Ayuso et al. (2003) a modeling
framework for this problem under uncertainty in some parameters, such as resource
availability and consumption and the objective function coefficients.

2. Mathematical formulation

The 0-1 model requires the following sets, parameters and variables.

2.1. Sets

T, set of time periods.

J, set of candidate projects.

T, CT, subset of feasible time periods to begin the execution of project j, for
jeJ.

R, set of resources, forr € R.

R' CR, subset of non-storable resources.

RZCR, subset of storable resources. Note: R = R'UR2, "N R? = @.

A, set of attributes.

ce, set of categories of attribute a € A.

J*cl, subset of projects in category c of attribute a, forc € C%, a € A.

1, set of project types.

Jicly, subset of projects that belong to type i, for i € I, such that
J=U;gJiamdJinJ' =0,Vi,i' e i #7'.

L, set of macro-projects.

Jo & J, subset of non-mandatory projects.

ST, subset of projects in macro-project [, for € L such that J; N Jp =
@,VI,I' € L,1 # I'. Note 1: JoU e, Jt S J. Note 2: The set of
unconditional mandatory projects is J — Jo — Uyey, /1

M, set of missions.

L,CSL, subset of macro-projects that belong to mission m, for m € M, such

that L, N Ly =0,Ym,m € M,m #n'.

P CJ xJ, subsetofproject pairs with a minimum time lag precedence relation-
ship (type 1), for (j, j') € P.

P C J xJ, subsetofproject pairs with a maximum time lag precedence relation-
ship (type 2), for (j, j) € P.

G, set of goals.
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2.2. Parameters

d; duration (i.c., number of consecutive legs) of project j, for j € J. Note: d;
and T; are assumed to be non-contradictory, by considering that the projects
are completed within the time horizon.

d(t,t), index of the leg to be performed in time period ¢ for any project that started
in time period #', for ' < ¢; It is calculated as d(z,#) =t — ' + 1

Did» investment (cost) required to undertake the d th leg of project j, for 1 <
d=<dj,jel.

qis amount of resource r that is needed to undertake the d th leg of project j,
forl<d<d;,jelJ,reR

fe a 0-1 budget carrier indicator such that its value 1 means that period ¢ is a

carrier of the total budget surplus at (the end of) period ¢ and, then, it can
be used at time period ¢ + 1; otherwise, its value is 0, fort € T —{|T|}. For
example, if the periods are quarters and the budget can be used within the
same fiscal year, then the settings for two consecutive fiscal years (eight-
quarter periods) would be as follows: f; = 1, fori=1,2,3,5,6,7, and
fa = 0. Note: In a broader context, this indicator can account for the
carryover fraction of the budget, 0 < f; < 1.

i, a 0-1 budget carrier indicator for category c of attribute a in time period ¢,
with the same meaning as above, forc € C*,a € A,t € T —{|T|}.

p‘:, minimum global budget to be used in time period # by all the projects, for
teT.

'17,0, maximum available global budget (for f; = 0) and input available amount
(for f; > 0) to be used in time period ¢ by all the projects, forz € T.

| minimum budget to be used in time period ¢ by all the projects in category
cof attribute a,force C*, ac A, teT.

7, maximum available budget (for £* = 0) and input available amount (for

£ > 0) to be used in time period ¢ by all the projects in category ¢ of
attribute g, force C%, a€ A, t€T.

q., minimum amount of resource r tobe used intime period ¢, forr € R, t € T.

gy, maximum available amount of resource r and input available amount in
time period ¢, for » € R! and r € R?, respectively, fort € 7.

n,, fim, minimum and maximum number of macro-projects that can be selected
for mission m, respectively, form € M .Note 0 < n, < 7. Typical
cases:n,, = f,, = 1 (i.e., only one option can and must be selected for the
mission) and n,, = 0, 7, = 1 (i.e., select one option or leave the mission
undone).

t(j, j/), minimum time-lag between the execution starting of projects j and j ' (i.e.,
project j comes first and project j’ cannot start until, at least, £(j, j ") periods
later), for (j, j) e P.

7(j, /), ~maximum time-lag between the execution starting of projects j and j’,in
case project j’ does not start before project j, for (j, j') € P.
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s, setup time (i.e. number of time periods) between the ending and the
starting of the execution of two consecutive projects of type i, for
iel.

bj;, benefit for starting the execution of project j in time period ¢, for
teT; jeld.

b8,  floor to be achieved for goal g in time period t,fort € T, g € G.

b%, total floor to be achieved for goal g in the time horizon, for g € G.

contribution of project j to reaching the floor in goal g if it starts its

execution in time period t,fort € Tj, j€ J,g € G .

js

2.3. Variables

Xjs, 0-1 variable such that its value is 1 if project j starts its execution in time
period ¢ and, otherwise, its value is 0, forteT;, jelJ.
¥ 0-1 variable such that its value is 1 if macro-project [ is performed (i.e., all

projects j € J; are executed) and, otherwise, its value is 0 ( i.e., none of the
projects in the set are executed), for! € L.

s?, total budget surplus at (the end of) time period ¢, fors € T

s, budget surplus for category c of attribute a at (the end of) time period ¢, for
ceC acA,teT.

H}, surplus of storable resource r at (the end of) time period ¢, for 7 € R, teT.

Note: A computationally oriented version of the model does not require the explicit
representation of the S- and H-variables. See below the constraint system (2.21)2.23).

