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Abstract Optimality functions pioneered by E. Polak characterize stationary

points, quantify the degree with which a point fails to be stationary, and play

central roles in algorithm development. For optimization problems requiring

approximations, optimality functions can be used to ensure consistency in ap-

proximations, with the consequence that optimal and stationary points of the

approximate problems indeed are approximately optimal and stationary for

an original problem. In this paper, we review the framework and illustrate

its application to nonlinear programming and other areas. Moreover, we in-

troduce lopsided convergence of bifunctions on metric spaces and show that
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this notion of convergence is instrumental in establishing consistency of ap-

proximations. Lopsided convergence also leads to further characterizations of

stationary points under perturbations and approximations.
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Dedication. We dedicate this paper to our long-time friend, colleague, col-

laborator, and advisor Elijah (Lucien) Polak in honor of his 85th birthday. We

wish him fair weather and following snow conditions.

1 Introduction

It is well-known that optimality conditions are central to both theoretical and

computational advances in optimization. They were developed over centuries

starting with the pioneering works of Bishop N. Oresme (14th century) and P.

de Fermat (17th century), and brought to their modern form by Karush, John,

Kuhn, Tucker, Polak, Mangasarian, Fromowitz, and many others. In this pa-

per, we discuss quantification of first-order necessary optimality conditions in

terms of optimality functions as developed by E. Polak and co-authors; see [16]

for numerous examples in nonlinear programming, semi-infinite optimization,

and optimal control as well as [19,18,8,13] for recent applications in stochastic

and semi-infinite programming, nonsmooth optimization, and control of un-

certain systems.
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It is apparent that how “far” a set of equalities, inequalities, and inclusions

are from being satisfied can be quantified in numerous ways; see for example

[11] for a survey as well as early work in [22]. The framework of optimality

functions, as laid out in [16, Section 3.3] and references therein, stipulates

axiomatic requirements that such quantifications should satisfy to facilitate

the study and computation of approximate stationary points. Specifically, for

an optimization problem that can only be “solved” through the solution of

an approximating problem, one seeks to determine whether a near-stationary

point of the approximating problem is an approximate stationary point of

the original problem. The requirements on optimality functions exactly ensure

this property. Moreover, there is ample empirical indications and some the-

oretical evidence (see for example [18,21,20,12]) that computational benefits

accrue from approximately solving a sequence of approximating problems with

increasing fidelity, each warm-started with the previously obtained point. Op-

timality functions are tools to carry out such a scheme and give rise to adaptive

rules for determining the timing of switches to higher-fidelity approximations.

Consequently, the framework of optimality functions provides a pathway to

constructing implementable algorithms consisting only of a finite number of

arithmetic operations and function evaluations1.

We here use the terminology “optimality functions,” but this does not ex-

clude the consideration of many familiar “residual functions” and “gap func-

1 The distinction between implementable and conceptual algorithms appears to be due

to E. Polak [15,14].
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tions;” see [11] for examples. In fact, after minor adjustments many of these

functions can be viewed as optimality functions. Our examples are simply

illustrations.

In this paper, we review the notion of optimality functions and illustrate

the vast number of possibilities through several examples. In an application to

nonlinear programming, we establish the convergence of a primal interior point

method in the absence of constraint qualifications and convexity assumptions.

We show that lopsided convergence of bifunctions [2,9,10] is a useful tool for

analyzing optimality functions and the associated stationary points. In par-

ticular, we prove that lopsided convergence of certain bifunctions, defining

optimality functions of approximating problems, to a bifunction associated

with an optimality function of the original problem, guarantees the axiomatic

requirements on optimality functions. Using lopsided convergence, we provide

results on existence of stationary points as well as characterizations of sta-

tionary points under perturbations and approximations. In the process, we

extend the primary definitions and results on lopsided convergence in [9,10]

from finite dimensions to metric spaces.

The paper is organized as follows. Section 2 defines optimality functions

and gives several examples. Section 3 introduces approximating optimization

problems, epi-convergence, and consistent approximations as defined by corre-

sponding optimality functions, and demonstrates the implication for algorith-

mic development. Section 4 develops lopsided convergence for metric spaces.
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The paper ends by utilizing lopsided convergence in the context of optimality

functions.

2 Optimality Functions: Definitions and Examples

We consider optimization problems defined on a metric space (X , dX ), where

C ⊂ X is a nonempty feasible set and f : C → IR an objective function, i.e.,

problems of the form

minimize f(x) subject to x ∈ C ⊂ X .

The function f might be defined and finite-valued outside C, but that will be

immaterial to the following treatment. Thus, the notation f : C → IR speci-

fies the components f and C of optimization problems of this form, without

implying that f is necessarily finite only on C.

We denote by infC f ∈ [−∞,∞[ and argminC f ⊂ C the corresponding

optimal value and set of optimal points, respectively, the latter possibly being

empty. For ε ≥ 0, the set of ε-optimal solutions is denoted by

ε- argminC f := {x ∈ C : f(x) ≤ infC f + ε} .

As usually, we say that x∗ ∈ X is locally optimal (for f : C → IR) if and only

if there exists a δ > 0 such that f(x∗) ≤ f(x) for all x ∈ C with dX (x, x∗) ≤ δ.

Throughout the paper, we have that C is a nonempty subset of X and

IR− := [−∞, 0]. We characterize stationary points in terms of optimality func-

tions as defined next.
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Definition 2.1 (optimality function) An upper semicontinuous function

θ : X → IR− is an optimality function for f : C → IR if and only if C ⊂ X ⊂ X

and

x ∈ C locally optimal for f : C → IR =⇒ θ(x) = 0.

The corresponding sets of stationary points and quasi-stationary points are

SC,θ := {x ∈ C : θ(x) = 0} and Qθ := {x ∈ X : θ(x) = 0}, respectively.

A series of examples help illustrate the concept; see also §5 and [16,19,18,

8,13]. For related “residual functions” see for example [11].

