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Abstract: We present a stochastic optimization model for planning capacity expansion under
capacity deterioration and demand uncertainty. The paper focuses on the electric sector, although
the methodology can be used in other applications. The goals of the model are deciding which
energy types must be installed, and when. Another goal is providing an initial generation plan for
short periods of the planning horizon that might be adequately modified in real time assuming
penalties in the operation cost. Uncertainty is modeled under the assumption that the demand is
a random vector. The cost of the risk associated with decisions that may need some tuning in the
future is included in the objective function. The proposed scheme to solve the nonlinear stochastic
optimization model is Generalized Benders’ decomposition. We also exploit the Benders’ sub-
problem structure to solve it efficiently. Computational results for moderate-size problems are
presented along with comparison to a general-purpose nonlinear optimization package. c© 2001
John Wiley & Sons, Inc. Naval Research Logistics 48: 662–683, 2001

Keywords: capacity expansion; power generation planning; generalized Benders’ Decomposi-
tion; stochastic programming

1. INTRODUCTION

Electric utilities make long-term capacity-expansion decisions to face customers’ future de-
mands. An optimal expansion plan should guarantee a certain quality for the service at the lowest
cost for the utility, but, since future demand is uncertain when these decisions are made, a utility
cannot know the actual impact of a given plan beforehand.

Our previous work [21] presents a similar model to the one proposed in this paper. That work
compares performances for different decomposition schemes. The present work provides insight
on the practical implications of the model, details specific features involved in the formulation,
the treatment of uncertainty, and compares them to other approaches in the literature. A new
feature added to the model is the piecewise representation of generation costs. In addition, a
comprehensive description of the use of generalized Benders’ decomposition to solve the problem
is included.
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Hobbs [17] provides an excellent survey on the range of models that have been developed for
electric utility resource planning and identifies specific areas that require further research: demand
uncertainty, risk, and a number of different objectives, among others.

Uncertainty modeling can be conducted through different strategies which may depend on
available historical data and forecasting capabilities. Also, decision makers play an important role
in the modeling of a problem, ensuring that the results meet their needs and practical requirements.
A well-known text on this topic is Wets [36]. A more recent review on modeling and decomposition
methodologies applied to large-scale stochastic problems is Ruszczynski [31].

One of the first applications of stochastic programming to electric capacity expansion modeling
is Dapkus and Bowe [9]. This work employs stochastic dynamic programming methodology (e.g.,
Winston [37]) by considering a number of stages (time periods), and states (the result of combining
technologies, their availability, and the peak level of demand). Despite the good results achieved
with this model, its performance is strongly dependent on the number of states, which in turn
complicates the ability to consider additional uncertain data, or to consider independent plants
(or generation units) instead of employing generic technology types.

Scenario-based approaches plan against a set of given scenarios which represent a number of
possible realizations of the uncertain parameters. These approaches have raised serious concerns
about the tradeoff between the proposed models accuracy and their dimensions since problem
complexity increases as the number of scenarios grows. These models usually involve a large
number of control and decision variables to represent the ‘‘implementable policies’’ (decisions
independent of the actual scenario to occur).

Some important works on applied scenario modeling are the following: Gorenstein et al. [15]
present an innovative approach for power-system planning in terms of minimization of regret.
This is being applied in many others fields involving optimization under uncertainty. Álvarez
et al. [2] use a scenario framework to characterize the uncertainty on the right-hand side (rhs),
minimizing the regret of wrong decisions and forming implementable policies. Also, Berman,
Ganz, and Wagner [4] introduce a scenario-modeling approach for capacity-expansion planning
in the service industry.

In the last decade parallel computing has provided researchers with a method to handle a large
number of decision variables. The capabilities of new high-performance computing platforms are
being used for two purposes: (a) parallelizing classical algorithms (such as Cholesky’s factor-
ization for interior point algorithms and branch and bound for integer programming, e.g., Birge
and Holmes [5] and Yang and Zenios [38]) and (b) implementing typical decomposition schemes
(such as Benders’ decomposition or Lagrangean relaxation–decomposition), which usually lead
to scenario-separable subproblems. We do not intend performing any parallel computations, but
we note that our decomposition procedure is amenable to parallelization as in some of the works
described next.

Ariyawansa and Hudson [1] and Ermoliev and Wets [11] have assessed the parallel perfor-
mances of Dantzig-Wolfe, Benders, and general nested decomposition schemes. Also, Hiller and
Eckstein [16] explore a model for managing asset/liability portfolios with stochastic cash flows
by a massive parallel Benders’ cuts implementation.

Another work that exploits a scenario framework is Mulvey and Ruszczynski [23]. The authors
decompose a general multistage stochastic problem into scenario subproblems that can be solved
independently on a distributed network. The decomposition scheme in this case is based upon an
augmented Lagrangean scheme which dualizes the nonanticipativity constraints and performs a
diagonal quadratic approximation. One of the test cases in that research is a dynamic financial
planning model described in Mulvey and Vladimirou [22]. Several financial problems with a
number of stochastic parameters are analyzed, and the authors compensate for the large size of
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the model by exploiting its network structure. The nonanticipativity condition is implemented
under a multistage scheme where the stages correspond to time periods at which new information
becomes available. The result is a significant acceleration in computation. Another work in the
financial field is Golun et al. [14], which presents a multiperiod stochastic model that is empirically
superior to immunized portfolios and dynamic single-period stochastic models. Ruszczynski [30]
presents a parallel decomposition of multistage problems, incorporating regularized quadratic
terms in subproblems that preserve the finite termination property of classical approaches. His
computational experience shows that the advantages of parallelizations increase with the size of the
scenario tree. Also, Vladimirou [35] adapts the regularized and linear decomposition on distributed
multiprocessors using a set of standard stochastic programs, showing significant improvements
in problems with numerous first-stage variables.

Escudero et al. [12] describe a two-stage model for hydrothermal coordination in power gen-
eration planning under uncertainty, implementing a decomposition scheme based on splitting
variables for each scenario related to the last deterministic (and implementable) time period. The
proposed framework is suitable for a parallel implementation.

