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In this paper, we present an algorithm to solve a particular convex model explicitly. The
model may massively arise when, for example, Benders decomposition or Lagrangean
relaxation-decomposition is applied to solve large design problems in facility location
and capacity expansion. To attain the optimal solution of the model, we analyze its
Karush–Kuhn–Tucker optimality conditions and develop a constructive algorithm that
provides the optimal primal and dual solutions. This approach yields better performance
than other convex optimization techniques.
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1. Introduction

In this paper, we develop an algorithm to derive an explicit solution to the following
model — which we refer to as “subproblem” (SP):

SP: min
z1,...,zI

I∑
i=1

qizi + W (τ)

s.t.


τ =

∑I
i=1 pizi,

τ ∈ [l, m],
zi ∈ [0, bi], ∀i = 1, . . . , I,

where qi ≥ 0, bi > 0, pi ≥ 0,∀i = 1, . . . , I, 0 ≤ l < m ≤ +∞, and W (.) is a suitable
convex function whose properties will be established later in this paper.
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Remark: We shall assume pi = 1,∀i without loss of generality. This can be
accomplished by substituting zi in the SP model by z̃i = pizi.

This work will show that an explicit solution to both the primal and the dual
of model SP can be obtained with very little computational effort. This, in turn,
helps speed up convergence of decomposition techniques that massively employ SP
as subproblem.

In fact, our interest in this model emerged as a result of applying several decom-
position techniques to large-scale capacity expansion problems in the electric field
(Maŕın and Salmerón, 1998, 2001).

Other capacity expansion and system design models involving similar structures
may also benefit from the results presented in this work. These models are typically
characterized by strategic decisions (e.g., time, location, and capacity for new facil-
ities) and operating decisions (related to the use of that capacity, e.g., in order to
meet the system demand over time), sometimes in an uncertainty context. Relevant
design problems in capacity expansion involving structures similar to SP arise in
models by Bloom (1983), Sherali and Staschus (1990), Bean et al. (1992), Malcom
and Zenios (1994), Álvarez et al. (1994), Hobbs (1995), and Laguna (1998), among
others. In these problems, the so-called strategic variables (or related constraints) are
separated from the operating variables by employing Benders decomposition (Geof-
frion, 1972), or Lagrangean relaxation and Lagrangean decomposition (Guignard
and Kim, 1987).

To clarify the exposition, let us consider a facility location problem with can-
didate facilities indexed by i = 1, . . . , I, and a time scale indexed by t = 1, . . . , T .
A decision variable xit determines whether facility i is considered for expansion in
period t. Accordingly, operating variables, zit, refer to the level of utilization of the
existing capacity. If dt is the estimated demand in period t, a typical set of demand
constraints is:

I∑
i=1

pitzit = dt, ∀t = 1, . . . , T,

which appears in the structure of our subproblem SP. On the other hand, one
expects to be able to operate facility i in period t according to the level of investment
up to period t. Thus, zit ≤ f(xi1, . . . , xit). Notice that, for a given value of x, we
may compute f(x) and the expression above becomes zit ≤ bit, as in SP.

In the presence of demand uncertainty, in addition to linear expansion and
production costs, we may incorporate non-linear terms in the objective function.
These terms seek to penalize the adequacy of our decision due to demand variability
(e.g., Malcom and Zenios, 1994). One way to proceed is through convex penalty
functions of the form Wt(τt) where τt =

∑I
i=1 pitzit. Bounds on τt, i.e., τt ∈ [lt, mt]

(for convenient lt, mt depending on the probability distribution of the demand in
period t) may be considered. This idea can be applied to many other facility location
problems, e.g., Cornuejols et al. (1990), Magnanti and Wong (1990), etc., originally
formulated under the assumption of deterministic demand.



March 1, 2004 13:39 WSPC/APJOR 00004.tex

Convex Submodels 11

In other facility location and capacity acquisition combined problems (e.g.,
Jacobsen, 1990; Jack et al., 1992; Daskin et al., 1992; Drezner, 1995; Verter and
Cemal, 1995; Current et al., 1998), model SP appears as the result of successive
decompositions.

We next establish the generic formulation of the design model that motivates
our work. This model will be referred to as Design Model (DM). DM is formulated
as follows:

DM: min
x,z

f(x, z) = Cx · x + Cz · z + R(z)

(1.1)

s.t.


Bx + Az ≤ b0,

x ∈ X ,

z ∈ Z,

where R(z) =
∑T

t=1 Wt(z), and X and Z are the sets of independent constraints for
the strategic and operating decisions (vectors x and z, respectively). X is assumed to
be a non-empty, compact set. For example, X may consist of alternative expansion
plans defined through integer variables, a set of resource constraints (e.g., yearly
budget), etc. We make the additional assumption that Z is defined by the following
constraints:

Z ≡
{

lt ≤
∑I

i=1 pitzit ≤ mt, ∀t = 1, . . . , T

zt ≥ 0, ∀t = 1, . . . , T

}
(1.2)

Cx and Cz are linear costs associated with x and z. A and B are matrices represent-
ing coupling constraints that usually limit the operating capacity as a function of
the available capacity after an expansion decision has been made. b0 is the vector of
initial capacity. We shall assume pit = 1 in the DM (substituting zit by z̃it = pitzit,
if needed).

Applying Lagrangian relaxation (e.g., Fisher, 1981) to model DM, it is immedi-
ate to verify that by relaxing Bx+Az ≤ b0 the resulting model (after incorporating
this constraint as a penalty in the objective function), can be decomposed into
T submodels like SP. The same occurs using Lagrangean decomposition (Guig-
nard and Kim, 1987), by splitting z and then dualizing the splitting constraints.
In these two types of decomposition, the resulting SPs have bi = +∞. Likewise,
when A is diagonal and Generalized Benders’ Decomposition is used (considering
x as “complicated variables,” e.g., Geoffrion, 1972), the resulting subproblem is
separable into T subproblems of type SP. In this case, bi < +∞.

Solving the dual and primal of SP efficiently is crucial to implement any of
the above-mentioned techniques. This motivates our exhaustive analysis of the SP
submodel in this work, so as to help reduce the computational burden of massively
solving instances of SP. In particular, we propose solving its Karush–Kuhn–Tucker
optimality conditions (KKTOCs) (Bazaraa and Shetty, 1993, pp. 150–172).
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Examples of applied models amenable to solution by their KKTOCs are not
very frequent. Our analysis to solve KKTOCs for SP is similar to that of Fer-
land et al. (1991), who exploit KKTOCs to determine optimal multipliers for the
cuts introduced in Benders’ decomposition master problem. They generate the opti-
mal multipliers (which may not be unique) by analyzing different cases. Explicit use
of KKTOCs can also be found in Murphy and Wang (1993), who show how to recon-
struct the dual solution of a capacity expansion model by using a network model
employing the information provided by the KKTOCs.