Example 2.1 (constrained optimization over convex set) Consider the case

X = IRn, C ⊂ X closed and convex, and f : C → IR continuously differ-

entiable. Then, the function

θ(x) = min
y∈C

{
⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2

}
, x ∈ X = C,

satisfies the requirements of Definition 2.1 and is therefore an optimality func-

tion for f : C → IR. If C = IRn, then the expression simplifies to

θ(x) = −1

2
∥∇f(x)∥2, (1)

which, of course, corresponds to the classical stationarity condition∇f(x) = 0.

Example 2.2 (nonlinear programming) Consider the case X = IRn, constraint

set C = {x ∈ IRn : fj(x) ≤ 0, j = 1, ..., q}, and f , f1, ..., fq real-valued and

continuously differentiable on IRn. Let ψ(x) = maxj=1,...,q fj(x) and constraint
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violation ψ+(x) = max{0, ψ(x)}. Then, the function θ : IRn → IR− given by

θ(x) = min
y∈IRn

max

{
−ψ+(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2, (2)

max
j=1,...,q

{fj(x)− ψ(x)+ + ⟨∇fj(x), y − x⟩}+ 1

2
∥y − x∥2

}

satisfies the requirements of Definition 2.1 and is therefore an optimality func-

tion for f : C → IR. The condition θ(x) = 0 is equivalent to the Fritz-John

conditions in the sense that when x ∈ C,

θ(x) = 0 ⇐⇒ there exist µ0, µ1, ..., µq ≥ 0, with

q∑
j=0

µj = 1,

such that µ0∇f(x) +
q∑

j=1

µj∇fj(x) = 0,

q∑
j=1

µjfj(x) = 0.

However, since θ is defined beyond C, it might also be associated with quasi-

stationary points outside C. We refer to [16, Theorem 2.2.8] for proofs and

further discussion.

Example 2.3 (minimax problem) Consider the case X = C = IRn and objec-

tive f(x) = maxz∈Z φ(x, z), x ∈ IRn, where φ : IRn × IRp → IR is continuous,

the gradient ∇xφ : IRn × IRp → IRn with respect to the first argument exists

and is continuous in both arguments, and Z is a compact subset of IRp. Then,

the function θ : IRn → IR− given by

θ(x) = min
y∈IRn

max
z∈Z

{
φ(x, z)− f(x) + ⟨∇xφ(x, z), y − x⟩+ 1

2
∥y − x∥2

}
(3)

satisfies the requirements of Definition 2.1 and is therefore an optimality func-

tion for f : IRn → IR. Moreover, θ(x) = 0 if and only if 0 ∈ ∂f(x) (the

subdifferential of f); see [16, Theorem 3.1.6] for details.
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We note that the upper semicontinuity of optimality functions ensures the

computationally significant property that if a sequence xν → x and θ(xν)↗0,

for example with {xν} obtained as approximate solutions of a corresponding

optimization problem with gradually smaller tolerance, then θ(x) = 0 and

x ∈ Qθ, i.e., x is quasi-stationary. Although not discussed further here, the

optimality functions in Examples 1-3, and others, are also instrumental in

constructing descent directions for the respective optimization problems; see

[16] for details.

3 Approximations and Implementable Algorithms

Problems involving functions defined in terms of integrals or optimization

problems (as the maximization in Example 2.3), functions defined on infinite-

dimensional spaces, and/or feasible sets defined by an infinite number of con-

straints almost always require approximations. For example, one might resort

to an approximating space X ν ⊂ X with points characterized by a finite num-

ber of parameters. Here, the superscript ν indicates that we might consider

a family of such approximating spaces, ν ∈ IN := {1, 2, ..., }, with usually

∪ν∈INX ν dense in X . A feasible set Cν ⊂ X ν may be an approximation of

C or simply Cν = C ∩ X ν ; see §5 for a concrete illustration in the area of

optimal control. A function fν : Cν → IR could be a tractable approximation

of f : C → IR. An example helps illustrate the situation.

Example 3.1 (minimax problem) Continuing from Example 2.3, suppose that

fν(x) = maxz∈Zν φ(x, z), x ∈ IRn, with Zν ⊂ Z consists of a finite number of
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points. Clearly, fν is a (lower bounding) approximation of f = maxz∈Z φ(·, z)

as defined above. The function fν : IRn → IR can be associated with the

optimality function θν : IRn → IR− given by

θν(x) = min
y∈IRn

max
z∈Zν

{
φ(x, z)− fν(x) + ⟨∇xφ(x, z), y − x⟩+ 1

2
∥y − x∥2

}
,

which, as formalized in §5, approximates the optimality function θ in (3). We

note that θν can be evaluated in finite time by solving a convex quadratic

program with linear constraints; see [16, Theorem 2.1.6].

We next examine approximating functions fν : Cν → IR and review the

notion of epi-convergence, which provides a path to establishing that opti-

mal points of the corresponding approximating problems indeed approximate

optimal points of an original problem. To establish the analogous results for

stationary points, we turn to optimality functions and slightly extend the ap-

proach in [16, Section 3.3] by considering arbitrary metric spaces and other

minor generalizations. The section ends with a result that facilitates the de-

velopment of implementable algorithms for the minimization of f : C → IR,

which is then illustrated with the construction of an interior point method.

Throughout the paper, we have that Cν is a nonempty subset of X .

3.1 Epi-Convergence

We recall that epi-convergence is the key property when examining approxi-

mations of optimization problems; see [1,4,17] for comprehensive treatments.
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Definition 3.1 (epi-convergence) The functions {fν : Cν → IR}ν∈IN epi-

converge to f : C → IR if and only if

(i) for every sequence xν → x ∈ X , with xν ∈ Cν , we have liminf fν(xν)

≥ f(x) if x ∈ C and fν(xν) → ∞ otherwise;

(ii) for every x ∈ C, there exists a sequence {xν}ν∈IN , with xν ∈ Cν , such

that xν → x and limsup fν(xν) ≤ f(x).

A main consequence of epi-convergence is the following well-known result.

Theorem 3.1 (convergence of minimizers) Suppose that {fν : Cν → IR}ν∈IN

epi-converges to f : C → IR. Then, limsup (infCν fν) ≤ infC f .

Moreover, if xk ∈ argminCνk f
νk and xk → x for some increasing subse-

quence {ν1, ν2, ...} ⊂ IN , then x ∈ argminC f and limk→∞ infCνk fνk = infC f .