Robust optimization is a relatively new technique for dealing with uncertainty. Rockafellar and
Wets [29] identify robust decision policies by discovering similarities among the optimal solutions
for different scenarios. A general framework for robust optimization is analyzed in Malcolm and
Zenios [20] and Mulvey, Vanderbrei, and Zenios [24]. These works assess different choices for
parameters that penalize the variance of the cost and the norm of infeasibilities. A serious concern
is to strike the proper balance among the terms that form such an objective function: On the one
hand, the tradeoff between the mean and variance of the solution provided by the model; on the
other, the infeasibility factor due to deviations from a feasible solution for all the scenarios. The
specific application of this technique to capacity-expansion models aims to attain an ‘‘almost’’
optimal solution for realizing any of the demand scenarios (robustness) while preserving a reduced
excess capacity for any of these realizations.

We particularly note an independent development to our own. Malcom and Anandalingam
[19], which describes a comprehensive real-world application of robust optimization to electric
capacity expansion, including multiple supply and demand regions, a great variety of physical
and resource restrictions and environmental features. They also show how robust optimization
leads to consistent choices, both ‘‘solution robust’’ and ‘‘model robust’’: The optimal solution
from the model is near-optimal for any realization of the demand scenarios (solution robust) and
has ‘‘almost’’ no error regarding uncertain parameters (model robust). Sensitivity to input data
and comparison to classical stochastic programming are analyzed.

Referring to other optimization techniques under uncertainty, stochastic dual-dynamic pro-
gramming was introduced in Pereira and Pinto [27]. The aim of the work is to introduce coupling
operational variables between consecutive periods (e.g., water storage in hydro reservoirs) with-
out discretizing them into a number of selected states. This avoids the combinatorial explosion of
states through a multistage decomposition framework that takes advantage of the interpretation
of the dual solutions as Benders’ cuts. With some of these ideas, the aforementioned work [15]
also deals with the stochastic planning of electric systems.

We also mention the following important papers on electric utility expansion models, even
though they do not consider uncertainty in demand: In Murphy and Wang [25], a multiperiod
capacity-expansion model is formulated as a network model, Sherali and Staschus [33] consider
the possibility of using renewable energies. The authors explicitly use a load duration curve to
formulate a nonlinear objective function. The model is solved by Benders’ decomposition and
Lagrangean relaxation techniques. The only stochastic extension proposed by the authors consists
of simulating a security condition by increasing the rhs coefficients associated to the demand.
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A real implementation in Mexico, represented by an integer problem and including renewable
energies, can be found in Sherali, Staschus, and Huacuz [34]. Also, Nooan and Giglio [26] for-
mulate a large-scale nonlinear mixed-integer model for planning electric capacity expansion. The
authors emphasize the reliability of electricity supply. A combination of successive linearization
and Benders’ partitioning leads the authors to very attractive computational results, implemented
for a real-world problem.

Other remarkable classical works on long-term expansion planning are Bloom [7] and Bloom,
Caramanis, and Charny [8], who refer to the generalized Benders’ decomposition model imple-
mented in the EGEAS program. In particular, [8] improves the procedures in [7] for representing
the probability distributions of unserved energy by using the Gram–Charlier series. It also modifies
the production cost subproblem for multiple units of standard size. The electric system capacity
is given by the sum of (random) individual plant or unit capacities. These works focus on assuring
system reliability by imposing a fixed limit on the amount of expected unserved energy, assuming
that the load is known in advance. Obviously, the required computation to obtain the aforemen-
tioned probability distribution (or, equivalently, the probability distribution for the system power
capacity) including all the generation units is rather intensive.

Referring to capacity deterioration, an important paper, including a general formulation for
deterministic capacity expansion, is Rajagopalan [28]. This author suggests relating the available
capacity to the facility age and use.

Our own paper is organized as follows: In Section 2 the mathematical model is formulated:
Decision variables, parameters, and the penalty function of the model are defined. A discussion
to relate our model to other models in stochastic programming is included. In Section 3, we ex-
plain how to use a Benders’ decomposition-based methodology to solve the problem. To solve
the Benders’ subproblem efficiently, its structure is exploited and the related Kuhn-Tucker opti-
mality conditions are explicitly solved. Other considerations for solving the master problem are
commented on. Section 4 provides computational results for small to moderate-size problems.
Finally, Section 5 explains our final conclusions.

2. ELECTRIC CAPACITY EXPANSION: FRAMEWORK

In this section we describe the Electric Capacity Expansion Model (ECEM) and discuss the
key ideas behind our representation of demand uncertainty.

Our approach assumes an intensive statistical preprocessing to derive a probability distribution
representation of the demand for each time subperiod (which consists of a number of hours,
not necessarily consecutive, with a similar load). The proposed model combines some of the
techniques of stochastic optimization [22, 23, 29, 36], robust optimization [19, 20, 24, 29], and
statistical decision rules (De Groot [10]).

The objective function is formed by the following terms: capital investment cost (by unit of
expanded capacity), operating costs (represented by a convex piecewise linear function for each
energy type or plant), and an additional term to represent the risk associated with future outcomes.
The risk function is defined as the expected cost of adjusting the system operation to actual data,
once this information is available. For each subperiod a different risk strategy may be adopted.

The model does not require us to assume any specific value for the demand. Instead we employ
the cost of modifying an existing generation plan once the demand information becomes available
over time. The (a priori) marginal probability distributions for the demand are model inputs as
well.

Our approach leads to a large nonlinear optimization model. In order to solve this model, decom-
position techniques are required. Among them, the generalized Benders’ scheme (Geoffrion [13])
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has provided us with the best results, so that is the scheme we use in this paper. This methodology
has the advantage of yielding a separable subproblem (over time) that can be explicitly solved by
analyzing its optimality conditions. This structure appears suitable for future extensions of the
formulation (e.g., to represent the capacity-expansion decisions via integer variables).

In this section, we first introduce the general mathematical formulation of the model, then
describe the objective function and feasibility constraints, and finally we discuss the model and
clarify its practical implementation.

2. 1. Mathematical Formulation: Introduction

We will use the following indices:

i: Plants, for i = 1, . . . , I ,
t: Periods, for t = 1, . . . , T (e.g., years),
s: Subperiods of period t, for s = 1, . . . , St (e.g., blocks of the load duration curve).