Our paper is organized as follows: In Section 2, we present additional details
on applications of model SP. Section 3 establishes the properties of the penalty
function, W (τ), and describes the methodology to explicitly solve SP, including a
small numerical example. Section 4 outlines our computational experience. Section 5
explains our final conclusions. Appendix A has been included at the end of the paper
containing proof of the results used throughout the paper.

2. Examples

We present a few examples where SP may arise as the subproblem of large-size
models.

2.1. Example 1: Capacity expansion under uncertainty

Let us consider DM in (1.1). We establish the following capacity expansion problem
(for exposition’s clarity assume a single period): Demand is given by an absolutely
continuous random variable (r.v.) D. FD and fD are its cumulative distribution and
density functions, respectively. We first define l and m for our SP: if the range of D

is bounded, we take m | F (m) = 1. Otherwise, we assume m | F (m) = 1−ε for some
ε � 1. The value for l is problem-dependent. We may let l take any representative
value for r.v. D, e.g., the expected value l = E(D).

Our risk function W (.) for the problem represents the mathematical expectation
of a suitable convex loss function PD(τ, d) with respect to a probability measure
(induced by the distribution of D). This is a well-known approach to the concept
of Risk (e.g., De Groot, 1970). Here, PD(τ, d) represents the loss if D takes the
value d and our response is τ =

∑
i zi < d. We also assume PD(τ, d) = 0 if τ ≥ d.

Therefore,

W (τ) = E {PD(τ, d)} =
∫

�
PD(τ, s) dFD(s) =

∫
�+

PD(τ, s)fD(s) ds, ∀τ ≥ 0.

In particular, for a convenient function g(.) we may define PD as follows:

PD(τ, d) =
{

g(d − τ), if d > τ,

0, if 0 ≤ d ≤ τ,
(2.1)

g(ξ) must verify the following properties for ξ = d − τ > 0: being non-negative,
increasing and convex in τ for a fixed d. Some general boundary conditions are
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necessary as well. For example, we may take PD(τ, d) = k(d − τ)n for k > 0 and
n ≥ 1. It is easy to verify that, with these premises, W (τ) verifies the necessary
hypotheses that will be described later in Section 3.1.

2.2. Example 2: Multi-resource systems

Let us consider a system that may work under different conditions, or by employing
different resources, i = 1, . . . , I. Suppose that the system operates properly when
the total (combined) amount of resources is τ = m, where τ =

∑I
i=1 pizi and pi is

the weight for the contribution of zi units of resource i to the correct functioning
of the system. Assume that the system can also be operated if τ ∈ [l, m), but in
this case the operator “pays” an extra-cost W (τ). Here, i represents the different
components that contribute to the system operation (e.g., fuel types for a thermal
generating unit).

In a related example, suppose that i represents different types of maintenance
(e.g., intensive, medium, and low). Each maintenance operation of type i improves
the system performance (e.g., its safety or production rate) according to a ratio
pi. If we let z1, z2, and z3 be the number of maintenance operations per unit of
time, and establish a certain level, m, of preventive maintenance for a safe and
optimal performance, we might estimate W (τ) for τ = p1z1 + p2z2 + p3z3 < m as
the expected cost of the corrective maintenance. Usually, W (τ) = W (m − τ).

Strategic levels in these example problems arise when the available resources
of type i depend on previous decisions, e.g, “How much fuel of type i must be
procured?” and “How many qualified workers to perform maintenance type i should
be available?”

2.3. Example 3: Piecewise linearization

SP can be partially adapted to some special cases of piecewise linearization of convex
functions (Fourer, 1988; Kontogiorgis, 2000).

Suppose that z is a decision variable (zt for more than one period or resource).
Let us assume that the part of the objective function related to z in DM is formu-
lated as follows:

Minimize Q(z) + W (z), (2.2)

where W (z) is a suitable convex function and Q(z) is an increasing convex function
that can be approached by a piecewise linear function: Q(z) �

∑I
i=1 qizi, where I

is the number of segments considered for the approach: z =
∑I

i=1 zi, and the slopes
qi are increasing: q1 ≤ · · · ≤ qI . Also,

0 ≤ zi ≤ ki, (2.3)

where ki is the length of the ith segment.
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The model might consider lower and upper bounds (l, m, respectively) on z,
leading to the new constraint:

l ≤
I∑

i=1

zi ≤ m. (2.4)

It is well known that (2.2) can be approached by:

Minimize
I∑

i=1

qizi + W (z), subject to (2.3) and (2.4), (2.5)

which defines a problem of type SP.
Similarly to previous examples, strategic decision variables x may exist, in which

case (2.3) can be replaced by: 0 ≤ zi ≤ ki(x̂) for each fixed x = x̂.

2.4. Example 4: Transportation problem

Let us consider the standard formulation of the transportation problem (TP) or
market equilibrium model, in which a certain commodity is produced by I supply
markets (producers) and is consumed by J demand markets (consumers):

TP: min
xij≥0

∑
i,j

cijxij ,

subject to
∑

j

xij = Oi, ∀i and
∑

i

xij = Dj , ∀j. (2.6)

Dafermos and Nagurney (1989) propose a progressive equilibration algorithm
by successively balancing each supply market or each demand market. To do this,
they establish supply prices, πi, and demand prices, ρj , and certain equilibrium
conditions. This can also be viewed as solving the dual problem associated with
the relaxation of producers or markets. For example, by relaxing the producer con-
straints, we obtain:

max
πi∈�

min
xij≥0

∑
i,j

cijxij +
∑

i

πi

∑
j

xij − Oi

 , subject to
∑

i

xij = Dj , ∀j.

(2.7)

Besides, if the market demand is uncertain, the first constraint in model (2.7)
can also be moved into the objective function:

max
πi∈�

min
xij≥0

∑
i,j

cijxij +
∑

i

πi

∑
j

xij − Oi

 +
∑

j

Wj

(
τD
j

)
,

where τD
j =

∑
i xij and Wj(.) is a penalty. The inner minimization (for a fixed π)

is separable into J submodels of type SP. Other constraints, such as bounds on the
flow xij can also be incorporated.
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3. Solving SP

In this section, we establish sufficient conditions on W (.) that allow us develop a
solving procedure for SP based on its KKTOCs.

3.1. Hypothesis on the risk function W (.)

Consider the SP model
(
recall that we assume pi = 1,∀i, and τ =

∑I
i=1 zi

)
. We

require W (τ) to satisfy the following hypotheses:

1. W (.) is defined over the non-negative real line, 	+.
2. W (τ) = 0, ∀τ ≥ m.
3. W (τ) is strictly decreasing, ∀τ ∈ (l, m).
4. W (τ) is strictly convex, ∀τ ∈ (l, m).
5. W (τ) ∈ C2[(l, m)] and limτ→m(d W/d τ) = 0.