Proof. The second part is essentially in [3, Theorem 2.5], except for the finite-

valued setting. The first and second parts are in [9, Theorem 2.6] for the IRn

case. The proof carries over essentially verbatim. ⊓⊔

A strengthening of epi-convergence ensures the convergence of infima.

Definition 3.2 (tight epi-convergence) The functions {fν : Cν → IR}ν∈IN

epi-converge tightly to f : C → IR if and only if fν epi-converge to f and for

all ε > 0, there exist a compact set Bε ⊂ X and an integer νε such that

infCν∩Bε f
ν ≤ infCν fν + ε for all ν ≥ νε.

Theorem 3.2 (convergence of infima) Suppose that {fν : Cν → IR}ν∈IN epi-

converges to f : C → IR and infC f is finite. Then, they epi-converge tightly
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(i) if and only if infCν fν → infC f .

(ii) if and only if there exists a sequence εν ↘0 such that εν- argminCν fν

set-converges2 to argminC f .

Proof. Again, the proof in [9, Theorem 2.8] can be immediately translated to

the present setting. ⊓⊔

3.2 Consistent Approximations

The convergence of optimal points is fundamental, but an analogous result

for stationary points is also important, especially for nonconvex problems.

Optimality functions play a central role in the development of such results.

Combining epi-convergence with a limiting property for optimality functions

lead to consistent approximations in the sense of E. Polak as defined next. We

note that our definition is an extension from that in [16, Section 3.3] as we

consider arbitrary metric spaces and not only normed linear spaces.

Definition 3.3 (consistent approximations) The function and optimality func-

tion pairs {(fν : Cν → IR, θν : Xν → IR−)}ν∈IN are weakly consistent

approximations of a pair (f : C → IR, θ : X → IR−) if and only if

(i) {fν : Cν → IR}ν∈IN epi-converge to f : C → IR and

2 We recall that the outer limit of a sequence of sets {Aν}ν∈IN , denoted by limsupAν ,

is the collection of points y to which a subsequence of {yν}ν∈IN , with yν ∈ Aν , converges.

The inner limit, denoted by liminf Aν , is the points to which a sequence of {yν}ν∈IN , with

yν ∈ Aν , converges. If both limits exist and are identical, we say that the set is the Painlevé-

Kuratowski limit of {Aν}ν∈IN and that Aν set-converges to this set; see [6,17].
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(ii) for every xν → x ∈ X , with xν ∈ Xν , limsup θν(xν) ≤ θ(x) if x ∈ X,

and θν(xν) → −∞ otherwise.

If in addition θν(x) < 0 for all x ∈ Xν\Cν and ν, then the pairs are consistent

approximations of (f : C → IR, θ : X → IR−).

We recall that the epigraph of f : C → IR is defined by

epi f := {(x, x0) ∈ X × IR : x ∈ C, f(x) ≤ x0}.

Since epi-convergence is equivalent to the set-convergence3 of the correspond-

ing epigraphs, we have that Definition 3.3(i) amounts to epi fν set-converges

to epi f . Similarly, the hypograph of f : C → IR is defined by

hypo f := {(x, x0) ∈ X × IR : x ∈ C, f(x) ≥ x0}.

In view of the definition of set-convergence, we therefore have that Definition

3.3(ii) amounts to limsup hypo θν ⊂ hypo θ.

The additional condition in Definition 3.3 removing “weakly” can be viewed

as a constraint qualification as it eliminates the possibility of quasi-stationary

points that are not stationary point for fν : Cν → IR, which might occur if

the domain of θν is not restricted to Cν or other conditions are included.

The main consequence of consistency is given next.

Theorem 3.3 (convergence of stationary points) Suppose that the pairs

{(fν : Cν → IR, θν : Xν → IR−)}ν∈IN are weakly consistent approximations

3 Here, we consider set-convergence of subsets of X×IR, which is equipped with the metric

ρ((x, x0), (x′, x′
0)) = max{dX (x, x′), |x0 − x′

0|} for x, x′ ∈ X and x0, x′
0 ∈ IR.
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of (f : C → IR, θ : X → IR−) and {xν}ν∈IN , xν ∈ Xν , is a sequence satisfying

θν(xν) ≥ −εν for all ν, with εν ≥ 0 and εν → 0.

Then, every cluster point x of {xν}ν∈IN satisfies x ∈ Qθ, i.e., θ(x) = 0.

If in addition the pairs are consistent approximations, εν = 0 for suffi-

ciently large ν, and {fν(xν)}ν∈IN is bounded from above, then x ∈ SC,θ.

Proof. Suppose that xν → x. Since −εν ≤ θν(xν) for all ν, x ∈ X. Moreover,

0 ≤ limsup θν(xν) ≤ θ(x) ≤ 0 and the first conclusion follows. By the definition

of consistent approximations, θν(xν) = 0 for sufficiently large ν and therefore

xν ∈ Cν for such ν. The epi-convergence of fν : Cν → IR to f : C → IR

implies that liminf fν(xν) ≥ f(x) if x ∈ C and fν(xν) → ∞ if x ̸∈ C. The

latter possibility is ruled out by assumption and therefore x ∈ C. ⊓⊔

3.3 Algorithms

Theorem 3.3 provides a direct path to the construction of an implementable

algorithm for minimizing f : C → IR. Specifically, construct a family of ap-

proximations {fν : Cν → IR} and a corresponding collection of optimality

functions {θν : Xν → IR−}, and then implement the following algorithm.

Algorithm.

1. Select {εν}ν∈IN , with εν ≥ 0 and εν → 0. Initiate the iteration counter by

setting ν = 1.
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2. Obtain an approximate (quasi-)stationary point xν for fν : Cν → IR that

satisfies θν(xν) ≥ −εν .

3. Replace ν by ν + 1 and go to Step 2.

If the pairs {(fν : Cν → IR, θν : Xν → IR−)}ν∈IN are weakly consistent

approximations of (f : C → IR, θ : X → IR−), then every cluster point

of the constructed sequence {xν} will be quasi-stationary for f : C → IR

by Theorem 3.3. The algorithm is fully implementable under the practically

reasonable assumption that one can obtain an approximate quasi-stationary

point of fν : Cν → IR in finite time.