2.4. The 0-1 model

The mixed 0-1 model, where the S- and H- variables appear explicitly in the formulation,
has the following objective and constraint system:

Objective: To determine the projects’ selection and scheduling to maximize the global
benefit along the time horizon:

xg'lgf(ﬂ Z ij'xj' (1)

jeJ teT;

subject to the constraints (3)-(20) below.
Remark. We could use other objectives such as minimizing the makespan:

min{max{(t +d; — Dx; |t € T;, j € J}} 2)
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Constraint system:
ijx <1, Vjelk 3)
IET]
Sx=1 Viel-l-|J& @)
teT; leL
By < Y ¥ < Tom, VmeM ®)
lely
ijr =y, VjieJ,lel ©6)

teT;

> Y xp<1, VielteT 0

jeJi teT(j,i,t)
where T'(j,i,0)={t' € T; |t —d; —s' <t <1}

> wmez Y, xmw, VteTy, (Lj)EP ®)

reT3(.j'n reri(j,jLe

where T2(j, j', ) ={t € T; | ¥ <t —t(j, N and T3(j, j", ) = {' € Ty | 1(j, ') <
t' <t}

> xps Y xpe VIET:t<IT|-HG.J) G.JYEP O

reT4(j1) reTs(,j',0n

where T*(j, ) ={' € Tj | ¥ <t} and T°(j, /', ) = {' € Ty | ¢ <t +1(j, J)}

E(: = Z Z PjdarXje, VieT (10)
JjeJ veTs(j,1)
where T9(j, ) ={r' € T; |t —d; <t' <1}
Do D Praeerie + 8 =fiaS + P, VteT 1)
jeJ veTs(j,n
where S) = 0
_’Z‘;c = Z Z PidaryXje, YCE CacA,teT 12)
JEeJ% v eTS(j,t)

> Y praeemic + 52 = fiaSE, + P, VeeClaeAteT (13)
jeJ™ veTt(j,0

where S§° =0

g_: f Z Z q;.d(,.,,)xj,,, Vr € R,t € T (14)

jeJ reré(j,n
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Z Z q;",d(t.f)xj:' <9q;, Vre Rl,teT (15)

Jj€J reTs(j,1)

Z Z Gagweyir +H=H_, +q;, Vre R%teT 16)

jed reTs(j,1»)

where Hy =0
3 whxj =bf, VgeG,teT an
jelleT;
YD whxs 2 b5, VeeG (18)
JjeJ teT;
x;€{0,1), VieT;jel;ye (0,1}, VieL (19)

$°>0, V1eT;8>0,VceCacA,teT;H,>0,VreR,teT (20)

Constraints (3) allow the execution of the non-mandatory projects. Constraints (4)
force the execution of the unconditional mandatory projects. In any case, only one starting
time period is allowed for each project.

Constraints (5) force that the number of macro-projects to be selected for un-
dertaking each mission satisfies the given lower and upper bounds. See that the mis-
sion is non-mandatory for a zero lower bound in the number of macro-projects to
undertake.

Constraints (6) force the execution of the projects that belong to selected macro-
projects, and prevents the execution of the projects that belong to the macro-projects that
have not been selected. Notice that a macro-project could not belong to any mission.
Escudero (1988) studies the constraints (5) and (6) for the selection of one and only
one macro-project per mission, in order to tightening the model in conjunction with the
knapsack constraints presented below.

Constraints (7) avoid the simultaneous execution of more than one project per type
i, so that a given setup time s' is required. This is accomplished by limiting (for a given
period ) the number of projects j € J* during the periods t' € T'(j,i,t) = {' € T} |
t —dj —s' <t < t}, where the duration d; is included to avoid project overlapping.
Sousa and Wolsey (1992), Constantino (1996) and Wolsey (1997), among others study the
polyhedron given by the constraints (3) and (7) for tightening the LP formulation. Akker,
van den, Hurkens and Savelsbergh (2000) study the same time-indexed formulation by
using the Dantzig-Wolfe Decomposition for column generation in large-scale instances.
For conciseness, we have used similar structures to T'insets T2,..., T below.

Constraints (8) and (9) ensure that the precedence relationships types 1 and 2 are
not violated, respectively. For example, the sets T%(j, j,ty={t' e T; | V' <t—1t(j, ")}
and T3(j, j', 1) = {t' € Tj | t(j, ') < t' <t} for any two projects (j, j') € P. witha
minimum time lag precedence relationship, serve in (8) to bound the set of time periods
in which project j can be carried out should project j’ begin its execution in period z. It
can be shown that the constraint systems (8) and (9) are stronger than the more “natural”
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systems where the sets T3(j, j', t) and T4(j, 1) are replaced by the variables x,; and x;,,
respectively, see Wolsey (1997).

As an illustration of the constraint system (8), let two projects, say, j and j’ with
the following time relationship: (j, j) € B, T; = {1,2,3,4}, T = {4,5,6} and
t(j, j) = 2. The associated constraint system is as follows:

Xj1+ X2 = X8
xj1+xj2+x53 = xpa+ Xps
xp+xj2+xj3+ X4 = xpa+ Xjs+ Xje

Constraints (10) and (12) force that the lower bounds on the total budget and the
category budgets to be used in each time period are satisfied, respectively. Constraints
(14) force the related lower bounds for the resource volume to use. These three sets of
constraints use the auxiliary set T9(j, t) = {t' € Tj | t — d; < t’ <t} which is used for
accounting purposes: In period ¢, we have budget and resource consumption not only by
those projects starting in ¢, but also by those that started before # and are still in progress,
i.e., those projects {j} whose starting time periodist —d; +1,¢ —d; +2,...,¢.

Constraints (11) and (13) represent the balance equations for the total budget and
the category budgets along the time horizon, respectively. Constraints (16) represent the
related balance equations for the storable resources. It is worth noting that the use of
the carryover 0-1 f-indicator allows the transfer of budget surplus between consecutive
time periods.