Let Lts be the length (hours) of subperiod s at time period t. Let also Lt =
∑

s∈St Lts be the
length of period t.

The decision variables are:

xit: Power capacity installed at plant i in time period t (MW),
zits: Expected generation at plant i in time subperiod s of period t (MWh).

Notice that the term
∑

s∈St(zits/Lt) represents the average generation at plant i during time
period t.

Let b0
i be the initial capacity at plant i (if any) (MW). The total available capacity, x̃it, at plant

i in time period t is defined as




x̃i1 = xi1 + b0
i ,

x̃it = αi

∑St−1

s=1
zi,t−1,s

Lt−1
+ βi

(
x̃i,t−1 −

∑St−1

s=1
zi,t−1,s

Lt−1

)
+ xit, for t ≥ 2,

(1)

where 0 < αi ≤ βi ≤ 1. The coefficient 1 − αi represents the deterioration capacity rate at (the
end of) a given time period, per unit of energy generated in plant i. 1 − βi is the same for the
nonused capacity. Hence, this approach assumes that deterioration is a function of hours of use,
as well as age. Even if the deterioration rate is slow, the average available capacity during the
life cycle of a given generation unit decreases with age, due not only to physical loss of capacity,
but also more frequent maintenance requirements and downtimes, until finally the plant becomes
obsolete.

By an easy inductive argument, we can derive from (1) that

x̃it =


∑

t′≤t

βt−t′
i xit′ + βt−1

i b0
i +

∑
t′≤t−1

βt−t′−1
i (αi − βi)

1
Lt′

∑
s∈St′

zit′s


 . (2)
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2. 2. Objective Function

The ECEM objective function can be stated as:

f(x, z) = Investment Costs + Oper.&Maint. Costs + Risk = CIOM + Risk.

CIOM is composed of the (first and second) linear terms. Define the following (present value)
costs:

ICit: Capital (investment) cost for plant i in time period t ($/MW),
OCits: Operating cost of plant i in subperiod s of period t ($/MWh),
MCit: Maintenance cost of installed capacity at plant i in time period t ($/MW),
MCUit: Maintenance cost of plant i due to use in time period t ($/MWh).

The operating costs are typically convex functions of the generated energy, and include fuel
and labor costs. The fuel costs are strongly related to the efficiency of generation. This can be
approximated by a suitable piecewise-linear function (representing the so-called incremental heat
rates of the generators, k = 1, . . . , Ki for plant i). Therefore, the operating costs for a plant i at
time (t, s) can be stated as:

Ki∑
k=1

OCits,kzits,k, for OCits,k ≤ OCits,k+1, and 0 ≤ zits,k ≤ z̄its,k,

where zits =
∑Ki

k=1 zits,k and z̄its,k is the length of the efficiency range k. For the sake of
simplicity, we assume a fixed linear cost OCits (to be modified by the term above if needed), but
will explain in Section 3 how the methodology is valid for the piecewise-linear generalization
too.

CIOM can be stated as

CIOM (x, z) =
∑

i

∑
t


ICitxit + MCitx̃it +

St∑
s=1

(OCits + MCUit)zits


 .

Since x̃it is defined in terms of (x, z), by eq. (2), we can express the above terms as

CIOM =
∑

i

∑
t

Qx
itxit +

∑
i

∑
t

∑
s

Qz
itszits = Qx · x + Qz · z.

The risk term is represented by a separable nonlinear function R(z):

R(z) =
∑

t

∑
s

Wts(τts), where τts =
∑

i

zits. (3)

Each function Wts(τts) represents the expected penalty due to the need to adjust an existing
generation plan to new conditions (e.g., changes in demand), assuming that this information is
not available at the moment of making the system-expansion decisions. τts is a decision variable
that represents the energy (MWh) that we expect to supply during the subperiod s of period t.
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We assume that there exists a random variable Dts representing the forecast load (MWh) to be
served in subperiod s of period t.

In order to evaluate risk, we define the following function:
Pts(τts, dts) = penalty function ($) to adjust the initial generation plan τts to the true demand
dts.

It is usually accepted that Pts depends on (dts − τts) through a function gts(·) as follows:

Pts(τts, dts) =
{

gts(dts − τts), if dts > τts,
0, if 0 < dts ≤ τts.

As an instance, we can take gts(u) = k1u
k2 for given k1 > 0, k2 ≥ 1 for any real u ≥ 0.

The function gts(u) is especially important for the peak subperiods, where the load excess may
become unserved energy and imply major regret. This point is discussed in more detail in Section
2.4.

The function Pts must satisfy some general conditions; for example, it must be nonnegative,
increase as (dts − τts) grows, be convex in τts for each fixed dts, and satisfy certain boundary
conditions.

Finally, we define Wts(τts) as the expected penalty for this time subperiod. Let fts(d) be the
density function associated with the random variable Dts, and take

Wts(τts) =
∫

<+
Pts(τts, v)fts(v) dv, ∀τts ≥ 0 (4)

Wts(τts) allows us to evaluate the expected impact of a given decision beforehand. (4) becomes
a finite sum of terms if we consider a discrete probability distribution for demand.

The criterion assumed in the formulation of the risk function (minimization of the expected
regret) is appropriate under risk neutrality (Wald criterion). Other strategies based upon utility
functions could be adopted, although the methodology described in this paper requires the con-
vexity of such functions (see [10]). For details on some of the strategies to hedge against uncertain
outcomes, we refer again to the works [14], [20], and [22]. An extensive analysis on risk aversion
from a statistical point of view may also be found in Luce and Raifa [18].

In this paper, besides the objective function itself, risk aversion is incorporated by imposing a
minimum amount of energy to be supplied in each time subperiod (e.g., a given percent of the
maximum demand; see Section 2.3). The joint effect of cost minimization and minimum supply
constraints allows us to compromise between the desired profitability and the quality of the service
(possibly according to additional regulations). We expect that the minimum supply constraints
are binding when the penalty functions for expected unserved demand are not costly enough to
compensate for the expense of larger investments. Birge and Louveaux [6] describe a similar idea
taken from nonlinear utility models.