Example 3.2 (nonlinear programming) Continuing from Example 2.2, consider

the standard logarithmic barrier approximation

fν(x) = f(x)−tν
q∑

j=1

log[−fj(x)], x ∈ Cν = {x ∈ IRn : fj(x) < 0, j = 1, ..., q},

where tν ↘0. We first establish epi-convergence of fν : Cν → IR to f : C → IR.

Suppose that xν → x, with xν ∈ Cν . Since Cν ⊂ C and C is closed, x ∈ C.

Let ε > 0. There exists a νε such that −tν log[−fj(xν)] > −ε/q for all j with

log[−fj(xν)] ≥ 0 and ν ≥ νε. Hence, f
ν(xν) ≥ f(xν)−ε for all ν ≥ νε. In view

of the continuity of f and the fact that ε is arbitrary, we conclude that Defini-

tion 3.1(i) is satisfied. Next, let x ∈ C. There exists a sequence {xν}ν∈IN such

that xν ∈ Cν tends to x sufficiently slowly such that tν
∑q

j=1 log[−fj(xν)] → 0.

Consequently, fν(xν) → f(x), which satisfies Definition 3.1(ii). Therefore,

fν : Cν → IR epi-converge to f : C → IR. We next analyze optimality func-

tions. Using a minmax theorem, one can show that (2) is equivalently expressed
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as

θ(x) = − min
µ∈M

{
µ0ψ+(x) +

q∑
j=1

µj [ψ+(x)− fj(x)] (4)

+
1

2

∥∥∥∥∥µ0∇f(x) +
q∑

j=1

µj∇fj(x)

∥∥∥∥∥
2}
, x ∈ X = IRn

where M = {(µ0, µ1, ..., µq) : µj ≥ 0, j = 0, 1, ..., q,
∑q

j=0 µj = 1}; see

[16, Theorem 2.2.8]. By (1) and direct differentiation of fν , we obtain an

approximating optimality function

θν(x) = −1

2

∥∥∥∥∥∥∇f(x) +
q∑

j=1

mν
j (x)∇fj(x)

∥∥∥∥∥∥
2

, x ∈ Cν ,

where mν
j (x) = −tν/fj(x). Suppose that xν → x ∈ IRn, with xν ∈ Cν . Since

xν ∈ Cν ⊂ C and C is closed, x ∈ C. Let

cν = 1 +

q∑
j=1

mν
j (x

ν), µν
0 =

1

cν
, and µν

j =
mν

j (x
ν)

cν
, j = 1, ..., q.

Consequently, µν = (µν
0 , µ

ν
1 , ..., µ

ν
q ) ∈ M for all ν. Since M is compact, {µν}

has at least one convergent subsequence. Suppose that µν →N µ∞, with N

an infinite subsequence of IN . If j is such that fj(x) < 0, then µν
j →N 0 and

consequently µ∞
j = 0 necessarily. In view of the continuity of the gradients,

θν(xν)

(cν)2
=− 1

2

∥∥∥∥∥∥ 1

cν
∇f(xν) +

q∑
j=1

mν
j (x

ν)

cν
∇fj(xν)

∥∥∥∥∥∥
2

→N − 1

2

∥∥∥∥∥∥µ∞
0 ∇f(x) +

q∑
j=1

µ∞
j ∇fj(x)

∥∥∥∥∥∥
2

.

Since x ∈ C, ψ+(x) = 0. Therefore we also have that

θν(xν)

(cν)2
→N − µ∞

0 ψ+(x)−
q∑

j=1

µ∞
j [ψ+(x)− fj(x)]

− 1

2

∥∥∥∥∥∥µ∞
0 ∇f(x) +

q∑
j=1

µ∞
j ∇fj(x)

∥∥∥∥∥∥
2

≤ θ(x),
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where the inequality follows from the fact that µ∞ ∈ M furnishes a possibly

suboptimal solution in (4). Because θν(xν) ≤ 0 and (cν)2 ≥ 1, the inequality

remains valid when we drop the denominator on the left-hand side. Hence, we

have shown that limsup θν(xν) ≤ θ(x). Thus {fν : Cν → IR, θν : Cν → IR−)}

is consistent. Consequently, the above algorithm, which can then be viewed

as a primal interior point method, generates cluster points that are stationary

for f : C → IR in the sense of Fritz-John. We observe that this is achieved

without any constraint qualifications and convexity assumptions. In this case,

Step 2 of the algorithm can be achieved by any of the standard unconstrained

optimization methods in finite time.

The key technical challenge associated with the above scheme is to establish

(weak) consistency. In the next section, we provide tools for this purpose that

rely on lopsided convergence.

4 Lopsided Convergence

In view of the definition of optimality functions, it is apparent that

if Qθ ̸= ∅, then Qθ = argmaxX θ.

Moreover, Examples 1-3 indicate that many optimality functions take the form

θ(x) = inf
y∈Y

F (x, y), with Y ⊂ Y (5)

for some metric space (Y, dY) and function F . In fact, in our examples, Y = IRn

and F involves gradients and other quantities; §5 provides an example in infi-

nite dimensions. From these observations it is apparent that the consideration
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of maxinf-problems of the form

max
x∈X

inf
y∈Y

F (x, y)

for bifunction F : X × Y → IR will provide direct insight about stationary

and quasi-stationary points of optimization problems. We therefore set out to

describe the fundamental tool for examining the convergence of such maxinf-

problems, which is lopsided convergence first defined in [2]. (The stronger

notion of epi/hypo-convergence [3,5] appears less suitable as it is directed

towards saddle points; see the discussion in [10].) In the process, we extend

some of the results in [9,10] to general metric spaces.

Suppose that (X , dX ) and (Y, dY) are metric spaces, X ⊂ X and Y ⊂ Y

are nonempty, and F : X × Y → IR is a bifunction. We say that x∗ is a

maxinf-point of F if and only if

x∗ ∈ argmax
x∈X

{
inf
y∈Y

F (x, y)

}
.

The study of such functions is facilitated by the notion of lopsided convergence.