As an illustration of the constraint system (11), let two projects j, j’ € J, T; =
{1,2,3,4,, T; = {4,5,6},d; = 2,dp =3, f; = 1,Vt € T\{4}, and f4 = 0. The
constraint system for t = 4, 5, 6 is as follows:

Pjaxjs + Pjixja + pyixps — S + 8§ =TFi°
Pj2Xja+ pjaXja+ pinXjs + S? =7p5°
PjaXjpa+ pinXps + pjrxje — S2+ 5§ =Ps°

The knapsack constraints (15) ensure that the availability of the non-storable re-
sources is not violated at any time period.

Constraints (17) and (18) ensure that the given levels for each single goal and the
global goal are satisfied, respectively.

Note that, since the non-negative S -and H -variables only appear in (11), (13) and
(16), it is worthwhile substituting them via simple recursion. As a result, it is not difficult
to see that these constraints together with the non-negativity bounds (20) can be replaced
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by the knapsack constraints (21), (22) and (23), respectively.
S RMY. Y Puwwmir <), Fe@F, VteT @1

. -
reT| JEJ 1eTo(1) reT|
t'<t <t

where
~ M . ifr=12...,t-1
fr()y={r=r<

1, ift' =1t

S EROY. Y Puwserir< ) Fr@FF, VeeChacAteT (22)

feTl JEJ® 1 eTS(t,8') YeT|
t'<t <t
- 2
SY Y duvwrtir s ST VreReT @
rer| 1€ '€ veT|

<t <t

For exa_mple, if budg_et carryover is not allowed (f; = 0,Vt € T) then, we have: f 1) =
o= fy1(t) = 0; f,(t) = 1. Thus, (21) simply states that ZjE, Z:”erf, PjdasnXjir <
ﬁ,o , Vit € T, as expected, since ﬁ,o is the only budget available in time period ¢. However,
if we allow to carryover any surplus between the periodst = 1 and ¢t = 2,ie., fi=1,
then we would have f,(2) = 1 andf»(2) = 1 for period ¢ = 2. In this case, constraint
(21) becomes 3 ;¢ ; D wers(s, 1) Piaceme + 2 jes Lumersj) PidanXijr < Pi+ P
which indicates that the total expenses in the first two periods cannot exceed the total
budget in those periods.

3. Fix-and-relax methodology
3.1. Fix and relax: Basic algorithm

We first review the Fix-and-Relax (F&R) methodology introduced by Dillenberger et al.
(1994). Let us consider the following pure 0-1 model (IP):

IP: mzax{f(z) 1 ze€Zn{0,1Y}, 24)

where z is an n-dimensional vector, Z is a polytope in ®t" and f is a real-valued convex
function over Z. The components of z are denoted 2y, ..., 2z,. Let V = {1,2,...,n}be
the set of decision variable indices for the model IP. As it is well known, a Branch and
Bound (B&B) scheme to solve IP eventually becomes inefficient (as n increases) because
of the exponential growth in the number of nodes to explore. From a practical point of
view, sometimes it is also difficult to find a feasible solution. F&R is a general-purpose
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methodology that alleviates this difficulty by solving IP in a number of steps, each of
which involves a subproblem of smaller complexity than the original IP.

Let Vi, ..., Vi be a direct partition of the set V, thatis, V; S V, Vi = 1,....k,
v=U, Vi,andV; NV; =@, ¥i,i’ =1,...,k | i # i’ The cardinality of each V;
is denoted |V;| = n;, thereforen = Y_;_, , n;. Problem IP can be rewritten as:

IP:meazxf(z)

z . . (25)
st.z; (0,1}, VjeV,i =1,...,k

The F&R framework requires to solve a sequence of k mixed-0-1 subproblems
(hereafter stages) denoted IP", forr =1, ..., k%, which are defined as follows:

P :r;\ea%(f(z)

zj=2;Y¥jeV,i=1,...,r—1@fr> 1)
st.1z; €{0,1},VjeV, (26)
z; €[0,1,VjeVi,i=r+1,...  k(ifr <k)

where the values 2; for j € V;, i = 1,...,r — 1 in stage r >1 are retrieved from the
solution to problems IP!, ..., IP 7}, respectively.

Since only a reduced subset of (non-fixed) 0-1 variables are kept integer at each
stage r, IP" can be solved with relative efficiency. We next develop several F&R-based
schemes.

Let V*(P) denote the optimal objective function value for a generic problem P in
the argument, and let V (P) and V (P) denote a lower bound and an upper bound on that
solution, respectively. A basic implementation of F&R is as follows:

BFRA: Basic Fix-and-Relax algorithm

Input: Partition V), ..., Vi for a given number of stages k > 1

Step 1: Set r = 1 and solve P
If IP! is infeasible, STOP: “Probiem IP is infeasible”.
Otherwise, set V(IP) = V*(IP}).

Step2:lfr =k,set VIP) = V*(IP*) and STOP: “Problem IP is feasible”.
Otherwise, increase r by 1.

Step 3: Solve IP”.
If I is infeasible, STOP: “Problem IP status is unknown”.
Otherwise, go back to Step 2

Output: IP status (“Infeasible”, “Feasible” or “Unknown”). If status is “Feasible”,
the best lower and upper bounds that have been found for the optimal solution are
V(IP) and V(IP), respectively.

As indicated in Step 3, BFRA has the potential to fail. This may occur if IP! is fea-
sible but, at some stage r > 1, the associated problem IP" becomes infeasible. In
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this situation, BFRA is unable to recognize which of the following cases provokes the
infeasibility:

(a) Problem IP (and consequently IP") is integer-infeasible; see that this can only happen
if the LP relaxation of IP is feasible but IP is itself infeasible, since IP'is feasible
by hypothesis.

(b) Problem IP is integer-feasible, but having fixed z to Z (which is an estimate of the
true optimal value) for j € V;, i = 1,...,r — 1, makes IP” infeasible.