Another classic strategy for hedging against risk that can be analyzed with our formulation is
Savage’s minimax criterion; see [10]. To do this we assume that the decision maker provides,
in advance, an appropriate degree of confidence ε � 1. A large value m is associated with the
most unfavorable demand load such that Pr{D > m} = ε. Since the objective function (once the
demand is known as D = d) would have the form

f(x, z/D = d) =
∑

i

Qx
i xi +

∑
i

Qz
i zi + P

(∑
i

zi, d

)
,
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where we have dropped the (t, s) subindices for simplicity. Under an ε-minimax strategy we
would have

min
x,z

max
d

f(x, z/D = d) = min
x,z

∑
i

Qx
i xi +

∑
i

Qz
i zi + P

(∑
i

zi, m

)
,

given that the loss P is ε-maximum at the value d = m. Since P is convex by hypothesis, the
methodology used for solving the Benders’ subproblem remains valid; see Section 3 for details.
We also note that this criterion may be easily implemented with only a modest amount of data
because the probability distribution D is not required. Instead, a unique value is used to represent
the (maximum) demand that must be met.

2. 3. Physical Constraints

Constraints of ECEM are defined as follows:

zits ≤ aitsLtsx̃it, ∀i, t, s, (5)

lts ≤
∑

i

zits ≤ mts, ∀t, s, (6)

∑
i

ICitxit ≤ gt, ∀t, (7)

∑
t

xit ≤ hi, ∀i, (8)

0 ≤ xit ≤ kit, ∀i, t, (9)

zits ≥ 0, ∀i, t, s, (10)

where

aits = availability factor for plant i in subperiod s of time period t (0 ≤ aits ≤ 1),
lts = security level for the energy to be served in subperiod s of time period t (MWh) (e.g.,

lts = mean of Dts),
mts = upper extreme of the support of Dts (MWh) (+∞ is allowed),

gt = budget for capacity investment in time period t ($),
hi = maximum capacity to install at plant i over the time horizon (MW),
kit = maximum capacity to install at plant i in time period t (MW).

Note: The availability factor aits is the expected fraction of the time for which plant i is available
for use. This parameter can be estimated, assuming that the random failures of each plant follow
a renewal process, so that a forced outage occurs with probability 1 − aits = r̄its/(m̄its + r̄its),
where m̄its is the so-called ‘‘mean time between failures’’ and r̄its is the ‘‘mean time to repair.’’



670 Naval Research Logistics, Vol. 48 (2001)

Finally, ECEM can be expressed as

ECEM : min
x,z

f(x, z) = Qx · x + Qz · z + R(z),

s.t.




Bx + Az ≤ b0,

x ∈ X ,

z ∈ Z,

where B and A are the matrices that represent constraints (5), X is the feasible set defined by
(7)–(9), and Z represents (6) and (10).

2. 4. Model Discussion

The proposed ECEM may be considered as a stochastic programming model where the risk
function plays the role of the second-stage penalties to guarantee solution robustness. In the
discrete (or scenario-based) case, a typical equation for demand satisfaction for a single subperiod
would have the form

∑
i

zi + x2(dω) = dω, for each scenario ω ∈ Ω, with ω finite.

Here x2(dω) would be a second-stage control variable conveniently penalized as discussed below.
However, if a continuous representation of the demand D is assumed (as in the real case) one can be
sure that Pr{∃ω ∈ Ω with D = dw} = 0. Hence, the control variables are in fact pseudocontrol
variables that concentrate an infinite range of possible deviations (from the true demand) at a
single mass point.

In the problem being addressed, we are implicitly considering as control variable

x2(d) = d −
∑

i

zi, ∀d ∈ support of D.

Obviously, we cannot work directly with an infinite number of constraints. Therefore, we have
considered it appropriate to ‘‘dualize’’ these constraints, giving them an interpretation as risk
represented by ED[P (x2(d))].

From a stochastic-programming point of view, ECEM may suggest that both x and z are first
stage variables, so the model might be interpreted as a simple recourse problem. However, by
considering the control variables x2(d), one can view the z as second-stage variables which can
be adequately modified when the necessary information about load is available; the cost of tuning
these is represented by P (x2(d)), whose expectation is minimized along with the other objective
function terms.

On the other hand, the risk term ED[P (d −∑i zi)] can be viewed as a (continuous) averaged
penalty function resulting from all possible deviations in uncertain demand.

In a general robust model (according to [20], [24]) the objective function would be composed
of three terms:

EΩ[ξ] + λV arΩ[ξ] + vEΩ[
∑

Z2
ω],



Marín and Salmerón: Electric Capacity Expansion 671

where the first and second terms are expectation and variance operators for the total cost ξ
with respect to a probability distribution of a given scenario set Ω. λ and v are the relative
weights of the objective function terms, and Zω is the control variable of the constraints subject to
uncertainty.

Our approach has certain similarities to robust optimization models, but an explicitly cost-
variance term has been dropped from our objective function. In its place, we have included a new
term that explicitly includes all the information about the probability distribution of the demand.

The penalty of infeasibilities to achieve solution robustness is more general in ECEM, in the
sense that it allows us to consider (a) both discrete and continuous representation of the demand,
and (b) the use of more general penalty functions P . In this sense, we consider it of interest
to minimize the operating costs and the expected extra cost due to uncertainty, considering the
probability distribution of the demand. Also, the outcome may be easier to assess here than it is
for the solution provided by minimizing the scenario cost variance, which depends on the weight
the user gives to the variance term.

Both ECEM and robust optimization models deal with uncertainty via formulations that provide
robust strategies: In ECEM, robustness means that risks and costs are balanced, while in the models
which include a variance term, robustness is a way of guaranteeing that the cost provided by any
scenario does not differ too much from the average, since otherwise it is strongly penalized.

Note also that the resultant risk term in this work yields to a variety of penalties for infeasibility,
not only the quadratic one. As an example, if we consider a uniform distribution of the demand
and a linear penalty P = k(d −∑i zi), for a fixed k > 0, the resultant term is quadratic. If the
demand were triangular, the risk term would be cubic, and so on for other penalty functions P
and probability distributions.