(Remark: Some weaker assumptions than those in Hypothesis 4 and 5 ensure that
the solution to the KKTOCs is optimal. In particular, it suffices that W (τ) is
convex, and that limτ→m(d W/d τ) = k ≤ 0. This will be shown in Appendix A.)

Hypotheses 1 and 2 are logical conditions to accommodate constraints zi ≥ 0
and τ ≤ m in the context of our SP. Hypothesis 3 guarantees that the penalty
decreases as τ approaches the maximum m. Hypothesis 4 requires convexity in order
to guarantee optimality for the solution of the KKTOCs. Hypothesis 5 guarantees
that the penalty function changes are “smooth” and bounded for large values of τ .

3.2. Solving SP

After incorporating dual variables, the problem to be solved can be stated as follows:

SP: min
z1,...,zI

I∑
i=1

qizi + W

(
I∑

i=1

zi

)

s.t.


zi ≤ bi, ∀i = 1, . . . , I (µi),∑I

i=1zi ≤ m, (v),∑I
i=1zi ≥ l, (w),

zi ≥ 0, ∀i = 1, . . . , I (ui).

(3.1)

We assume that SP has a feasible solution: The necessary and sufficient condition
is

∑I
i=1 bi ≥ l. Without loss of generality we will assume that the decision variables

zi are arranged according to their coefficients in the objective function:

q1 ≤ q2 ≤ · · · ≤ qI .

Notation remark: Henceforth, we shall denote Gi(τ) = ∂W (τ)/∂zi,∀i = 1, . . . , I,
where τ =

∑I
i=1 zi. Taking into account that G1(τ) = · · · = GI(τ) we shall denote

G(τ) = Gi(τ),∀i = 1, . . . , I.
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The KKTOCs for SP (e.g., Bazaraa and Shetty, 1993), state that if z locally
solves (3.1) then there exist scalars ui ≥ 0,∀i = 1, . . . , I; µi ≥ 0,∀i = 1, . . . , I; v ≥
0; w ≥ 0 such that:

KKTOC


G(τ) + qi + µi + v − w − ui = 0, ∀i = 1, . . . , I,

µi(zi − bi) = 0, ∀i = 1, . . . , I,

v(τ − m) = 0,

w(τ − l) = 0,

uizi = 0, ∀i = 1, . . . , I.

(3.2)

We shall attempt to determine a set of zi, ui, µi, v, w verifying the KKTOCs. Since
SP is a convex problem, finding ui ≥ 0,∀i = 1, . . . , I, µi ≥ 0,∀i = 1, . . . , I, v ≥ 0
and w ≥ 0 that solve KKTOCs is a sufficient condition for optimality.

Next, we proceed to obtain explicitly the optimal solution to SP:

Definition 3.1. Let us consider the above-defined SP:

(a) We define the cumulative-resource vector as follows: B = (B1, . . . , BI), where
Br =

∑r
i=1 bi.

(b) We define the marginal index of SP as the largest index r ∈ {1, . . . , I} such
that −qr ≥ G(Br) (if it exists).

Remark 3.1. If r < I, it is clear that −qr+1 < G(Br+1) holds.

Remark 3.2. −qr − G(Br) decreases as r grows since qr, Br, and the function
G are increasing. The meaning of the comparison between qr and G(Br) aims to
determine whether the linear cost qr of the rth most-expensive resource offsets the
risk W (.) (viewed as a penalty for failing to satisfy the original constraint). This
idea is clarified in the proof of Theorem 4 in the Appendix A.

Definition 3.2. We define the inverse function of G(τ) as G−1(Q′) = p ∈
	 | G(p) = Q′.

Note that G−1(.) is well defined (by hypotheses 3 and 4). Since, by hypothesis
5, limτ→m G(τ) = 0, the domain of G−1(.) will be Q′|G(0) ≤ Q′ < 0. If m < +∞,
then G(m) = 0 and Q′ = 0 will also be part of the domain of G−1(.). Without loss
of generality, we extend the domain of G−1(.) by letting G−1(Q′) = 0,∀Q′ < G(0).

Algorithm. Lemmas 1–2 and Theorems 1–4 (see Appendix A) provide an explicit
way to obtain the optimal solution to SP by solving its KKTOC (3.2). Based on
these results, we next explain the main steps of our algorithm to solve SP, which
we call SP algorithm:

INPUT: qi (in ascending order) and bi, ∀ i = 1, . . . , I. l, m, and implicit or
explicit forms of the risk function W (τ), its derivative G(τ) and G−1(.)

Step 0. Feasibility check: The necessary and sufficient condition is BI ≥ l. If
SP in infeasible, STOP.
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Step 1. Check (according to Definition 3.1(b)) whether a marginal index for SP
exists, i.e., find the largest r such that −qr ≥ G(Br). If r does not exist,
go to Step 2. Otherwise: If r = I, go to Step 3, and if r < I, go to Step 4.

Step 2. Compute G−1(−q1). Use Theorem 2 (Appendix A) to obtain the opti-
mal solution. STOP.

Step 3. Find the optimal solution by applying Theorem 3 (Appendix A). STOP.
Step 4. Compute qr+1 + G(Br) and use Theorem 4 (Appendix A). STOP.

OUTPUT: Primal and dual solution to SP: zi, µi and ui, ∀ i = 1, . . . , I; v and w.

3.3. A numerical example

We next show how to numerically implement our algorithm to solve a small instance
of SP with I = 10 decision variables. This example is referenced as “sample index
s = 1000” in our computational results (Sections 4.1 and 4.3). Data for this problem
are as follows:

Vectors: qi = 10i, bi = 25, ∀ i = 1, . . . , 10.
Random variable: Our uncertain demand, D, is distributed as a symmetric tri-

angular r.v. over the interval (100, 200). We take l = 125, m = 200.
Penalty and derived functions: The loss function considered is PD(τ, d) = k(τ−d)

for τ =
∑10

i=1 zi. We take k = s = 1000. Thus, our risk function becomes:
W (τ) = ED{PD(τ, d)} = ((200 − τ)3/15), if τ ≤ 200, and W (τ) = 0, if
τ > 200. Accordingly, G(τ) = (−(200 − τ)2/5), if τ ≤ 200, and G(τ) = 0,
if τ > 200, and G−1(Q) = 200 −

√
−5Q for Q ≤ 0.

Our instance of SP is as follows:

SP: min
z1,...,z10

10z1 + 20z2 + · · · + 100z10 +
1
15

(200 − z1 − · · · − z10)3

s.t.


zi ≤ 25, ∀i (µi),
zi ≥ 0, ∀i (ui),
z1 + · · · + z10 ≤ 200, (v),
z1 + · · · + z10 ≥ 125, (w).

We may apply the SP-algorithm from Section 3.2.