We might also be interested in obtaining a solution that guarantees a given optimality
gap. Unfortunately, BFRA yields a gap, (VAP) — V(IP))/V (IP), without any guarantee
to satisfy the desired optimality tolerance.

In the following section we present an algorithm that avoids these inconveniences.

3.2. Enhanced fix and relax scheme

Based on the same ideas as BFRA, we present an enhanced F&R algorithm that detects
problem infeasibility and guarantees a predefined optimality gap. The improved scheme
has the potential to “step back” if any infeasibility occurs, or when the gap exceeds the
allowed tolerance. A step back groups two or more of the original stages into a single
one, which in turn provides a closer approach to the original IP. An enhanced version of
F&R is as follows.

EFRA: Enhanced Fix-and-Relax algorithm

Input: Partition Vy, ..., Vi, for a given number of stages k > 1. Gap tolerance, £ > 0.
Setr =1.

Step 1: Solve IP.
If IP! is infeasible, STOP: “Problem IP is infeasible”.
Otherwise, set V(IP) = V*(IP!).

Step 2:1fr =k, set VIP) = V*(IP") and STOP: “Problem IP is feasible”.
Otherwise, increase r by 1.

Step 3: Solve IP”.
If IP’ is feasible and (V(IP) — V.(IP))/V{IP) < &, go to Step 2.

Step 4: (Backwards grouping step): Redefine the partition structure:

Vr—l <= V_l UV,-
Vi <« Vi, Yi=r,...,k—1
k «— k-1

Decrease r by 1. If r = 1 go back to Step 1.
Otherwise, go back to Step 3
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Output: P status (“Infeasible” or “Feasible”). If status is “Feasible’_’, the best found
lower and upper bounds are V (IP) and V (IP), respectively, where (V(IP) — V(IP))
/Y (IP)

<é&

Notice that, in the worst case, EFRA ends up solving the original IP; in real prob-
lems, this situation is very unlikely, though.

3.3. Fix and relax schemes for the project scheduling problem

In this section we define the partitions that have been used in the computational experi-
mentation reported in Section 4.

3.3.1. Variable-worth strategies
We base the selection of a partition upon the concept of variable worth: Consistent worths,
say c;, are assigned to our decision variables x j fort € T;, j € J. For exposition’s
clarity, we present strategies as if there were no y- variables in our problem. Should these
variables exist, they are assigned to the first partition.

Let us assume a rearrangement of the indices j and ¢ in non-increasing worth order:

Cinp =+ -+ = C(jeys @7

where n = }_ ;. ; |7} is the number of x-decision variables. Let also n’ be the preferred
number of integer variables per stage, so k = [n/n’] is the number of stages (where Al
represents the smallest integer greater than or equal to the argument). We define the first
stage with the indices of the n’ most valuable pairs (j, ), the second stage with the next
n’ pairs, and so forth. Formally,

V, ={G,0) | i=@—Dn'+1,...,min{frn’,n})}, Vr=1,...,k (28)
We next propose five different strategies for assigning worth to variables:

1. A strategy is based upon the implicit time structure of our model. It is so-called
Fix-and-Relax Time Partitioning (F&R-TP). The parameters are as follows:

k=|T
F&R-TPE{ I . 29)
¢ =|T|—1, VieT;,jelJ

This strategy proposes to assign promptness as variable worth and to set one stage
per time-period in the problem. Thus, F&R-TP will determine first the 0-1 values of
those variables associated with decisions that occur early in time. F&R-TP accounts
for promptness but disregards other quantitative measures of worth such as benefit
and resource consumption, among others.
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2. A strategy so-called Fix-and-Relax Objective-Partitioning (F&R-OP) assigns each
variable a worth equals to its objective function value. The parameters are as follows:

k = [n/n’
F&R-OP = { [n/n] ) (30)
Cj‘=bj;, VIETJ,JEJ

In this partition, the number of stages depends on how many variables, n’, we want
to include in each stage. F&R-OP makes decisions about the most profitable pairs
(j, t) first.

3. Another strategy is the so-called Fix-and-Relax Cost-Partitioning (F&R-CP). It as-
signs each variable a worth equals to the budget required by the associated project.
The parameters are as follows:

k = [n/n'
F&R-CP = {c,-, = Z pja. VteTjjel (3D

Note that the time period ¢ is not relevant here. In fact, c;; depends only on the
budget required by project j. Therefore, all the x ;, variables for a given project j are in-
cluded in the same stage. F&R-CP makes decisions about the most expensive projects
first.

4. An intermediate strategy is the so-called Fix-and-Relax Ratio-Partitioning (F&R-
RP). It assigns each variable a worth consistent with its relative benefit. The worth is
calculated as the ratio between the objective function value and the budget required
to accomplishing the project. The parameters are as follows:

k= [n/n"
F&R-RP = = bj;
it = < _ !
! Zd:l,....d, Pjd

F&R-RP makes decisions about the pairs (j, t) with a most favorable “bang-for-the-
buck” first.

5. The last worth-based partition strategy that we propose is the so-called Fix-and-
Relax Random-Partitioning (F&R-rP). It randomly assigns variables to partitions.
For instance, variables can be arranged in the order they are entered in the problem,
such that the parameters are as follows:

VeeT;,jeld (32)

k= [n/n"

F&R-1P = 1 33
"= viteT,jel 3)
j
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3.3.2. Dynamic schemes

As opposed to the variable-worth strategies presented in the previous section, we now
depict a simple dynamic setup for the variable partition. We employ the term dynamic to
refer to any strategy that neither prefixes the number of stages k nor their composition
Vi, ..., Vi.Instead, they are determined during the course of the (conveniently modified)
BFRA and EFRA. The new strategy is the so-called Fix-and-Relax Dynamic-Fartition
(F&R-DP).