Definition 4.1 (lopsided convergence) The sequence of bifunctions

{F ν : Xν × Y ν → IR}ν∈IN lop-converges to F : X × Y → IR if and only if

(i) for all y ∈ Y and xν → x ∈ X , with xν ∈ Xν , there exists yν → y,

with yν ∈ Y ν , such that limsupF ν(xν , yν) ≤ F (x, y) if x ∈ X and

F ν(xν , yν) → −∞ otherwise.

(ii) for all x ∈ X, there exists xν → x, with xν ∈ Xν , such that for all

yν → y ∈ Y, with yν ∈ Y ν , liminf F ν(xν , yν) ≥ F (x, y) if y ∈ Y and

F ν(xν , yν) → ∞ otherwise.
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We assume throughout that the sets Xν ⊂ X and Y ν ⊂ Y are nonempty.

We start with a preliminary result.

Proposition 4.1 (epi-convergence of slices) Suppose {F ν : Xν×Y ν → IR}ν∈IN

lop-converges to F : X × Y → IR. Then, for all x ∈ X, there exists xν → x,

with xν ∈ Xν such that the functions F ν(xν , ·) : Y ν → IR epi-converge to

F (x, ·) : Y → IR.

Proof. We follow the same arguments as in [9, Proposition 3.2], where X = IRn

is considered. From Definition 4.1(ii) there exists xν → x, with xν ∈ Xν , such

that the functions {F ν(xν , ·)}ν∈IN and F (x, ·) satisfy Definition 3.1(i). From

Definition 4.1(i), for any y ∈ Y and xν → x, with xν ∈ Xν , one can find

yν → y, with yν ∈ Y ν , such that Definition 3.1(ii) is also satisfied. ⊓⊔

We recall that the inf-projections of the bifunctions F ν : Xν × Y ν → IR

and F : X × Y → IR are defined as the functions

h(x) := inf
y∈Y

F (x, y), for x ∈ X, and hν(x) := inf
y∈Y ν

F ν(x, y), for x ∈ Xν .

In addition to their overall interest, inf-projections of bifunctions are central

to the study of optimality functions as clearly highlighted by (5). We start by

recording a well-known condition for upper semicontinuity of inf-projections.

We include the proof as it is short.

Proposition 4.2 (upper semicontinuity of inf-projection) For a bifunction

F : X × Y → IR that has F (·, y) upper semicontinuous on X for all y ∈ Y ,

the corresponding inf-projection h(x) = infY F (x, ·), x ∈ X, is upper semicon-

tinuous.
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Proof. Let {xν}ν∈IN be a sequence in X converging to x ∈ X. If h(x) is finite,

then for every ε > 0 there is a yε ∈ Y such that h(x) ≥ F (x, yε) − ε. Thus,

limsupF (xν , yε) ≤ F (x, yε) ≤ h(x)+ ε and limsuph(xν) ≤ h(x)+ ε. If h(x) =

−∞, then for every M < ∞ there is a yM ∈ Y such that F (x, yM ) < −M .

Since limsupF (xν , yM ) ≤ F (x, yM ) < −M , we have limsuph(xν) < −M .

Since ε and M are arbitrary, the conclusion follows. ⊓⊔

Applications of this proposition to Examples 1-3 establish the upper semi-

continuity of the corresponding optimality functions.

Theorem 4.1 (containment of inf-projections) Suppose that the bifunctions

{F ν : Xν × Y ν → IR}ν∈IN lop-converge to F : X × Y → IR and −∞ <

infY F (x, ·) for some x ∈ X. Then, the inf-projections hν : Xν → [−∞,∞[

and h : X → [−∞,∞[ satisfy limsup hypohν ⊂ hypoh.

Proof. Suppose that (x, x0) ∈ limsup hypohν . Then there exists a sequence

{(xν , xν0)}ν∈N , with N an infinite subsequence of IN , xν ∈ Xν , hν(xν) ≥ xν0 ,

xν →N x, and xν0 →N x0. If x ̸∈ X, then take y ∈ Y and construct a

sequence yν → y, with yν ∈ Y ν , such that F ν(xν , yν) →N −∞, which exists

by Definition 4.1(i). However,

xν0 ≤ hν(xν) ≤ F ν(xν , yν), ν ∈ N,

imply a contradiction since xν0 →N x0 ∈ IR and F ν(xν , yν) →N −∞. Thus,

x ∈ X. If h(x) = −∞, then there exists y ∈ Y such that F (x, y) ≤ x0 − 1.

Definition 4.1(i) ensures that there exists a sequence yν → y, with yν ∈ Y ν ,

such that limsupF ν(xν , yν) ≤ F (x, y). Consequently, x0 = limsupν∈N xν0 ≤
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limsupν∈N hν(xν) ≤ limsupν∈N F ν(xν , yν) ≤ F (x, y) ≤ x0 − 1, which is a

contradiction. Hence, it suffices to consider the case with h(x) finite. Given

any ε > 0 arbitrarily small, pick yε ∈ Y such that F (x, yε) − ε ≤ h(x). Then

Definition 4.1(i) again yields yν → yε, with y
ν ∈ Y ν , such that

limsupν∈N hν(xν) ≤ limsupν∈N F ν(xν , yν) ≤ F (x, yε) ≤ h(x) + ε,

implying limsupν∈N hν(xν) ≤ h(x). Thus, the conclusion follows from x0 =

limsupν∈N xν0 ≤ limsupν∈N hν(xν) ≤ h(x). ⊓⊔

Additional results can be obtained under a strengthening of lopsided con-

vergence analogous to tight epi-convergence.

Definition 4.2 (ancillary-tight lop-convergence) The lop-convergence of bi-

functions {F ν : Xν × Y ν → IR}ν∈IN to F : X × Y → IR is ancillary-tight

if and only if Definition 4.1 holds and for any ε > 0 one can find a compact

set Bε ⊂ Y and an integer νε, depending possibly on the sequence xν → x

selected in Definition 4.1(ii), such that

inf
y∈Y ν∩Bε

F ν(xν , y) ≤ inf
y∈Y ν

F ν(xν , y) + ε for all ν ≥ νε.

Under ancillary-tight lop-convergence, we can strengthen the conclusion of

Theorem 4.1 as follows.