Marginal index calculation: We first obtain the cumulative resource vector: B =
(25, 50, . . . , 250), and note that

−q10 = −100 < G(B10) = G(250) = 0,

−q9 = −90 < G(B9) = G(225) = 0,

−q8 = −80 < G(B8) = G(200) = 0,

−q7 = −70 ≥ G(B7) = G(175) = −125,

Thus, the marginal index is r = 7.
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Case evaluation: Since r = 7 < I = 10 we apply Theorem 4 in Appendix A. To
do so, we first compute q8 +G(B7) = −45 < 0. This falls into Case 3, which
gives us the optimal solution for τ∗ = B̃7 = G−1(−q8) = G−1(−80) = 180.

Primal solution: We derive primal variables as follows:

z∗
1 = 25, . . . , z∗

7 = 25, z∗
8 = 5, z∗

9 = 0, z∗
10 = 0,

whose cost is: 7400 (linear) +(203/15) (penalty) = 7933.33 (total).
Dual solution: Similarly, we calculate dual variables:

µ∗
1 = q8 − q1 = 70, . . . , µ∗

7 = q8 − q7 = 10, µ∗
8 = 0, µ∗

9 = 0,

µ∗
10 = 0, u∗

1 = 0, . . . , u∗
8 = 0, µ∗

9 = q9 − q8 = 10,

µ∗
10 = q10 − q8 = 20, v = 0, w = 0.

3.4. Special case: all bi = +∞

Consider the SP model where upper bounds on all individual primary variables are
relaxed (i.e., bi = +∞, ∀ i). The new model (which we call SP∞) is as follows:

SP∞: min
z1,...,zI

I∑
i=1

qizi + W

(
I∑

i=1

zi

)
(3.3)

s.t.


∑I

i=1zi ≤ m (v),∑I
i=1zi ≥ l (w),

zi ≥ 0, ∀i = 1, . . . , I; (ui).

Since SP∞ is a particular case of SP, it is clear that we may use the above-
mentioned SP-algorithm to solve it (e.g., assuming ficticious bounds bi = M, ∀ i for
a large M with which we may carry out the computations).

It is clear that only the single variable with the least cost (i.e., z1) will take a
non-zero value. Thus, it is worth developing a special algorithm (see justification in
Appendix A, Theorem 5) that provides that solution directly. The SP∞ algorithm
is as follows:

INPUT: q1 = min{qi | i = 1, . . . , I}. (Remark: The other qi are irrelevant to the
problem.) l, m, and implicit or explicit forms of the risk function W (τ),
its derivative G(τ) and G−1(.)

Step 1. If G(l) < −q1, the solution is: z1 = G−1(−q1), z2 = · · · = zI = 0
(primal) and ui = qi − q1,∀i (dual). STOP.

Step 2. If G(l) ≥ −q1, the solution is: z1 = l, z2 = · · · = zI = 0 (primal) and
ui = qi − q1,∀i (dual). STOP.

OUTPUT: Primal and dual solution to SP∞.
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4. Computational Experience

4.1. Description of test cases

The hardware supporting our tests is an IBM A21p laptop with a 1 GHz Pentium-III
processor and 512 Mb of RAM. SP has been used as submodel of large-scale stochas-
tic problems like those reported in Maŕın and Salmerón (1998, 2001) . In particular,
we have taken advantage of SP to solve capacity expansion planning models with a
large number of periods, T , and subperiods, S, for each period.

At each iteration of Generalized Benders’ Decomposition and Lagrangean Relax-
ation or Decomposition, a total of T · S subproblems were solved. In those works,
demand was modeled using uniform, triangular, normal, and gamma probability
distributions.

For the cases mentioned, the calculation of G−1(.) was obtained very efficiently.
By employing PD(τ, d) = k(τ − d) as loss function, and W (τ) = ED{PD(τ, d)}, it
is easy to verify that:

∂W (τ)
∂τ

= G(τ) = −k

∫ ∞

τ

fD(s) ds = −k Pr {D > τ}, ∀i = 1, . . . , I, (4.1)

which is a well-known function for many probability distributions. In this case, the
computational burden to calculate G−1(.) is significantly simplified.

In this paper, we explore SP itself (and the techniques to solve it), independent
of the application where it is used. For further reference, we next specify the details
of the benchmark test-bed used in this work:

l = 125, m = 200, for a random demand D ≡ Triangular (100, 200; 150)

qi =
100 i

I
, bi =

250
I

, ∀i = 1, . . . , I.

Notice that
∑I

i=1 bi = 250 ≥ l. Thus, SP is feasible. In fact, τ can reach its maximum
(m = 200), if needed. In addition, each bi is relatively small, and the contribution
of a large number of variables is needed even for the smallest feasible value τ = l.

Considering P (τ, d) = k(d−τ), the aforementioned triangular distribution yields:

W (τ) =
∫

�+
PD(τ, s)fD(s) ds =

k(200 − τ)3

15,000
.

(The reader can easily use other probability distributions to create more complex
risk functions while still taking advantage of (4.1) to easily apply the SP algorithm.)

In our different tests, we try I = 10, I = 100, I = 1000, and I = 10,000 variables
per subproblem. We run a total of n = 1, . . . , 10,000 samples for each value of I. At
sample s, the risk function above is computed for k = s. This choice of k allow us
to conduct an extensive testing of our algorithm. Depending on the sample index,
n = 1, . . . , 10,000, the optimal solution changes: the larger sample index, the larger
value of τ , accounting for a lower tendency to accept risk as penalty increases. This
tradeoff, in turn, ensures that most of the listed cases in our SP-algorithm (and
especially those that require more computation) are covered by multiple samples,
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so as to assess the algorithm performance without being subordinated to a specific
algorithm flow pattern. Solution to some of these cases is listed below for further
reference.

A final detail on our implementation is that we assume linear costs already
arranged as q1 ≤ · · · ≤ qi at the time we apply the SP-algorithm. This assumption is
realistic in practice since, for example, if Benders’ decomposition is applied to model
DM, then all the linear costs associated with the subproblem can be sorted out at
the beginning and will remain the same for all the subproblems (i.e., only the right-
hand side, bi, will change between iterations). (In the case of employing Lagrangean
relaxation-decomposition, linear costs may change from one iteration to another.
However, we also notice that as a result of dualizing the coupling constraints, the
submodel will be of type SP∞, which requires finding the minimum linear cost q1

only.)

4.2. Alternative solving methods

We also solve model SP by using MINOS, as implemented in GAMS (Brooke et al.,
1998). In this case, the computational time used is that of solving the model only
(given by the “model.resusd” variable in GAMS), which excludes generation and
other overhead time.

We explore a second alternative based on parametric optimization (PO) (e.g.,
Kabadi and Aneja, 1997). SP lends itself to resolution by using the following scheme:

min F (τ), subject to l ≤ τ ≤ m,

where F (τ) =
∑I

i=1 qizi + W (τ), and zi is easily derived as:

zi =


bi, if

∑i
j=1 bj ≤ τ,

τ −
∑i−1

j=1 bj , if
∑i−1

j=1 bj ≤ τ <
∑i

j=1 bj ,

0, if
∑i−1

j=1 bj > τ.