One of the goals of this work is to enable the use of a wide range of probability distributions.
We will show that the associated complexity in the risk term does not diminish the efficiency of
the methodology, which is based on the explicit solution of the optimality conditions. Practical
implications from a utility perspective include the broader range of possibilities for treating
uncertainty and the large instances that may be solved. Another advantage of our approach is
that the Benders-based methodology allows us to extend the model’s scope to other stochastic-
programming applications.

In the real operation of a electric power system the unit commitment is not determined until a
very accurate demand forecast is available (hours or days ahead the real demand becomes known).
The final generation and dispatching is a real time operation. In ECEM, each zits is a generation
level that provides the a priori least risk and serves to determine the optimum first-stage decisions
x during the planning horizon, as well as the total expected investment and operating costs.

The ‘‘penalty function’’ employed by ECEM Pts (dts −∑i zits) may have different formula-
tions for the different subperiod types, but it always depends on the difference between the ob-
served value of the demand dts and the planned generation,

∑
i zits. For low-demand subperiods,

the formulation of P could be a simple linear function Pts(x2) = kx2, for x2 = dts−
∑

i zits > 0.
For example, this coefficient k could represent the cost per MWh of a coal thermal plant (because
a low load level suggests that the generation outputs for thermal plants are below their generation
capacities, so that the marginal costs will be low).

The penalty function and its interpretation, however, is different for subperiods corresponding to
medium or peak load levels. Several interpretations can be derived from the risk term ED[P (x2)]
[i.e., the average value of the cost P (x2) due to deviations from the planned generation]. This
means neither strict assessment of a feasible generation plan nor that the remaining demand (if
any) is unmet. On the contrary, the cost P (x2) of adjusting the load curve could represent, among
others: (a) the generation costs of existing fast start-up plants such as gas turbines (which have
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low capital costs but high operating costs), combined cycle or hydro plants (if the water values
are high for those time periods), (b) energy purchase cost at the (open) spot market price, (c) need
of additional fuel procurement at more costly prices, (d) energy purchase from other companies
or interconnected countries, and (e) if unserved energy remains, the associated penalty.

The development of a more specific formulation concerns both the demand representation and
the impact of the above features on cost, which depend on the specific electric system under
consideration.

One issue of major importance is the way of deriving individual probability distributions for each
subperiod of interest. We realize that some relationships may arise among related power demands
(e.g., the demand in the peak subperiod of winter 1999 is not independent from the demand in the
peak subperiod of winter 2000). The ideal case is when we can estimate the joint distribution of
each random demand vector by parametric techniques (e.g., assuming an N -dimensional normal
and estimating the mean vector and covariance matrix). Once this task has been accomplished,
the marginal distributions related to each individual component (i.e., subperiod) are considered
in defining the associated risk function. Model data may be preprocessed with a reasonable effort
within the context of the problem considered.

3. GENERALIZED BENDERS DECOMPOSITION

ECEM is a large model for realistically sized problems, and requires decomposition to be
solved. In this section, we present a Generalized Benders’ Decomposition (GBD) scheme, which
exploits the structure of the subproblem to accelerate convergence.

3. 1. Operation Subproblem

Suppose that x = x̂ has been fixed. The remaining subproblem is usually known as the ‘‘oper-
ation subproblem.’’ Removing the fixed cost Qx · x̂ from the objective function, this subproblem
can be formulated as

SP (x̂): min
z∈Z

Qz · z + R(z)

s.t. Az ≤ −Bx̂ + b0(µ),

where µ is the dual variable corresponding to available capacity.
In order to implement a Benders’ decomposition scheme, solving the dual of SP (x̂) is neces-

sary. We take advantage of the lower triangular structure of A, and form one problem for each
period t and subperiod s ∈ St, say,

SPts(x̂): min
z1ts,...,zIts

∑
i

Qz
itszits + Wts

(∑
i

zits

)

s.t.




zits ≤ bits, ∀i (µits)∑
i=1 zits ≤ mts,∑
i=1 zits ≥ lts,

zits ≥ 0, ∀i (uits)
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Note that if αi = βi, the value of bits = aitsLtsx̃it depends only xi1, . . . , xit [see Eq. (2)].
In this case, the matrix A becomes the identity and SP (x̂) can be separated into independent
subproblems SPts(x̂).

However, if αi < βi, the expression above for bits depends on the values of the z-variables
for time periods 1, . . . , t − 1. This fact makes SP (x̂) nonseparable; we can adopt several solu-
tion strategies in this case. The first one would be to solve the SP (x̂) as a nonlinear problem
using a general-purpose methodology, but this could be difficult because of the large size of
the subproblem for real cases. The second one consists of transforming the problem into a new
one that enables to solve each SPts(x̂) separately (by using the methodology described in the
next section). This simplification can be done in two different ways. Since subproblem variables
related to consecutive time periods are coupled, the first simplification consists of executing a
relaxed-sequential algorithm which solves the t-time period subproblems by incorporating the
solution provided by the previous periods 1, . . . , t − 1. This iterative approach may not provide
the optimal solution to the subproblem, but it is hoped that the accuracy of the dual variables will
introduce violated Benders’ cuts until a certain level of accuracy is achieved. In practice, Ben-
ders’ cuts provided by a pseudooptimal solution of the subproblem work well, except for the last
few iterations. The second strategy consists of redefining αi as αi = βi, so that the subproblem
separability is preserved. With this assumption, we always consider the deterioration over time,
whether the plant is being used or not. Obviously, other average rates of deterioration can be
employed.

3. 2. Solving SPSPSPtststs(x̂xx)

The SPts(x̂) (and its dual) can be solved by means of the Kuhn–Tucker optimality conditions
(KTOCs) associated with the subproblem. Detailed proof of all the results regarding this subprob-
lem can be found in Salmerón [32]. Actually, the optimal solution is similar to the well-known
merit order loading rule. The main difference is that, because of the penalty for failing to meet
the demand, the plants should be dispatched in order of marginal running costs until this strategy
exceeds the marginal penalty for failing to meet the load.

The solution [for a given SPts(x̂)] is obtained as follows:

• Assume Qz
1ts ≤ · · · ≤ Qz

its ≤ · · · ≤ Qz
Its.