Theorem 4.2 (hypo-convergence of inf-projections) Suppose that the bifunc-

tions {F ν : Xν × Y ν → IR}ν∈IN lop-converge ancillary-tightly to a bifunction

F : X×Y → IR and −∞ < infY F (x, ·) for some x ∈ X. Then, the correspond-

ing inf-projections hν : Xν → [−∞,∞[ hypo-converge to the inf-projection

h : X → [−∞,∞[, i.e., hypohν set-converge to hypoh.
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Proof. We follow nearly the same argument as in the proof of [9, Theorem 3.4].

Let x ∈ X be such that h(x) is finite. Now, choose xν → x, with xν ∈ Xν ,

such that F ν(xν , ·) epi-converge to F (x, ·), cf. Proposition 4.1. In fact, they

epi-converge tightly as an immediate consequence of ancillary-tightness. Thus,

hν(xν) = inf
y∈Y ν

F ν(xν , yν) → inf
y∈Y

F (x, y) = h(x),

via Theorem 3.2. In view of Theorem 4.1, the conclusion then follows. ⊓⊔

We recall that hypohν set-converges to hypoh if and only if epi−hν set-

converges to epi−h. Thus, Theorem 4.2 implies that Theorem 3.1 holds4 with

fν = −hν and f = −h. This observation leads to the following corollary.

Corollary 4.1 Suppose that the bifunctions {F ν : Xν × Y ν → IR}ν∈IN lop-

converge ancillary-tightly to F : X × Y → IR and −∞ < infY F (x, ·) for

some x ∈ X. Then, the corresponding inf-projections hν : Xν → [−∞,∞[ and

h : X → [−∞,∞[ satisfy the following:

(i) liminf(supXν hν) ≥ supX h.

(ii) If xk ∈ argmaxXνk h
νk and xk → x for some increasing subsequence

{ν1, ν2, ...} ⊂ IN , then x ∈ argmaxX h and limk→∞ supXνk h
νk = supX h.

Further strengthening of the notion is also beneficial.

Definition 4.3 (tight lop-convergence) The lop-convergence of bifunctions

{F ν : Xν × Y ν → IR}ν∈IN to F : X × Y → IR is tight if and only if Def-

inition 4.2 holds and for any ε > 0 one can find a compact set Aε ⊂ X and an

4 We note that Theorem 3.1 is stated for finite-valued functions and hν and h might be

extended-real valued. However, the conclusions hold under this slight extension.
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integer νε such that

sup
x∈Xν∩Aε

inf
y∈Y ν

F ν(x, y) ≥ sup
x∈Xν

inf
y∈Y ν

F ν(x, y)− ε for all ν ≥ νε.

Under tight lop-convergence, we can strengthen Theorem 4.2 as follows.

Theorem 4.3 (approximating maxinf-points) Suppose that the bifunctions

{F ν : Xν × Y ν → IR}ν∈IN lop-converge tightly to F : X × Y → IR and

supX infY F is finite. Then,

sup
x∈Xν

inf
y∈Y ν

F ν(x, y) → sup
x∈X

inf
y∈Y

F (x, y).

Moreover, for every x∗ ∈ argmaxx∈X infy∈Y F (x, y), there exist an infinite

subsequence N of IN , {εν}ν∈N , with εν ↘0, and {xν}ν∈N , with

xν ∈ εν- argmaxx∈Xν inf
y∈Y ν

F ν(x, y),

such that xν →N x. Conversely, if such sequences exist, then we have that

supx∈Xν infy∈Y ν F ν(x, y) →N infy∈Y F (x
∗, ·).

Proof. The result is a direct consequence of Theorem 4.2 in conjunction with

tight lop-convergence and Theorem 3.2 reoriented to maximization. ⊓⊔

It is well-known that the supremum over a compact set of an upper semi-

continuous function is attained. Consequently, in view of Proposition 4.2, if

F (·, y) is upper semicontinuous on X for all y ∈ Y and X is compact, then

there exists a maxinf-point of F . We next state a result that relaxes the com-

pactness requirement.
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Theorem 4.4 (existence of maxinf-point) Suppose {F ν : Xν ×Y ν → IR}ν∈IN

lop-converges ancillary-tightly to F : X × Y → IR, Xν is compact, F ν(·, y) is

upper semicontinuous for all y ∈ Y ν , and −∞ < infY F (x, ·) for some x ∈ X.

Then, for all ν there exists a maxinf-point xν of F ν : Xν × Y ν → IR and

every cluster point of {xν}ν∈IN is a maxinf-point of F : X × Y → IR.

Proof. The discussion prior to the theorem ensures the existence of maxinf-

points of F ν : Xν × Y ν → IR for every ν. The result is then a consequence of

Corollary 4.1. ⊓⊔

In view of Theorem 4.4, we see that the existence of a maxinf-point of

F : X × Y → IR is established through constructing F ν : Xν × Y ν → IR, with

Xν compact, that lop-converge ancillary-tightly to F : X × Y → IR and that

have a sequence of maxinf-points with a cluster point. The theorem does not

guarantee the existence of such a cluster point, an additional condition needs

to be brought in. Obviously, the simplest such condition is the containment of

{Xν}ν∈IN in a compact set. Still, the compactness of X is not required.

5 Applications and Further Examples

We now return to the context of optimality functions of the form (5) and start

with the requirement for consistency in Definition 3.3(ii).

Proposition 5.1 (sufficient condition for consistency, optimality function part)

Suppose that {F ν : Xν × Y ν → IR}ν∈IN lop-converges to F : X × Y → IR and

that the bifunctions define θν = infy∈Y ν F ν(·, y) and θ = infy∈Y F (·, y), with
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−∞ < θ(x) for some x ∈ X. Then,

for every xν → x ∈ X , with xν ∈ Xν , limsup θν(xν) ≤ θ(x) if x ∈ X, and

θν(xν) → −∞ otherwise.

Proof. The result is a direct consequence of Theorem 4.1. ⊓⊔

In view of this result, it is clear that (weak) consistency will be ensured by

epi-convergence of the approximating objective functions and feasible sets as

well as lopsided convergence of the approximating bifunctions defining the cor-

responding optimality functions. We illustrate Proposition 5.1 by continuing

from Example 2.3.