Thus, we can solve SP as a constrained one-dimensional problem with convex
objective F (τ). The expensive step here is computing F (τ), since it entails deter-
mining the (first) variables for which zi > 0, and their related cost. To simplify this
task, we employ a dichotomous algorithm “Golden Search” (Bazaraa and Shetty,
1993) to find the optimal τ . This method has the advantage of evaluating F (τ) just
once per iteration.

As opposed to our SP-algorithm, PO requires a tolerance (also known as length
of the interval of uncertainty) so as to establish a stopping criterion, which must be
specified beforehand. The values we use in our computations are tol = 0.001 and
tol = 1. Since τ∗ lies in the interval [125, 200], solution errors are roughly bounded by
0.001 and 1%, respectively. It is important to underline the importance of obtaining
optimal solutions to the subproblems, especially if Benders’ decomposition is used:
Otherwise, the cuts for the master problem might be inaccurate, with the potential
risk of not being violated by the previous solution which makes convergence fail.
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Table 1. Solution for some of the samples for different values of I.

I Sample index (s) Solution, τ Linear cost, C · z Non-linear cost, W (τ) Total cost, F

10 1 125.0000 3750.0000 28.1250 3778.1250
1000 180.0000 7400.0000 533.3333 7933.3335

10,000 193.6754 8494.0352 168.6547 8662.6895

100 1 125.0000 3187.5000 28.1250 3215.6250
1000 180.8950 6635.3364 464.8882 7100.2246

10,000 193.7550 7605.3906 162.3697 7767.7603

1000 1 125.0000 3131.2500 28.1250 3159.3750
1000 180.9737 6559.3467 459.1675 7018.5142

10,000 193.7710 7519.1328 161.1221 7680.2549

10,000 1 125.0000 3125.3591 28.1250 3153.4841
1000 180.9737 6551.7388 459.1675 7010.9063

10,000 193.7742 7511.4771 160.8735 7672.3506

Table 2. Time to solve a total of n = 1, . . . , 10,000 samples for SP.

I KKT MINOS PO, tol = 0.001% PO, tol = 1.0%

10 0.02 328 0.18 0.09
100 0.13 366 1.27 0.60

1000 1.20 373 12.17 5.68
10000 12.14 3073 119.27 56.63

4.3. Results

The solution for some of the samples and for different values of I is shown in Table 1.
Table 2 shows the computational time to solve all the samples for a given value of I.

As expected, KKT and PO outperform MINOS. For KKT and PO, solving time
exhibits linear growth in the submodel size (number of decision variables, I). KKT
is about five times faster than PO when its tolerance level is set to 1%, and about
ten times faster for a tolerance of 0.001%. Recall that the solution provided by KKT
(our SP-algorithm) is exact.

5. Conclusions

We have presented an algorithm to explicitly solve a “submodel” that arises in
decomposition of other large-scale models in system design. The algorithm is more
efficient than other applicable state-of-the-art techniques.

This efficiency is based on the fact that the number of arithmetic operations is
a linear function of the number of variables in the submodel.

An important benefit of the methodology proposed in this work is that it allows
us to work with a variety of risk functions, W (.), under relatively weak assump-
tions. In particular, the class of risk functions derived from the expectation of a
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given loss function with respect to generic probability distributions are used in the
computational results.

The most important limitation to realize is that solving the proposed submodel
via its KKTOCs complicates the extension of the algorithm to other submodels with
more complex structures in the subproblem constraints. A future research area may
be extending the applicability of this work to a broader range of constraints for the
submodel.

Appendix A

Lemmas 1 and 2 along with Theorems 1–4 provide a constructive proof to attain
the optimal solution to SP and its dual. Theorem 5 solves SP∞. Hypotheses 1–5
for W (.) (see Section 3.1) and Definitions 3.1 and 3.2 (see Section 3.2) are assumed
throughout this appendix. The final section in the appendix addresses the validity
of the results under weaker assumption on W (.) (relaxation of Hypotheses 4 and 5).

Lemma 1. The optimal solution to the dual of SP verifies:

(a) uiµi = 0, ∀i = 1, . . . , I.
(b) (ui − uj) − (µi − µj) = qi − qj , ∀i, j = 1, . . . , I.

Proof.

(a) Suppose ui �= 0. Then, by the last equality in KKTOC, zi = 0. Since bi > 0,
the second KKTOC implies µi = 0.

(b) By the first KKTOC: G(τ) + v − w = ui − qi − µi, ∀ i = 1, . . . , I. Since τ =∑I
i=1 zi, v and w do not depend on i, the above identity can only be verified

for every i if ui − qi − µi = uj − qj − µj , ∀ i, j.

Corollary 1.

(a) For each i, j ∈ {1, . . . , I} such that qi ≤ qj the inequalities µi ≥ µj and ui ≤ uj

hold.
(b) If ui = uj > 0 ⇒ qi = qj.
(c) If µi = µj > 0 ⇒ qi = qj.
(d) If qi = qj and ui, uj > 0 ⇒ ui = uj. If qi = qj and µi, µj > 0 ⇒ µi = µj.

Proof.

(a) Suppose µi > 0. By Lemma 1(a), ui = 0, and by Lemma 1(b) we have
µi = qj − qi + µj − uj . Since either µj or uj must be zero, we consider two
possible cases:

• If µj > 0 ⇒ uj = 0 and then µi ≥ µj (because qj − qi ≥ 0).
• If uj > 0 ⇒ µj = 0 and then µi ≥ µj (because µi must be non-negative).
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Let us consider the case µi = 0. Again, by Lemma 1(a): µj = qi − qj + uj − ui.
Now, if µj > 0 then uj = 0, but this leads to µj = qi − qj − ui ≤ 0 ⇒ µj = 0,
which is a contradiction. Consequently, it must be µj = 0 and µi ≥ µj . Using
analogous reasoning it may easily be proven that ui ≤ uj .

Proof for (b)–(d) follow trivially by Lemma 1 and the fact that q1 ≤ · · · ≤ qI .

Theorem 1. There exist two indices k, s such that k ≥ 0, s ≥ 0, k ≤ s ≤ I and
the optimal solutions to SP and its dual verify:

(a) u1 = 0 · · · uk = 0
µ1 ≥ · · · ≥ µk > 0

z1 = b1 ≥ 0 · · · zk = bk ≥ 0

uk+1 = 0 · · · us = 0
µk+1 = 0 · · · µs = 0
zk+1 ≥ 0 · · · zs ≥ 0

0 < us+1 ≤ · · · ≤ uI

µs+1 = 0 · · · µI = 0
zs+1 = 0 · · · zI = 0

(b) Moreover, if i < j and zi < bi then zj = 0.

Proof.