The dynamic algorithm starts solving the LP Relaxation of IP (24); let us name it
RIP. Let also the following x- and y-variable partition: V} is the set of indices for those
variables with fractional values in the RIP optimal solution; V is the set of indices for
0-1 valued variables.

We continue by setting k = 2 and solving IP! which (by the definition of BFRA
and EFRA) yields 0-1 values for all variables in V,. Additionally, V> is updated to contain
only fractional variables from the optimal solution to IP!, whereas the remaining non-
forced 0-1-valued variables are transferred to a new set, say V3. Then, we update the
number of stages to k = 3 and solve IP2. Again, by looking at the fractional and 0-1-
valued variables, we split V; into an updated V3 and a new Vj, respectively. This process
is repeated until either V; is empty or all the 0-1 variables take integer values in the
solution for problem IP*~!,

Let us denote by £, the solution for a given variable x;; in a generic problem P.
The adaptation of the BFRA scheme to a dynamic version so-called BFRA-Dyn is as
follows:

BFRA-Dyn: Basic Fix-and-Relax algorithm with Dynamic Partition Setup

Input: None
Step 0: Solve RIP.

Let Vi = {(j, ) | #%% ¢ {0, 1}} and V3 = {(j, DI € {0, 1}}. Setk = 2.
Step 1: Solve IP! where k = 2 is the current number of stages.

If IP! is infeasible, STOP: “Problem IP is infeasible”.

Otherwise, set V(IP) = V*(IP").
Step 2: If Vi = @, set V(IP) = V*(IP*~!) and STOP: “Problem IP is feasible”.
Step 3: Define a copy of V;: V = Vi, and

o update Vi = {(j, DI, € V, £ ¢1{0,1})

o create Vepr = {5, D1, € 7, 2F € {0,1})

e increase k by 1

Step 4: Solve IP*~! where k is the current number of stages.

If IP*~! is infeasible, STOP: “Problem IP status is unknown”.
Otherwise, go back to Step 2.
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Output: TP status: “Infeasible”, “Feasible” or “Unknov_vn”. If status is “Feasible”, the
best found lower and upper bounds are V(IP) and V (IP), respectively.

Remark. The definition of V; = {(j,?) | J’Ef,”’ ¢ {0, 1}} in Step O and the update of

Ve={(G. 1)1 G. eV, #2" ¢ {0, 1)} inStep 3 can be limited to a maximum number
of variables with non-integer values, leaving the remaining variables in the sets V, and
Vi1, respectively.

Likewise, we might devise a dynamic version of the EFRA scheme. It is worth
noting that, in the worst case, the F&R-DP strategy would require as many stages as
variables.

3.4. Algorithm refinements

In this section, we present some refinements to our model IP that strengthen its formu-
lation and (potentially) guide the algorithm to a more efficient search for the optimal
solution. First, data preprocessing: Our model presents a large amount of information
that can be preprocessed, mainly in conjunction with the structures (3), (4), and (7)—9),
and specially exploiting the sets given by (5) and (6) in conjunction with the 0-1 knapsack
constraints (15) and (21)—(23), see Escudero (1988). However, our aim was directed to
investigate the performance of the F&R strategies and, then, we did not take benefit from
the special structures.

Second, Explicit-Constraint Branching (ECB): Appleget and Wood (2000) propose
the use of redundant artificial constraints and variables to speed up computations. Note
that, by construction, any linear combination of integer variables with integer coefficients
results in an integer-valued variable. Sometimes, the appending of this type of constraints
to the original model results in a more efficient B&B search for integer solutions by
assigning high branching priority to the related artificial integer variables. There is an
intuitive reason for using ECB: Once the sum of integer variables is fixed to a given
integer value, it appears reasonable that the variables in the summation take also integer
values in order to equate that target. Several issues arise here, though: How many (and
which) variables are included in each new constraint? What coefficients are to be used in
the linear combinations? What branching priorities should be used for the new variables?
We do not intend to perform an analysis of these questions in our computation. Rather,
we use the underlying idea to build our own ECB scheme as follows:

Y xjp=%k,VteT (34
jed|
1eT;
Z xXj; =¥, VceC® acA,teT (35)

je*y
te7,




180 ESCUDERO AND SALMERON

X, % integer, Vce C*, a€ A, teT (36)

Our new variable type %, in the identity (34) accounts for the total number of projects
whose execution starts at time period . Similarly, £ in (35) represents the number of
projects in category c of attribute a to start at time period .

We append the constraints (34)-(36) to the original 0-1 model. A higher priority
was assigned to all the X-variables, which in turn yielded computing time savings of 20%
on average.

4. Computational experience

In this section, we report the results of the computational experience for optimizing the
model (1)~(23) with the refinements (34)~(36). All the tests have been performed on
a Pentium II, 500 MHz personal computer with 128 Mb of RAM. The code has been
programmed in Digital Fortran, version 6.0, Digital (1998), using the Xpress-MP XOSL
solver, release 12.11, Dash (1999-2000) as the optimization motor.

Our test cases consider ten budget categories but only a limited number of resource
types (no more than two). In any case, we can also considerer the budget categories as
other types of resources but with special characteristics. On the other hand, our test cases
exhibit a particular project-time structure: A large number of projects must be allocated
to a reduced number of time periods. Our computational results concentrate on the ability
of the proposed F&R scheme to better exploit the project-time structure inherent to the
class of project scheduling problems we are dealing with, which in turn makes F&R
outperform direct integer programming techniques such as Branch-and-Bound (B&B).
We show that the computing time can be dramatically reduced while still obtaining
good-quality solutions.

4.1. Test case description

We present results for three real cases drawn from the electric power sector in Spain.
Additionally, seven realistic cases are created as excursions from the three baseline cases.
Data correspond to a 5-year horizon (from 1998 through 2002), where more than 13,000
candidate projects are analyzed.