• Let G(τ) = dW (τ)/dτ be (the negative of) the marginal penalty function,
and let Brts =

∑r
i=1 bits be the cumulative available capacity of plants i =

1, . . . , r.
• The optimal solution for the primal variables is

zits =




bits, for i ≤ r,
k, for i = r + 1,
0, for i > r,

where r is the plant where the marginal operating cost exceeds the marginal
penalty; i.e., r satisfies:

Qz
rts ≤ −G(Brts) but Qz

r+1,ts > −G(Br+1,ts).

The load supplied by the marginal plant is k = G−1(−Qz
r+1,ts)−Brts, which

is exactly the capacity level for plant r + 1 whose penalty equals the cost of
increasing the power output.
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The dual variables take the following optimal values:

µits =
{

Qz
r+1,ts − Qz

its, for i ≤ r
0, for i > r

}
and uits =

{
0, for i ≤ r
Qz

its − Qz
r+1,ts, for i > r

}
.

The dual variables have a physical interpretation, as mentioned in [7]. For instance, µits > 0 for
i ≤ r represents the cost of reducing one unit of the available capacity in plant i, to be replaced by
one unit from the marginal plant r +1 (the last dispatched). On the other hand, uits > 0 for i > r
indicates how the nondispatched plant i would increase system costs if it had to be dispatched.

REMARK 1: If the index r does not exist or the proposed solution does not satisfy
∑r+1

i=1 zits ≥
lts, it is necessary to use the merit order rule until the first plant r′ satisfying 0 ≤ zr′ts =
lts − Br′−1,ts ≤ br′ts.

REMARK 2: Other special degenerate cases exist (e.g., when the marginal plant r+1 dispatches
also its maximum capacity); see [32] for details.

REMARK 3: In Section 2.2, we mentioned that the operating cost function for a given plant i
could be represented by a number of segments. This leads to a piecewise generation cost function
at each plant i, in terms of the increasing heat rate costs:

Qz
its,1 ≤ · · · ≤ Qz

its,Ki
,

instead of a unique Qz
its. However, this does not modify the way we obtain the solution of the

subproblem for period (t, s), which in this case becomes

SPts(x̂): min
z1ts,1,...,zIts,KI

∑
i

Ki∑
k=1

Qz
its,kzits,k + Wts

(∑
i

zits

)

s.t.




zits ≤ bits, ∀i (µits),

zits −∑Ki

k=1 zits,k = 0, ∀i,∑
i zits ≤ mts,∑
i zits ≥ lts,

0 ≤ zits,k ≤ z̄its,k, ∀i, k.

Note that the first, second and last constraints can be combined into a new one:

0 ≤ zits,k ≤ b′
its,k, ∀i (µits,k),

where

b′
its,k =

{
0, if

∑k
k′=1 z̄its,k′ > bits,

min
{

z̄its,k, bits −∑k−1
k′=1 z̄its,k′

}
, if

∑k
k′=1 z̄its,k′ ≤ bits.

Thus the total capacity bits at plant i is divided into the different efficiency ranges k for the plant.
Finally, for every pair (t, s), we can sort the coefficients Qits,k to obtain the solution to SPts(x̂)

and its dual. Moreover, since for a fixed plant i the heat rate costs are ordered, it is guaranteed
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that zits,k > 0 ⇒ zits,k′ = z̄its,k′ ,∀k′ < k, which preserves the consistency of the solution
zits =

∑Ki

k=1 zits,k.

3. 3. Master Problem

ECEM can be represented by the following equivalent model with an infinite number of con-
straints:

min
x∈X ,x0∈R

x0

s.t.

{
x0 ≥ minz∈Z Qxx + Qzz + R(z) + µ(Bx + Az − b0), ∀µ ≥ 0,
minz∈Z λ(Bx + Az − b0) ≤ 0, ∀λ ∈ Λ,

(11)

where µ ∈ <I·T ·S and Λ = {λ ∈ <I·T ·S such that λ ≥ 0,
∑T

t=1
∑St

s=1
∑

i λits = 1}.
To solve this problem, the standard strategy is to relax the problem to a finite set of selected

µ and λ, µ1, . . . , µK , and λ1, . . . , λL, where K and L are the cuts considered at each iteration.
This model is usually referred to as the ‘‘Master Problem’’:

MP : min
x∈X ,x0∈R

x0

s.t.

{
x0 − L∗(µk, x) ≥ 0, ∀k = 1, . . . , K,
L∗(λl, x) ≤ 0, ∀l = 1, . . . , L,

where L∗(µk, x) = (Qx + µkB)x + minz∈Z{(Qz + µkA)z + R(z)} − µkb0 and L∗(λl, x) =
λlBx + minz∈Z{λlAz} − λlb0.

The first constraints k = 1, . . . , K are the so-called ‘‘type-1 cuts’’ or Benders optimality cuts,
and the next l = 1, . . . , L are the ‘‘type-2 cuts’’ or Benders feasibility cuts.

Valid optimality cuts are provided by the dual solution of SP (x̂), if feasible. If K−1 optimality
cuts have been introduced, the new optimality cut (violated by the previous MP solution) has the
form:

x0 ≥ (Qx + µKB)x + (Qz + µKA)ẑK + R(ẑ),

where ẑK and µK are the optimal primal and dual solutions to SP (x̂) at iteration K, respectively.
In the case that ẑK is not proved optimal due to αi 6= βi for some i (as discussed in Section 3.1),
then the new ẑK is defined as the optimum of

min
z∈Z

{(Qz + µkA)z + R(z)}

The solution to this model can be easily obtained, given that this is a separable problem that
falls into the category of SP (x) (actually it is a simpler model since the constraints associated
with complicated variables are not considered). However, we cannot guarantee that following this
procedure provides an active type-1 cut in the master problem.