Example 5.1 (minimax problem) Continuing from Example 2.3, suppose that

for every z ∈ Z there exists a sequence zν ∈ Zν such that zν → z. Let for

x, y ∈ IRn,

F ν(x, y) = max
z∈Zν

{
φ(x, z)− fν(x) + ⟨∇xφ(x, z), y − x⟩+ 1

2
∥y − x∥2

}

and F be defined similarly with the superscripts removed. We next show lop-

sided convergence of F ν to F . First consider Definition 4.1(i). Let y ∈ IRn

and xν → x ∈ IRn. Set yν = y for all ν. Clearly, limsupF ν(xν , yν) ≤

limsupF (xν , y) = F (x, y) by the continuity of F and part (i) holds. Second,

we consider part (ii). Let x ∈ IRn and yν → y ∈ IRn. Set xν = x for all ν. Let

zx ∈ argmaxz∈Z

{
φ(x, z)− f(x) + ⟨∇xφ(x, z), y − x⟩+ 1

2
∥y − x∥2

}
.
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Let ε > 0. By assumption on Zν and the continuity of φ(x, ·) and ∇xφ(x, ·),

there exist zν ∈ Zν and ν0 such that φ(x, zν)− φ(x, zx) > −ε and

∥∇xφ(x, z
ν)−∇xφ(x, zx)∥ < min

{
ε,

ε

∥y − x∥

}

for all ν ≥ ν0. Consequently, ν ≥ ν0,

F ν(xν , yν) = F ν(x, yν)

= max
z∈Zν

{
φ(x, z)− fν(x) + ⟨∇xφ(x, z), y

ν − x⟩+ 1

2
∥yν − x∥2

}
≥ φ(x, zν)− f(x) + ⟨∇xφ(x, z

ν), yν − x⟩+ 1

2
∥yν − x∥2

= φ(x, zx)− f(x) + ⟨∇xφ(x, zx), y − x⟩+ 1

2
∥y − x∥2 + φ(x, zν)

− φ(x, zx) + ⟨∇xφ(x, z
ν)−∇xφ(x, zx), y − x⟩

+ ⟨∇xφ(x, z
ν), yν − y⟩+ 1

2
∥yν − x∥2 − 1

2
∥y − x∥2

> φ(x, zx)− f(x) + ⟨∇xφ(x, zx), y − x⟩+ 1

2
∥y − x∥2

− ε− ε+ ⟨∇xφ(x, z
ν), yν − y⟩+ 1

2
∥yν − x∥2 − 1

2
∥y − x∥2

= F (x, y)− 2ε+ ⟨∇xφ(x, z
ν), yν − y⟩+ 1

2
∥yν − x∥2 − 1

2
∥y − x∥2

Since yν → y, {zν} is bounded and ∇xφ is continuous, liminf F ν(xν , yν) ≥

F (x, y) − 2ε. Since ε was arbitrary, part (ii) of Definition 4.1 holds and F ν

therefore lop-converge to F . In view of Proposition 5.1 and the fact that epi-

convergence is also easily established, we have that the pairs {(fν : IRn → IR,

θν : IRn → IR−)} are consistent approximations of the pair {(f : IRn → IR,

θ : IRn → IR−)} in this case. The above algorithm therefore is implementable

for the solution of the semi-infinite minimax problem minx∈IRn maxz∈Z φ(x, z).
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Under slightly stronger assumptions, the approximating bifunctions do not

need to be associated with an optimality function to achieve convergence to

quasi-stationary points.

Theorem 5.1 (convergence to quasi-stationary points) Suppose that the bi-

functions {F ν : Xν × Y ν → IR}ν∈IN lop-converge ancillary-tightly to the bi-

function F : X × Y → IR and θ : X → IR−, with θ = infy∈Y F (·, y), and

θ(x) > −∞ for some x ∈ X. Then, θ is upper semicontinuous.

Moreover, if xν ∈ argmaxx∈Xν infy∈Y ν F ν(x, y) for all ν and Qθ ̸= ∅, then

every cluster point x of {xν}ν∈IN is quasi-stationary, i.e., x ∈ Qθ.

Proof. In view of Theorem 4.2, the inf-projections of F ν : Xν×Xν → IR hypo-

converge to θ. This implies that θ is upper semicontinuous since set limits (of

hypo-graphs) are necessarily closed. By Corollary 4.1, x ∈ argmaxX θ. Since

Qθ ̸= ∅, Qθ = argmaxX θ and the conclusion follows. ⊓⊔

Further characterization of (quasi-)stationary points is available under

tight lopsided convergence.

Theorem 5.2 (characterization of quasi-stationary points) Suppose that the

bifunctions {F ν : Xν × Y ν → IR}ν∈IN lop-converge tightly to the bifunction

F : X × Y → IR and θ = infy∈Y F (·, y), with Qθ ̸= ∅. For every x ∈ Qθ there

exist an infinite subsequence N of IN , {εν}ν∈N , with εν ↘0, and {xν}ν∈N ,

with xν ∈ εν- argmaxx∈Xν infy∈Y ν F ν(x, y), such that xν →N x.

Proof. The result is a direct consequence of Theorem 4.3. ⊓⊔



Optimality Functions and Lopsided Convergence 27

The next result establishes a pathway to show the existence of a quasi-

stationary point, i.e., Qθ ̸= ∅. We note that the scope is reduced to linear

spaces and X = Y to facilitate the application of a Ky Fan Inequality.

Theorem 5.3 (existence of quasi-stationary point) Let X be a linear space

and θ : X → IR−, with X ⊂ X , be defined by θ = infy∈X F (·, y) for a bifunction

F : X × X → IR and θ(x) > −∞ for some x ∈ X. Suppose that there exist

bifunctions {F ν : Xν ×Xν → IR}ν∈IN that lop-converge to F : X ×X → IR,

with (i) Xν ⊂ X convex and compact, (ii) F ν(·, y) upper semicontinuous for

all y ∈ Xν , (iii) F ν(x, ·) convex for all x ∈ Xν , and (iv) F ν(y, y) ≥ 0 for all

y ∈ Xν .

Then, for all ν there exists xν ∈ Xν with infXν F ν(xν , ·) ≥ 0. Moreover,

every cluster point x̄ of {xν}ν∈IN satisfies θ(x̄) = 0, i.e., Qθ ̸= ∅.