The projects in our test cases involve a variety of activities ranging from the con-
struction of electric distribution lines and substations to the installation of remotely
controlled equipment at the facilities. Other important subsets of projects are specifically
intended to improve electric service’s quality and to comply with existing regulation.

Two main types of benefit functions are considered in the objective function: Profit
(PR, in US dollars), and Quality of Service (@S, in MWh). The former represents an
expected income (or cost, if negative). It is important noting that not all the projects are
profitable, that is, PR;, could be negative for a specific project j undertaken at period
t. On the other hand, OS;; accounts for improvement on the reliability of the electric
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Table 1
Test cases description: Problem dimension.

Cs Re |T| |JI ICLIRL ILL,IM| |PLIP} |Gl m n nel d  fir f ue
1 no 5 2500 10,1 6,2 0,0 2 2529 12,523 50,101 0.15 154.599 0.36 3.1
2 no 3 4000 10,1 6,2 0,0 2 4,061 12,055 94,163 0.57 75903 0.12 8.8
3 m0 5 6500 10,1 50,10 0,0 2 6,709 32,629 254,240 0.11 191.261 0.46 70.5
4 no 3 8000 10,2 50,10 10,10 2 8,242 24,102 212,362 0.10 162919 0.31 33.1
5no 5 9500 10,1 50,10 10,10 2 9,759 47,579 276,125 0.05 218.741 0.09 197.1
6 no 3 11,000 10,2 50,10 10,10 2 11,242 33,102 266,362 0.07 162.919 0.22 39.6
7 no 5 12,500 10,1 50,10 10,10 2 12,809 62,629 488,540 0.06 233.898 0.13 244.5
8 yes 1 13,271 10,0 0,0 0,0 2 137289 13,289 89,862 0.05 78.331 0.04 43.0
9 yes 5 13,271 10,0 0,0 0,0 2 13,283 66,367 199,091 0.02 232472 0.04 15.8
10 yes 5 13271 10,0 0,0 0,0 2 13345 66,429 449,290 0.05 15.017 0.11 106.7

distribution system, which in turn reduces the so-called “non-supplied energy” (and,
indirectly, its cost to the utility). Usually, both benefits are conflicting with each other
since the most profitable projects have little impact on the OS, and vice versa.

The most common objective pursued in the context of this application entails a
compromise between both goals: maximize the composite function given by a linear
combination of both benefits. For doing this, we define b;; = PR, + pj QS;;, where p;
(in $/MWHh) reflects the revenue obtained by avoiding penalties for non-supplied energy.
The index j indicates a dependency of this saving on the project. In our case, p; roughly
ranges from $300/MWh to $1,800/MWh. Alternatively, the maximization of either PR
or OS can also be obtained but, in this case, a minimum floor is enforced for the other
goal.

Table 1 presents the characteristics of our 10 test cases. The additional notation
for the headings is as follows: Cs, Case index, Re, case type, where yes and no stand
for real and realistic, respectively; |C|, number of categories among all attributes, i.e.,
IC| = Zae 4 C% m, number of constraints; n, number of 0-1 variables; nel, number of
nonzero elements in the constraint matrix; d, constraint matrix density (%); fLp, optimal
solution value of the LP relaxation; fv, fraction of the variables with non-integer values
in the LP solution; #7p, computing time (secs.) to solve the LP problem. Table 2 presents
selected statistics on our problem data.

4.2. Strategies

For each test case, we have implemented the F&R strategies presented in Section 3.3:
(29)—(33) plus the dynamic strategy. We allow n’ = 1,000 x |T| integer variables at
each stage for non-dynamic strategies (except for the F&R-TP strategy in which k = |T'|
and n’ = |J| by definition). This choice results in a number of stages k ranging from 1 to
14 in our test cases. The number of stages is not determined in advance for the F&R-DP
strategy. It depends on how many variables take integer values during the different stages.
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Table 2
Test cases description: Value or range variation of more characteristics and parameters.

Project goal coefficients and objective

function coefficients °, b,
Brackets of project cost: NPV, QS;; NPV, 4+ p;- QS;
P ($), and # of projects ($ x 1000) (MWh) ($ x 1000) Other data®
[0 — 10,000}, 5,734 projects  Min. —5,829 0 —4,682 # Missions: 10
(10,000 - 50,000], 5,539 pr.  Avg. -10 12 12 # of macro-projects per
(50,000-100,000), 1,083 pr.  Max. 5218 3,641 727 mission: 5
(100,000-1 Mill.], 823 pr. # projects per macro-
(1 Mill.-8.3 Millj, 92 pr. Max. 91,732 161,967 366,970 projects: between
Total: =646 Mill, 13,271 pr. achievable 2and 5
Total Budget ($ Mill)*: # min. and max.
(20, Bl = [100, 166.7] lag precedences:

20 Lag periods: 1 and 2

*In addition to total budget constraints, there are category budget constraints for a total of ten categories in
two attributes, which are not displayed for conciseness.

YE.g., in case #9, we maximize NPV + pQS where p; = $1, 800/MWh Vj. The optimal solution value is
$232 Mill. (out of a maximum of 366.9 Mill.). In case #10, NPV is maximized alone, subject to a minimum
target for QS in period 1: b%° = 10, 000 MWHh. In this case, $15 Mill. are achieved (out of a maximum of
91.7 Mill.)

Only for cases 1-7, created as excursions of cases 8—10; see also Table 1.

For the test cases, we find that the number of stages is ranging from 64 for case #8 to
2,317 for case #9 (taking into account that it was halted due to time limitations).

In addition to the F&R strategies, we still attempt to solve the problem by Direct
B&B (DB&B). Specifically, we use the default strategy (without any special insight)
as well as two other strategies trying to mimic the strategies F&R-TP and F&R-OP. In
all the strategies the branching node is chosen according to the best objective function
value.