Now we deal with the case where SP (x̂) is infeasible. We check period t̃ and subperiod s̃ such
that SPt̃s̃ is infeasible. Since the only condition that may be violated is

∑
i zit̃s̃ ≥ lt̃s̃, it can be

proved that, by imposing
∑

i bit̃s̃ ≥ lt̃s̃, we introduce a violated feasibility cut into the MP (or at
least, a pseudofeasibility cut if αi 6= βi and SP (x̂) is not solved exactly). This cut has the form∑

i

ait̃s̃Lt̃s̃(x̃it̃s̃ + b0
i ) ≥ lt̃s̃, (12)
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because feasibility in SPt̃s̃ is achieved if and only if
∑

i bit̃s̃ ≥ lt̃s̃. It can be shown (see [32])
that if αi = βi, then (12) is an actual type-2 cut for the MP, and it is associated with the following
vector λ in (11):

λits =
{

1/I, if t = t̃ and s = s̃
0, otherwise

}

3. 4. Considerations for Solving the Master Problem

The MP is a linear problem with I ·T +1 variables, x0 and x = (x11, . . . , xIT ). The constraints
x ∈ X and the cuts generated are the constraints included in the MP, which is solved via the dual
simplex algorithm (Bazaraa and Jarvis [3]).

The main difficulty is to handle this problem when the number of cuts increases. A first sim-
plification consists of selecting a few optimality cuts to be removed from the model (while still
preserving the algorithm convergence) in order to control the size of the MP.

We have tested two possible ways for removing non-active constraints to create a ‘‘simplified
MP’’ once MPp (MP at iteration p) has been solved. The first way is to remove all non-active
optimality constraints before solving MPp+1; we call this ‘‘Total Elimination.’’ The second way
is to remove only one nonactive constraint after solving MPp (if such a constraint exists); we
call this ‘‘Partial Elimination.’’ Note that in Partial Elimination, since at most one optimality
cut is deleted, the number of optimality cuts is nondecreasing. In practice, the improvement in
performance (total time until optimality) by using either procedure is more than 50% (even for
small size problems) compared with keeping all the cuts.

There exist cases for which it is possible to improve the run time of the algorithm by taking into
account knowledge about the formulation of feasibility cuts. In case that αi = βi∀i, it is clear
(see Section 3.3) that at most T · S feasibility cuts defined in (12) will be necessary. Since the
formulation of these cuts depends only on βi, aits, and lts, the MP can be started directly with
some (or all) chosen cuts (i.e., for some or all periods and subperiods).

The advantage of introducing all possible feasibility cuts from the start is that this guarantees
feasibility for all subsequent Benders’ subproblems. Unfortunately, this method only improves
the performance for small problems. On the other hand, if T · S is large, few of these cuts will
ever be active. In this case, it would be better to add only the necessary cuts by finding infeasible
SPts(x̂). An intermediate strategy is introducing a reduced subset of these cuts in advance. The
choice may be, for example, to choose for each period t̃ the cut associated with the subperiod s̃
with the highest expected demand:

s̃ = argmax{lt̃s : s = 1, . . . , S}.

Usually, it will be necessary to include other feasibility cuts while running the algorithm, but at
least it is very likely that most of the selected cuts will be binding at the optimal solution.

4. COMPUTATIONAL RESULTS

In this section we present computational experience on the use of GBD for ECEM and the
algorithms we have developed to solve the resultant submodels. We have solved ECEM using a
Pentium 100 MHz computer with 8 Mb of RAM; the algorithm was coded in Fortran 77. Besides
the Benders’ framework, we have also solved the model for smaller problems using the MINOS
code as a benchmarking tool.
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The problems that we have tested have been randomly generated according to the following
characteristics:

• The number of plants I , periods T , and subperiods per period S are fixed in
advance for each case.

• The distribution for random demands in each subperiodDts have been randomly
chosen from the following list: (a) uniform, (b) triangular, and (c) normal. In
those cases where the problem size allows us to compare with MINOS, only
(a) or (b) has been selected.

• The penalty function Pts(τts, dts) considered for each (t, s) is

Pts(τts, dts) = kts(dts − τts), ∀s = 1, . . . , St,∀t = 1, . . . , T,

where kts is also a positive and random real number.

This function leads to function G(τ) (see Section 3.2) whose inverse must be
calculated to solve the associated subproblems. In this case (dropping subscripts
t and s), since

W (τ) = k

(
ED[D] − τ

∫ ∞

τ

f(v) dv −
∫ τ

0
vf(v) dv

)
,

we can obtain the partial derivatives of W as

∂W (τ)
∂zi

= G(τ) = −k

∫ ∞

τ

f(v) dv = −k Pr{D > τ}, ∀i = 1, . . . , I.

This function is well known for a variety of probability distributions, so we can
easily obtain G and its inverse at a given value of τ .

• The remaining costs and parameters of the matrix and rhs are also random
data, following certain consistency rules according to the demand, a number of
candidate plants, planning time, etc.

• For the availability coefficient aits, we have noted that it has a strong influence
on the algorithm performance. If it is ignored (i.e., assuming aits = 1 for all
i, t, s) the problem is much easier to solve than if aits < 1. Some problems will
have all the coefficients equal to 1. For others, we will assign aits according to
a uniform distribution on the interval (0.6, 1).

Table 1. Problem dimensions.

Problem I T S per period Linear vars. Nonlin. vars. Constr. aits < 1?

D5 5 5 5 25 125 180 Yes
D10 5 10 10 50 500 710 Yes
D11 5 11 8 55 440 627 No
D12 8 12 10 96 960 1212 No
D20 9 20 13 180 2340 2880 Yes
D32 9 32 20 288 5760 7072 Yes
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Table 2. Problems with α = β, CPU time for GBD method.

GBD
Problem E < 5% E < 1% E < 0.1% E < 0.01% Best (B)

D5 3′′ 5′′ 9′′ 15′′ 116,350
D10 13′′ 24′′ 38′′ 1′5′′ 402,568
D11 3′′ 7′′ 12′′ 15′′ 335,781
D12 15′′ 22′′ 51′′ 1′15′′ 465,726
D20 1′16′′ 2′52′′ 9′36′′ 17′21′′ 945,389
D32 6′21′′ 15′57′′ 1h4′ 2h10′ 2,128,190

A brief description of the tested problems may be found in Table 1. Tables 2 and 3 concern
problems where αi = βi and the algorithm’s convergence is guaranteed. Table 2 shows the
computational time using a GBD method to achieve a solution with a maximum error equal to
p%. In this table, the error is defined as E = [(UB − LB)/LB] · 100 < p (where UB and
LB are the upper and lower bounds provided at each iteration). The algorithm is stopped when
E < p = 0.01%, and the best near-optimal solution is referred to as ‘‘Best’’ (B). This solution
permits us to assess the actual time to achieve an error equal to p% (with respect to Best, not the
gap provided dynamically by the Benders’ algorithm); see Table 3. Also, we use Best to compare
GBD with MINOS.