(a) First, let us consider two indices i, j, i < j, such that qi < qj , If ui > 0, by
Lemma 1(a) it follows µi = 0. Note that µj = 0, because if µj > 0 then uj = 0
and µj = qi − qj − ui < 0. On the contrary, if uj = 0 and µj > 0, then it would
be necessary that ui = 0. In fact, if ui > 0 we have proved that µi = 0 and
therefore ui = qi − qj − µj < 0.

Suppose now ui = µi = 0. For the case being considered, it must be µj =
0 and uj = qj − qi > 0. Otherwise (i.e., if µj > 0), uj = 0 and then it would be
µj = qi −qj −ui = qi −qj < 0. Likewise, if uj = µj = 0 then ui = 0;µi = qj −qi

because ui > 0 implies that µi = 0 and then ui = qi − qj + uj = qi − qj < 0.
We shall next consider i, j, i < j, where qi = qj . Then, if ui > 0 ⇒ µi = 0

(by Lemma 1(a)). Thus, by Lemma 1(b), ui = uj and µj = 0. Analogously, it
can be easily proven that uj = 0, µj > 0 ⇒ ui = 0, and µi = µj . Finally, since
both ui and µi cannot be positive, by Lemma 1(b) we have ui = µi = 0 and
uj = µj = 0.

Once the structures for u and µ have been determined, the structure for z

follows by applying the KKTOC uizi = 0.
(b) First, we note that if qi = qj and an optimal solution has zi < bi then there

exists an optimal solution with either zj = 0 or zi = bi. In order to prove this,
we consider the optimal zi +zj = ρ. For any feasible zi, zj such that zi +zj = ρ

the primal objective function does not change given that qi = qj and W (.)
is a function of zi + zj . Therefore, we can take zi = ρ, zj = 0 if ρ ≤ bi or
zi = bi, zj = ρ − bi if ρ > bi. Thus, we may (and will) consider, without loss of
generality, that if i < j and qi = qj , then, at the optimal solution, zj > 0 may
occur only if zi = bi.

The result is easily extended for the case qi < qj . Also, working with the dual
problem, qi < qj implies µi = 0 and then µj = 0. Again, if zj �= 0 ⇒ uj = 0.
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Thus, by Lemma 1(b) we have ui − qi = −qj ⇒ ui = qi − qj < 0, which is a
contradiction.

Lemma 2. If the marginal index r does not exits (i.e., −q1 < G(B1)) then:

(a) v = 0.
(b) If −q1 ≥ G(l) then w = 0.

Proof.

(a) We shall show that v > 0 contradicts the hypothesis.
By KKTOC, if v > 0 ⇒ τ = m. Since l < m = τ , it follows w = 0. Applying

the stationary condition in KKTOC, 0 = G(m) = u1 − q1 − µ1 − v. We will see
that this equation leads to an inconsistency in the value of u1: if we let u1 > 0,
then, by Theorem 1(a), u1 > 0 ⇒ uj > 0, ∀j = 2, . . . , I ⇒ zi = 0, ∀i = 1, . . . , I.
But if this is true, then τ = 0 < m, in contradiction with τ = m. On the other
hand, if we take u1 = 0, then −q1 − µ1 − v = 0. This is also a contradiction
since q1 ≥ 0, µ1 ≥ 0 and v > 0. The conclusion is that v = 0.

(b) We consider two cases:

Case 1. B1 = b1 ≤ l. Let us prove that this case is impossible: since G

is an increasing function we have G(B1) ≤ G(l). However, by the hypothesis
G(l) ≤ −q1, the inequality G(B1) ≤ −q1 must also hold. This contradicts the
initial hypothesis G(B1) > −q1.

Case 2. B1 = b1 > l. Suppose w > 0. Then, τ = l. We will prove that
this leads to a contradiction in the value of u1. By KKTOC, we have w =
µ1 + q1 + G(l) − u1. Since u1 and µ1 cannot be strictly positive at the same
time, and q1 + G(l) < 0, it is necessary that u1 = 0 and µ1 > 0 to maintain
the assumption w > 0. However, µ1 > 0 ⇒ z1 = b1, which is impossible since
z1 ≤ τ = l < b1.

Theorem 2. If −q1 < G(B1) then the optimal solution to SP is provided by one
of the following cases:

(a) If −q1 ≥ G(l) then the optimal solution is:

z1 = G−1(−q1); z2 = · · · = zI = 0;

u1 = 0; uj = qj − q1, ∀j = 2, . . . , I;

µ1 = · · · = µI = 0;

v = w = 0.
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(b) If −q1 < G(l) then let k be such that Bk−1 < l ≤ Bk (taking B0 = 0 if
necessary). The optimal solution is:

z1 = b1, . . . , zk−1 = bk−1, zk = l − Bk−1 ≤ bk; zj = 0, ∀j = k + 1, . . . , I;

µk+1 = · · · = µI = 0; µj = qk − µk − qj , ∀j < k;

u1 = · · · = uk = 0; uj = qj − qk − µk, ∀j > k;

v = 0; w = G(l) + qk + µk.

Moreover, if Bk > l then µk = 0. Otherwise, if Bk = l, the dual problem has an
optimal solution for each µk ∈ [0, qk − qk−1].

Proof.

(a) By Lemma 2(a,b), v = w = 0. Next, we shall prove that there exists a feasible
solution to SP (and its dual) verifying KKTOC. Consider the identity:

µi = ui − qi − G(τ), ∀i = 1, . . . , k.

Here, it must be µ1 = 0: If not, µ1 > 0 ⇒ u1 = 0 (Lemma 1(a)) and then z1 = b1
by KKTOC. In this case, µ1 = −q1 − G(τ). Since τ =

∑I
i=1 zi ≥ z1 = b1 and

G(τ) is increasing, µ1 ≤ −q1 − G(b1) < 0 (by hypothesis). Thus, µ1 = 0. Now,
by Theorem 1(a), µ2 = · · · = µI = 0.

Let us calculate the values for the components of u: uj = u1 + qj − q1,∀j =
2, . . . , I. Here, u1 = 0. Otherwise, ui > 0, ∀i = 1, . . . , I, and then zi = 0, ∀i =
1, . . . , I ⇒ τ = 0. Then, G(τ) = u1 − q1 ⇒ G(0) = u1 − q1. Notice that τ = 0
is feasible only when l = 0, but by the original hypothesis in this theorem we
have G(l) = G(0) ≤ −q1. Thus, it follows that G(0) = u1 − q1 (where u1 > 0),
which is a contradiction. By KKTOC and the hypothesis of this theorem

u1 = 0 ⇒ G(τ) = −q1 ⇒ τ = G−1(−q1) < b1.

Applying hypothesis (a) we have τ ≥ l. Also, τ ≤ m because

−q1 ≤ 0 ⇒ G−1(−q1) ≤ G−1(0) = m,

given that G is strictly increasing.
(b) By Lemma 2(a), v = 0. By a similar argument as that in case (a), and taking

into account that τ = G−1(−q1) < l is not feasible, we have to consider the first
index k such that

∑k
i=1 zi = l for feasible values of zi. This is clearly achieved

by the following forward scheme:

0 < z1 = b1; 0 < z2 = b2; · · · 0 < zk = l −
k−1∑
i=1

zi ≤ bk;

and zk+1 = · · · = zI = 0.