Proof. We invoke the Ky Fan Inequality as applied to F ν : Xν × Xν → IR,

which establishes that there exists xν ∈ Xν such that infXν F ν(xν , ·) ≥ 0; see

[7]. Let x̄ be a cluster point of {xν}ν∈IN . Then, in view of Proposition 5.1 we

find that x̄ ∈ X and limsup infXν F ν(xν , ·) ≤ θ(x̄). Since the left-hand side is

nonnegative and θ(x) ≤ 0 for all x ∈ X, the conclusion follows. ⊓⊔

We stress that the theorem does not guarantee the existence of a cluster

point of {xν}ν∈IN . Of course, the containment of {xν}ν∈IN in a compact set

would suffice, but other application dependent conditions might also be used

for the purpose. Thus, the theorem provides a way of establishing existence of

a quasi-stationary point without insisting on the compactness of X.
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We end the paper with an example from the area of optimal control and

adjust the notation accordingly.

Example 5.2 (optimal control) We here follow the set-up in Section 5.6 and

Chapter 4 of [16], which contain further details. For g : IRn × IRm → IRn, we

consider the dynamical system

ẋ(t) = g(x(t), u(t)), for t ∈ [0, 1], with x(0) = ξ ∈ IRn,

where the control u ∈ Lm
∞ := {u : [0, 1] → IRm : measurable, ess. bounded}.

Since such controls are contained in the space of square-integrable functions

from [0, 1] to IRm, the usual L2-norm applies; see [16, p.709] for a motivation

for this “hybrid” set-up. Let H := IRn ×Lm
∞. For initial condition and control

pairs η = (ξ, u) ∈ H and η̄ = (ξ̄, ū) ∈ H, we equip H with the inner product

and norm

⟨η, η̄⟩H := ⟨ξ, ξ̄⟩+
∫ 1

0

⟨u(t), ū(t)⟩dt and ∥η∥2H := ⟨η, η⟩H.

We consider control constraints of the form u(t) ∈ C, for almost every t ∈ [0, 1]

for some given convex and compact set C ⊂ IRm. By imposing the constraints

for almost every t instead of every t, we deviate slightly from [16] and follow

[13]. We therefore also define the feasible set

U = Lm
∞ ∩ {u : u(t) ∈ C, for almost every t ∈ [0, 1]} and H = IRn × U.

Under standard assumptions, a solution of the differential equation, for a given

η ∈ H, denoted by xη is unique, Lipschitz continuous, and Gâteaux differen-

tiable in η. Consequently, for a given φ : IRn×IRn → IR, Lipschitz continuously
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differentiable on bounded sets, the function f : H → IR defined by

f(η) = φ(ξ, xη(1)), for η = (ξ, u) ∈ H,

has a Gâteaux differential of the form ⟨∇f(η), η̄ − η⟩H for some Lipschitz

continuous gradient ∇f(η) given in [16, Corollary 5.6.9]. The optimal control

problem

minimize f(η) subject to η ∈ H,

analogous to Example 2.1, has an optimality function

θ(η) = min
η̄∈H

F (η, η̄), for η ∈ H,

where

F (η, η̄) = ⟨∇f(η), η̄ − η⟩H +
1

2
∥η̄ − η∥2H, for η, η̄ ∈ H.

We next consider approximations. Let Uν ⊂ U , ν ∈ IN , consist of the

piecewise constant functions that are constant on each interval [(k−1)/ν, k/ν),

k = 1, ..., ν. Set Hν = IRn × Uν . Moreover, let xνη be the (unique) solution of

the forward Euler approximation of the differential equation, using time-step

1/ν, given input η = (ξ, u) ∈ H. An approximate problem then takes the form

minimize fν(η) subject to η ∈ Hν ,

where

fν(η) = φ(ξ, xνη(1)).

One can show that

θν(η) = min
η̄∈Hν

F ν(η, η̄), for η ∈ Hν ,
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where

F ν(η, η̄) = ⟨∇fν(η), η̄ − η⟩H +
1

2
∥η̄ − η∥2H, for η, η̄ ∈ Hν ,

is an optimality function of fν : Hν → IR, where the Lipschitz continuous

gradient ∇fν(η) is given in [16, Theorem 5.6.19].

By [16, Theorem 4.3.2], for every bounded set S ⊂ H, there exists a CS <

∞ such that |f(η) − fν(η)| ≤ CS/ν and ∥∇f(η) −∇fν(η)∥H ≤ CS/ν for all

η ∈ S. Moreover, ∪ν∈INH
ν is dense in H. Consequently, it is easily established

that fν : Hν → IR epi-converge to f : H → IR. We next consider the optimality

functions. Let η̄ ∈ H and ην → η ∈ H, with ην ∈ Hν . Necessarily, η ∈ H. Due

to the density result, there exists η̄ν → η̄, with η̄ν ∈ Hν . Hence,

|F ν(ην , η̄ν)− F (η, η̄)| ≤ ∥∇fν(ην)−∇f(η)∥H∥η̄ν − ην∥H

+ ∥∇f(η)∥H∥η̄ν − ην − η̄ + η∥H +
1

2
∥η̄ν − ην∥2H − 1

2
∥η̄ν − ην∥2H → 0

and we have shown Definition 4.1(i). Using similar arguments, we also es-

tablish part (ii) and the lopsided convergence of F ν to F . Consequently,

{(fν : Hν → IR, θν : Hν → IR−)}ν∈IN are consistent approximations of

(f : H → IR, θ : H → IR−). Since the minimization of fν : Hν → IR is equiv-

alent to an optimization problem on a Euclidean space, the above algorithm

is implementable for the infinite-dimensional problem f : H → IR.

6 Conclusions

We have shown that the lopsided convergence of a certain class of bifunctions

provides a general pathway for constructing implementable algorithms for op-
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timization problems requiring approximations. The bifunctions, with their inf-

projections called optimality functions, quantifies near-stationarity and there-

fore convergence of the algorithm to stationary points can be guaranteed.

A series of examples from constrained optimization, nonlinear programming,

minimax problems, and optimal control illustrate the framework.
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