Now, let us consider the same problems but including some noise on the deterioration coeffi-
cients, so that αi < βi for a few plant types. We implement the relaxed-sequential algorithm to
solve subproblems SP (x̂) by incorporating the solution of previous time periods into the rhs of
subsequent subproblems. The results (see Table 4) show that convergence is not guaranteed, and,
for the first small problems, the solution provided by MINOS is better than the one provided by
GBD without optimally solved subproblems. The necessary time to obtain a solution with p%
error is evaluated according to the best known solution (B or M). Note that the matrix A is more
dense here than in the other cases since αi 6= βi.

Figures 1–3 plot some of the results obtained with GBD for problem D20. Figure 1 depicts the
convergence of the lower and upper bounds in the Benders’ algorithm.

In Figure 2, the number of optimality and feasibility cuts of the MP for each iteration is
represented. We can see that, for the first iterations, only feasibility cuts are included (except the
first optimality cut provided by the initial feasible solution). After some iterations, optimality and
feasibility cuts are included. Eventually, only optimality cuts are necessary. For case D20 the
necessary number of feasibility cuts at the optimal solution was 56. Note that before running the
case we knew the number and formulation of all possible feasibility cuts (in total 20 · 13 = 260).

Table 3. Problems with α = β.a

GBD MINOS
Prob E < 5% E < 1% E < 0.1% E < 0.01% E < 5% E < 1% E < 0.1% Best (M)

D5 2′′ 4′′ 6′′ 11′′ 3′′ 4′′ 5′′ 116,353
D10 9′′ 20′′ 27′′ 51′′ 25′′ 30′′ 40′′ 402,580
D11 2′′ 6′′ 10′′ 14′′ 11′′ 17′′ 20′′ 336,108
D12 7′′ 18′′ 47′′ 1′15′′ No soln.
D20 58′′ 1′45′′ 6′15′′ 12′51′′ No soln.
D32 4′21′′ 10′54′′ 33′52′′ 1h10′ No soln.
a Comparing GBD with MINOS given the Best (B) solution achieved. Best (M) is the best solution obtained
with MINOS.
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Table 4. Problems with α 6= β.a

GBD MINOS
Prob E < 10% E < 5% E < 1% Best (B) (B)-Gap E < 10% E < 5% Best (M)

D5 4′′ 5′′ 7′′ 116,421 2.49 3′′ 3′′ 115,221
D10 1′15′′ 1′20′′ 2′0′′ 385,217 1.49 No No 433,499b

D11 10′′ 15′′ 25′′ 332,736 0.15 30′′ No 349,536b

D12 20′′ 35′′ 1′10′′ 459,482 0.27 No soln
D20 9′55′′ 11′27′′ 18′50′′ 901,370 0.74 No soln
D32 6′45′′ 13′0′′ 31′15′′ 2,010,192 0.41 No soln
a Comparing GBD with MINOS for the best solution found (B or M). The (B)-Gap is provided by the
Benders’ algorithm (%).
b MINOS provided a feasible solution but crashed before ending the optimization.

This example shows that it would not be a good strategy to include all these constraints from the
beginning since most of them are unnecessary. However, we included 20 out of them (one per
period, corresponding to the subperiod with highest expected demand) to help the algorithm in
finding the necessary type-2 cuts. Regarding optimality cuts, they are updated in a list, so that
when a new optimality cut must be considered, it replaces the first nonactive optimality cut of
the previous iteration (if it exists; otherwise the list size is increased). This allow us to perform a
large number of iterations and control the dimension of the MP.

Figure 3 depicts the cpu time to run MP, SP, and the whole algorithm (including other features
such as data processing). The first iterations are not time-consuming since SP (x̂) is infeasible.
When SP (x̂) becomes feasible, the necessary time to solve it is similar for all iterations because
the number of subproblems SPts(x̂), and computational operations to be performed, is always
the same. The time spent on the solving the MP is close to a linear function because of the
cut-elimination scheme used.

Finally, Figure 4 shows a comparison of convergence rates between MINOS and GBD for
Problem D11.

5. CONCLUSIONS

We have formulated a stochastic capacity-expansion model. It takes into account particular
features of electric systems such as deterioration and availability over time. Deterioration affects

Figure 1. Benders’ performance for problem D20.
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Figure 2. Benders’ cuts for problem D20.

the generation units (turbines or thermal groups), having a progressive effect on the generation
capacity. Availability is a random variable that depends on external factors (such as water inflow,
sunlight hours, shutdown needs for maintenance, and so on) which can be estimated with historical
data.

The most important aspect considered in this work is the treatment of the demand uncertainty.
We deal with this issue by creating a risk-based function as part of the model’s objective function.

Figure 3. CPU time for problem D20.
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Figure 4. GBD and MINOS for problem D11.

We have discussed our model’s goal and potential value, and have compared the formulation
to others in the existing literature. We focused part of the discussion on pointing out the benefits
and drawbacks in relation to standard robust optimization models.

A Benders’ decomposition algorithm to solve the model has been implemented. The Benders’
subproblem is highly nonlinear, but we can exploit its structure and solve it explicitly. The nec-
essary calculations depend linearly on the number of plants, periods and subperiods. This fact
improves the algorithm performance compared with other methods.

Several small cases have permitted comparison with the use of standard packages like MINOS.
In our computational experience the proposed techniques have yielded good results which suggest
retaining this scheme in future extensions of the work.

The methodology can be extended to other capacity-expansion models incorporating other
sources of uncertainty. A more realistic approach considering a discrete set of possible values for
the capacity to be installed is part of ongoing research. The idea is to preserve the advantages of the
subproblem structure, although the master problem becomes a more complicated mixed-integer
model. Since the addressed Benders’ subproblem has a structure that appears in other models, the
proposed methodology may also be used in other applications of interest.
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