By Theorem 1(a):

µk+1 = · · · = µI = 0.



March 1, 2004 13:39 WSPC/APJOR 00004.tex

26 J. Salmerón and Á. Maŕın

Since z1 > 0, . . . , zk > 0, we also have u1 = · · · = uk = 0. We calculate w using
the identities w = G(l) + qi + µi − ui, ∀i = 1, . . . , I. In particular, for i = k we
have:

w = G(l) + qk + µk.

The remaining components of µ and u are obtained by employing Lemma 1,
yielding:

uj = qj − qk − µk, ∀j > k,

µj = qk + µk − qj , ∀j < k.

Note that the value of µk depends on zk. If zk < bk then µk = 0. If zk = bk (this
only occurs if

∑k
i=1 bk = l) then there exist an infinite number of suboptimal

solutions by selecting any µk ∈ [0, qk − qk−1] (notice that feasibility of µk−1 in
the above expression is preserved).

Theorem 3. If the marginal index is r = I (and so, −qI ≥ G (BI)), the optimal
solution to the primal and dual of SP is:

zi = bi, ui = 0, ∀i = 1, . . . , I;

µj = −G(BI) − qj + w, ∀j = 1, . . . , I;

v = 0.

Moreover, if the primal problem does not have a unique feasible solution, then
w = 0. Otherwise, there exist an infinite number of optimal solutions to the dual
SP for any w ≥ 0.

Proof. Since G(m) = 0, qI > 0 and G is a strictly increasing function, in order to
satisfy G(BI) + qI ≤ 0 we require BI < m. Thus, τ ≤ BI < m ⇒ v = 0.

Next, we prove that zi = bi,∀i = 1, . . . , I. Suppose that, for some j, zj < bj .
Then, G(τ) + qj < 0 because:

G is strictly increasing,

qj < qI ,

G(BI) + qI ≤ 0 by hypothesis.

So, if zj < bj the second KKTOC implies that µj = 0. This makes the first
KKTOC for subscript j become G(τ)+qj +µj +v−w−uj = 0, which is impossible
because G(τ) + qj < 0, µj = v = 0, w ≥ 0 and uj ≥ 0.

Therefore, it has to be zi = bi, ∀i. Applying Theorem 1 it follows that ui = 0,

∀i = 1, . . . , I.
To obtain w, we note that if τ =

∑I
i=1 zi =

∑I
i=1 bi > lthen w = 0. It follows:

µI = −G(BI) − qI , (by the first KKTOC),

µj = µI + qI − qj = −G(BI) − qj , ∀j = 1, . . . , I − 1 (by Lemma 1(b)).
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As in Theorem 2, there exists a degenerate case for which the dual problem has
infinity many suboptimal solutions: if

∑I
i=1 bi = l, then, the primal SP has only one

feasible solution (and so, optimal): τ = l. However, any w ≥ 0 provides an optimal
dual solution:

µI = −G(BI) − qI + w,

µj = µI + qI − qj = −G(BI) − qj + w, ∀j = 1, . . . , I − 1.

Theorem 4. If the marginal index verifies 1 ≤ r ≤ I − 1 (i.e., −qr ≥ G(Br)
and −qr+1 < G(Br+1)), then, the optimal solution to SP depends on which of the
following four exclusive cases occurs:

Case 1: qr+1 + G(Br) ≥ 0and l ≤ Br.

Case 2 : qr+1 + G(Br) ≥ 0and Br < l < Br+1.

Case 3 : qr+1 + G(Br) < 0and l < Br+1.

Case 4 : Br+1 ≤ l.

The explicit values of the primal and dual optimal solutions are derived and pre-
sented in the proof.

Proof. Analogously to Theorem 3, the hypothesis −qr ≥ G(Br) and the fact that
G(m) = 0, qr > 0, and G strictly increasing ensure that Br < m. Now, let us study
each case individually:

Case 1: By the first KKTOC, it is true that:

G(τ) + qi + µi + v − w − ui = 0, ∀i = 1, . . . , I (A.1)

We first prove that τ = Br.
If we allow τ > Br, then τ > l ⇒ w = 0 and:

τ > Br ⇒ G(τ) > G(Br) ⇒ G(τ) + qr+1 > 0.

In addition, by Theorem 1, τ > Br ⇒ zr+1 > 0.
This implies (following Theorem 1(a)) that zr+1 = 0 ⇒ ur+1 = 0. However,

it is clear that Eq. (A.1) for i = r + 1 could not be held, which rules out the
hypothesis τ > Br. If we allow τ < Br then G(τ) < G(Br) ⇒ G(τ) + qr < 0,
and τ < Br < m ⇒ v = 0. Also, τ < Br ⇒ zr < br ⇒ µr = 0 (because if
zr = br ⇒ z1 = b1, . . . , zr = br ⇒ τ ≥ Br by Theorem 1(b)). Again, Eq. (A.1)
cannot be verified, in this case for index i = r. Thus, we rule out τ < Br.

The only feasible solution is, therefore, τ = Br. Now, by Theorem 1(b):

zj = bj , ∀j = 1, . . . , r; zj = 0, ∀j = r + 1, . . . , I.

Moreover, since τ = Br < m it will be v = 0.
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The optimal values of the dual variables are easily obtained by KKTOC and
Lemma 1:

uj = 0, ∀j = 1, . . . , r;

µr = −G(Br) − qr + w;

µj = µr +(qr −qj) = −G(Br)−qj +w, j = 1, . . . , r−1; µj = 0, ∀j = r+1, . . . , I;

uj = qj + G(Br) − w, ∀j = r + 1, . . . , I.

The value of w is obtained as follows: if l < Br = τ ⇒ w = 0. Likewise, for
Theorems 2 and 3, the dual optimal solution may not be unique. This happens
when l = Br. Then, w may be any value such that w ∈ [0, qr+1 + G(Br)].

Case 2: The proof is analogous to Case 1, but we take into account that τ > Br

(because l ≤ Br is not feasible).
The optimal solution will be achieved for the nearest point in the boundary

τ = l, that is

z1 = b1, . . . , zr = br; zr+1 = l − Br < br+1; zr+2 = · · · = zI = 0.

We also obtain the value of vector u:

uj = 0, ∀j = 1, . . . , r + 1; ur+j = qr+j + G(τ) − w, ∀j = 1, . . . , I − r.

We use the first KKTOC to obtain:

ur+1 = qr+1 + G(τ) − w

and w is calculated as w = qr+1 + G(τ).

Remark: Note that, since τ ≥ Br and, by hypothesis, w = qr+1 + G(τ) >

qr+1 + G(Br) ≥ 0, the resulting w is feasible. Also, v = 0 (because τ = l < m).