1. Direct Branch-and-Bound with No-Priorities (DB&B-NP): The branching priorities
are set to the default value BP(xj,) = 500, Vt € T;, j € J . Therefore, the non-integer
valued variables are branched in the order they appear in the problem. This strategy
can be compared to F&R-1P in the sense that the order in which variables are entered
in the problem determines its branching ordering.

2. Direct Branch-and-Bound with Time-Priorities (DB&B-TP): The branching priorities
are set as follows: BP(xj,) = t, Vt € T}, j € J, such that a smaller value means a
higher priority (i.e., the variable is branched earlier). This strategy is analogous to
F&R-TP where the decisions related to earlier periods are determined first.

3. Direct Branch-and-Bound with Objective-Priorities (DB&B-OP): The branching pri-
orities are defined as to ensure that the variables are branched in the order of their
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benefits (whether these are positive or negative). Specifically, we assign priority values
between 100 and 200 for variables with positive benefit, and from 300 to 400 for vari-
ables with negative benefit. Clearly, this strategy is parallel to F&R-OP.

Remark. The %- and y-variables are given the priority value O (i.e., the highest priority

value in the optimization engine that we use).

4.3. Numerical results

The Tables 3 to 7 present the results for our 10 test cases. Table 8 summarizes the results
from Tables 3 to 7. The additional notation of the headings on Tables 3 to 7 is as follows:

Table 3
Results for Cases 1 and 2.
Case 1 Case 2

Strategy k fr Gap hp nn k Jir Gap tp nn

DB&B-NP 1 154584 9.E-05 10,313 4,808 1 75901 2E-05 3,046 3,732

DB&B-TP 1 154596 1E-05 931 5,099 1 75903 S5.E-06 488 3,450

DB&B-OP 1 154536 4.E-04 2,548 4,071 1 75.647 3.E-03 923 3,410

F&R-TP 5 154596 1.E-05 998 4,908 3 75903 L1LE-06 1412 3,688

F&R-OP 3 154.586 8.E-0S5 133 939 4 75.894 1E-04 169 927

F&R-CP 3 154467 9.E-04 166 988 4 75902 2E-05 141 963

F&R-RP 3 154591 5.B-05 165 1,002 4 75.883 3.E-04 161 939

F&R-1P 3 154577 1.E04 146 1,219 4 75903 3.E-06 126 1,084

F&R-DP 214 154.587 8.E-05 852 650 611 75903 3.E06 3,673 780

Table 4
Results for Cases 3 and 4.
Case 3 Case 4

Strategy k fw Gap e Nn k fr Gap e nn
DB&B-NP 1 - - 86,400 8,297 1 162.896 1.E-04 44,007 11,227
DB&B-TP 1 191170 5.E-04 17,891 15,550 1 162.850 4.E-04 20,802 13,801
DB&B-OP 1 - - 86,400 72,302 1 - - 86,400 73,288
F&R-TP 5 190971 2E-03 12,183 13,314 3 162908 7.E-05 8,933 7,356
F&R-OP 7 191.179 4.E-04 449 339 8 162.628 2.E-03 572 2,017
F&R-CP 7 191.196 3.E-04 399 308 8 162.718 1.E-03 554 1,628
F&R-RP 7 191011 1.E-03 447 558 8 162.327 4.E-03 678 1,722
F&R-P 7 190528 4.E-03 617 1,051 8 162.846 5.E-04 1,073 5475
F&R-DP 518 191.199 3.E-04 11,037 1,356 554 162.885 2E-04 10,997 1,202
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Table S
Results for Cases 5 and 6.
Case 5 Case 6
Strategy k fie Gap e nn k fr Gap e nn
DB&B-NP 1 - - 86,400 5,867 1 162862 3.E-04 63444 12,108
DB&B-TP 1 - - 86,400 29,700 1 162919 4E-09 1950 4,134
DB&B-OP 1 - - 86,400 14,590 1 162855 4E-04 3443 6,387
F&R-TP 5 218741 3.E-06 19,683 16480 3 162901 1.E-04 23937 8,208
F&R-OP 10 218.666 3.E-04 764 1,040 11 162721 1.E-03 464 450
F&R-CP 10 218.741 1.E-06 407 433 11 162336 4.E03 594 1,253
F&R-RP 10 218.663 4.E-04 608 877 11 162754 1.E-03 607 1,602
F&R-1P 10 218.707 2E-04 1,088 2,794 11 162521 2.E-03 853 2,087
F&R-DP 952 218740 8.E-06 27,540 1,786 691 162.887 2E-04 29,802 6,405
Table 6
Results for Cases 7 and 8.
Case 7 Case 8
Strategy k fe Gap tp nn k fe Gap tp nn
DB&B-NP 1 - - 86,400 5,875 1 78330 1E-05 98 1,464
DB&B-TP 1 - - 86,400 14220 1 78330 1E-05 98 1,464
DB&B-OP 1 - - 86,400 18570 1 78329 2E-05 252 496
F&R-TP 5 223890 3E-05 9629 16004 1 78330 1.E-05 98 1,464
F&R-OP 13 223896 8E-06 1,169 1,139 14 78328 4.E-05 250 132
F&R-CP 13 223859 2E-04 1,690 1,225 14 78284 6.E-04 243 181
F&R-RP 13 223826 3E-04 1,682 1,694 14 78313 2E-04 248 163
F&R-1P 13 22388 S5E-05 1,581 1,500 14 78330 1.E-05 439 131
F&R-DP 783 - - 86400 1,708 64 78.330 1.E-05 1,328 213
Table 7
Results for Cases 9 and 10.
Case 9 Case 10
Strategy k fre Gap e nn k fir Gap tip nn
DB&B-NP 1 - - 86,400 4,821 1 - - 86,400 3,027
DB&B-TP 1 232471 2E-06 47,506 35,408 1 15015 2E-04 5587 123821
DB&B-OP 1 - - 86,400 5,660 1 - - 86,400 2,090
F&R-TP 5 232469 1E-05 5034 11,678 5 15.005 8.E-04 18,397 22,012
F&R-OP 14 232471 2E-06 434 391 14 15.006 S8.E-04 1,208 435
F&R-CP 14 232469 1.E-05 422 388 14 14961 4E-03 1,173 584
F&R-RP 14 232471 4.E-06 395 327 14 14962 4E03 1,291 636
F&R-1P 14 232471 3.E-06 765 552 14 14965 3.E-03 1,529 534
F&R-DP 2,317 - - 86,400 3,210 437 - - 86,400 745
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Table 8
Summary of results.