Finally, we obtain the value of the components of µ:

zr+1 < br+1 ⇒ µr+1 = · · · = µI = 0,

µj = uj + w − v − qj − G(τ) = qr+1 − qj , ∀j = 1, . . . , r.

Case 3: For this case we make a similar reasoning as in Case 1. The only dif-
ference is that the value obtained for the dual variable ur+1 = qr+1 + G(τ) where
τ = Br (in Case 1) is no longer feasible (notice that the new hypothesis implies
that this value is strictly less than 0).

To achieve feasibility, it is necessary to increase the value of τ to a certain value
τ = B̃r = Br +  so as to restore dual feasibility for ur+1 (i.e., ur+1 = 0). To
accomplish this task, we must solve the equation

qr+1 + G(B̃r) = 0
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for B̃r. This entails computing B̃r = G−1(−qr+1). Notice that B̃r verifies
B̃r ∈ (Br, Br+1) because qr+1 + G(Br) < 0, qr+1 + G(Br+1) > 0, and G is a
continuous function.

If l < B̃r ⇒ w = 0 and the optimal solution for all primal and dual variables
will be:

µr+1 = 0; zr+1 = B̃r − Br = δ; ur+1 = 0;

µr = −G(B̃r) − qr = qr+1 − qr; zr = br; ur = 0;

µj = µr + qr − qj = qr+1 − qj ; zj = bj ; uj = 0, ∀j < r;

µj = 0; zj = 0; uj = qj − qr+1, ∀j > r + 1.

If l ≥ B̃r, it will be necessary to proceed as in Case 2, by setting:

zr+1 = l − Br < br+1,

which is feasible given that, by hypothesis, l < Br+1.
The remaining primal variables are:

zj = 0, ∀j > r + 1.

Case 4: Br+1 ≤ l. Analogously to Theorem 2 (Case 2), the optimal solution to
the primal problem is achieved for τ = l. This is obtained by finding the index s

such that:

z1 = b1, . . . , zs−1 = bs−1, zs = l − Bs−1 ≤ bs

and proceeding as in that case to obtain the dual variables.

Theorem 5. Let us consider SP∞. Let τ =
∑I

i=1 zi and G(τ) = ∂W (τ)/∂z1 =
· · · = ∂W (τ)/∂zI . Suppose (without loss of generality) that q1 ≤ · · · ≤ qI . An
optimal solution to this problem can be obtained as follows:

Case 1: If G(l) < −q1, the solution is: z1 = G−1(−q1); z2 = · · · = zI = 0.

Case 2: If G(l) ≥ −q1, the solution is: z1 = l; z2 = · · · = zI = 0.

Proof. If we write the KKTOCs for the proposed problem, we need to find I + 2
non-negative dual variables u, v, (ui)i=1,...,I such that:

∂W (τ)
∂zi

+ qi + v − w − ui = 0, ∀i = 1, . . . , I,

v
(∑I

i=1zi − m
)

= 0,

w
(∑I

i=1zi − l
)

= 0,

uizi = 0, ∀i = 1, . . . , I.

Case 1: We have G(τ) = ui + w − v − qi, ∀i = 1, . . . , I. Note that τ, w and v do
not depend on i. Thus, uj = ui + qj − qi hold for any i, j = 1, . . . , I. If j > i then
qj > qi ⇒ uj > ui.

We shall next prove that u1 = 0. If u1 > 0 then uj > 0, ∀j = 1, . . . , I. Since:

uizi = 0, ∀i = 1, . . . , I ⇒ zi = 0, ∀i = 1, . . . , I
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it is clear that the constraint τ ≥ l cannot be held. Thus, it must be u1 = 0, and
then

0 = u1 = u2 = · · · = uk for q1 = q2 = · · · = qk,

where k is the first subscript such that qk < qk+1 (we may assume k = 1 without
loss of generality).

The remaining variables take the values:

ul = ql − q1 > 0 ⇒ zl = 0, ∀l = 1, . . . , I − k.

Next, we will prove that v = w = 0. Since l < m, by the optimality conditions it is
clear that either v = 0 or w = 0 (or both).

Suppose v = 0. Then, G(τ) = w − q1. But, if w > 0 then

w > 0 ⇒ τ = l ⇒ G(l) = G(τ) = w − q1 > −q1,

which is a contradiction with the hypothesis G(l) < −q1.
On the other hand, if w = 0, then v > 0 cannot be satisfied because it would

imply τ = m, which is impossible given that G(m) = 0, and 0 = v + q1 could not
be held. Thus, it is necessary that v = w = 0. This leads to

G(τ) = −q1 ⇒ τ = G−1(−q1) = z1.

Case 2: The arguments to prove the result in this case are almost the same as
in Case 1. The only difference with that is the way to obtain w. Now, w = 0 is
not justified because the hypothesis implies G(l) ≥ −q1. Instead, the value of w is
obtained by considering:

G(l) = G(τ) = w − q1 ⇒ w = G(τ) + q1 ≥ 0,

which yields z1 = l; z2 = · · · = zI = 0 as optimal solution.

Extensions of Hypotheses 4 and 5 for W (.)

Hypothesis 4: W (.) convex (but not strictly): If W (.) is not strictly convex, we
cannot ensure G(τ) is strictly increasing. Hence, although all proofs throughout
the appendix remain true, we can find alternative solutions when computing
G−1(−Q) for some values of −Q < 0 (i.e., G−1(.) is not uniquely defined and
some criterion must be adopted when the inverse is not unique, for example,
the least τ such that G(τ) = −Q).

Hypothesis 5: limτ→m (d W/d τ) = limτ→m G(τ) = k ≤ 0:

Lemma 1 and Theorems 1, 4, and 5: No changes are needed.
Lemma 2: In the proof of part (a), we may change “G(m) = 0” by
“G(m) ≤ 0.”
Theorem 2: In Theorem 2(a), G−1(−q1) is still well-defined given that
−q1 ≤ G(B1) by hypothesis.
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Theorem 3: Proof needs some tuning to accommodate non-strict convexity.
The reason is that we cannot define G−1(−Q) for 0 < −Q < k. Note that in
that proof, changing “G(m) = 0” by “G(m) ≤ 0” does not guarantee that
the thesis BI < m will hold. The reason is that it may occur as BI = m and
G(BI) + qI = −k + qI ≤ 0.

We distinguish two cases: If BI < m no changes are needed. However, if
BI = m, in order to attain feasibility for constraint τ ≤ m it is necessary
that τ = m holds. Thus, we need to modify our solution as follows:

z1 = b1, . . . , zI−1 = bI−1, zI = m − (b1 + · · · + bI−1),

ui = 0, ∀ i = 1, . . . , I.

See that w = 0 because τ = m > l. Also, v = −qI − G(τ), which is feasible
(v ≥ 0) because −qI − G(m) ≥ −qI − G(BI) ≥ 0.
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