#of time®: min. max. gap™: Total Total #
Strategy unsolved  # of best gap gap #ofbest  time* of nodes®
DB&B-NP 5 1 1 x 1073 00 1 552,908 61,226
DB&B-TP 1 2 x10°% oo 5 268,053 135,647
DB&B-OP 6 0 2 x10°3 00 0 525,566 200,864
F&R-TP 0 1 1x10°6 1 x107? 4 100,304 105,112
F&R-OP 0 3 1 x107% 1 x1073 2 5,612 7,809
F&R-CP 0 4 1 x107% 3 x1073 2 5,789 7,951
F&R-RP 0 1 4 x10°¢ 3 x107? 0 6,282 9,520
F&R-1P 1 3x10¢ 3 x1073 0 8,217 16,427
F&R-DP 3 0 2 x 107 00 2 344,429 18,055

* Two or more strategies for the same case can be tied for best time and/or best gap.
b For methods with unsolved problems, the reported total time and total # of nodes are after one day of
computations for unsolved problems.

fip, objective function value of the incumbent solution obtained so far for the (original)
integer problem; Gap, optimality gap defined as (frp — fir)/ fir%; t1p, computing time
(secs.) for the algorithm; nn, number of explored B&B nodes in the total of F&R stages.
The computing time is very small for the F&R strategies when comparing it with the
computing time that is required by the optimization engine for similar quality in the
results (i.e., similar Gap).

We also notice that the LP solution value (see Table 1) is extremely close to the
integer solution value, and only a small fraction of the variables take non-integer values
at the LP solution. So, it gives an indication of how tight is the constraint system (3)-(23)
and (34)—(36). Yet, this does not make the problem much easier for obtaining the optimal
integer solution, probably because those variables have proven decisive in the problem
(e.g., due to their cost, profit or relationship with other variables). Therefore, devising a
framework to round these variables that preserves feasibility without compromising the
solution quality is a complex task.

Some conclusions can be drawn by inspecting the solution quality versus the com-
puting time in Tables 3 to 7: (1) Four of the F&R strategies, namely, F&R-OP, F&R-CP,
F&R-RP and F&R-1P, clearly outperform all the other strategies. (2) Amongst the direct
B&B strategies, DB&B-TP provides the best results, although its performance is still far
from those F&R strategies. (3) The default B&B strategy (DB&B-NP) gives the worst
results for the test cases, but the other B&B strategies are too-inefficient as well. (4)
F&R-TP (which is intuitively the most natural partition of the problem) happens to be
substantially inferior to the other non-dynamic F&R strategies. (This happens to be es-
pecially true as the number of projects increases and the number of periods remains the
same). (5) The dynamic scheme (F&R-DP) requires too many stages, which in turn makes
it less attractive than the non-dynamic F&R strategies. However, the implementation of
the dynamic strategy can be improved by reducing the time for model generation (which
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is negligible in the other strategies since the number of stages is small), which may offer
savings up to 40% of the time shown in the tables.

The F&R-1P strategy requires more computing time to obtain the incumbent so-
lution than the strategies F&R-OP, F&R-CP and F&R-RP. On the other hand, F&R-OP
and F&R-CP are the strategies that require the smallest computing time. However, the
strategy F&R-RP has also a very good performance given the high dimensions of the
problem. Notice that the three strategies provide quasi-optimal solutions in less than 30
minutes of a small-size personal computer.

5. Conclusions

Project scheduling is a very broadly studied application field in 0-1 programming. In
this work we have presented a 0-1 model for a class of project scheduling problems
that can be used in a very wide set of application areas. Important sequencing and
scheduling structures have been considered, such as macro-projects (i.e., implicative
relationships among the projects), alternative macro-projects for accomplishing missions,
exclusivity constraints, budget carrier and non-carrier time periods, budget and other
storable resources where the stock variables are not explicitly considered in the model, and
multi-period execution projects, among others. A Fix-and-Relax algorithmic framework
has been described. It allows a variety of strategies for partitioning the set of variables for
branching selection purposes. By exploring only a limited set of nodes from the branch-
and-bound tree, (hopefully) good feasible solutions can be obtained with affordable
computing time. A computational experience is reported for a set of real-life and realistic
cases to compare the performance of the different partitioning strategies that have been
presented. Practically optimal solutions have been obtained in all test cases by using
the non-dynamic F&R strategies. The partitions F&R-OP (based on project objective
function value), F&R-CP (based on project cost) and F&R-RP (based on project objective
function value versus project cost) require smaller computing time than the others, with
a similar optimality gap. Overall, based on the test cases that we have used for our
experimentation, we recommend employing either the strategy F&R-OP or the strategy
F&R-CP. The results for these two strategies have been favorably compared with the
results for the other F&R strategies. In addition, the performance of any F&R strategy
(but the dynamic partition) is clearly superior to the strategies of the state-of-the-art
optimization engine that has been used in this research.
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