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TWO-DIMENSIONAL ARRAY ANTENNA PATTERNS 

 
Introduction 
 

According to the principle of pattern multiplication, the radiation pattern of an array of 
identical elements (i.e., identical element patterns) can be written as the product (phasor 
quantities) 
 

ˆ( , ) ( , ) ( , )F AF EF e       

 
where AF(, )  is the array factor and EF( ,)  is the element factor.  The element factor is 
actually a vector quantity where the unit vector ˆ e  denotes the polarization of the element.  The 
array factor depends only on the geometrical arrangement of the elements and their excitation 
conditions.  The element factor depends only on the type of element.   

The coordinate system is shown in Figure 1.  If the x-y plane corresponds to the earth’s 
surface and the z axis the zenith, the angles   and   are the azimuth and elevation angles, 
respectively. The array is in the x-y plane. 
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Figure 1: Coordinate system 

 
For a periodic array of elements that are laid out on a rectangular lattice in the x-y plane, 

the array factor can be expressed as the sum 
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where dx  and dy  are the spacings along the x and y axes, k  2 /  , and the x and y direction 

cosines are 
sin cos , sin sin ,  and cosu v w       . 
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The amplitude and phase excitation coefficients for element (m,n) are Amn  and mn , 
which are controlled by the method of feeding the element.  An example of a two-dimensional 
array of dipoles is shown in Figure 2.  Note that the above formula is written for element m=n=1 
located at the origin, x=y=0.  However, the diagram shows the center of the array at the origin.  
The shifting of the reference merely adds a phase factor (exponential factor) to the array factor, 
which does not affect the magnitude of the array factor.  Also note that if the number of elements 
is large, then the array dimensions are approximately   
 

Lx  M dx and Ly  N dy . 
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For uniform amplitudes, the two dimensional array factor for scanning the main beam to 
the direction  (s ,s ) can be written as 



AF(, )
sin(M( x  sx ) / 2)

M sin(( x  sx )/ 2)

sin(N( y  sy )/ 2)

Nsin(( y  sy) / 2)

NORMALIZED ARRAY FACTOR
  

 

where 
  x  kdx sin cos,  sx  kdx sins coss
 y  kdy sin sin,  sy  kdy sins sins

  

 
Two-dimensional Array Patterns: array2d.m 
 

The array factor for a two-dimensional array is computed by array2d.m.  The user can 
select from several types of amplitude distributions.  Also, phase shifter roundoff algorithms can 
be selected to observe the effects of digital phase shifters on the beam position, gain and sidelobe 
level. array2d.m may call several functions, depending upon the calculations requested by the 
user.  They include taylor, bayliss, triangular and cosine which compute aperture 
distributions, and tuncate and rro which execute phase shifter roundoff algorithms.   
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The user is asked to input the range of angles for the pattern calculation.  If the start and 
stop values for   are identical, then a pattern cut for that value of   is generated.  Similarly, if 
the start and stop values for   are identical, then a pattern cut for that value of   is generated.   If 
a range of both   and   are given, then a two-dimensional contour, mesh, or both is plotted in 
direction cosine space.  The range of u and v will correspond to the given range of   and  .   
 
Amplitude Tapering 
 

The amplitude and phase coefficients are used to scan the beam, control the sidelobe 
level and, in some cases, shape the radiation pattern.  Some common amplitude distributions for 
controlling sidelobes are given in Table 1. 

 
Table 1: Amplitude tapers 

Distribution First sidelobe or parameters 
Uniform (Reference) -13.2 dB (large array) 
Cosine on a pedestal a,b : a  (1 a)cosb(|x / Lx |)  
Taylor (sum beam) SLL, n  
Bayliss (difference beam) SLL, n  
Triangular -26 dB (large array) 

 
The user is asked to select the amplitude distribution in the two principal planes.  The 

distribution is assumed to be separable in x and y; that is, Amn  Axm
Ayn

 and mn  xm
yn

.  

The amplitudes are set in the function getamplitudes.m. 
The aperture efficiency is computed from the formula:
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and the directivity of an array of isotropic elements is given by the formula 
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The directivity is the maximum value of the directive gain, which is identical to the gain if the 
antenna is lossless.  In general, losses other than aperture tapering will reduce the directivity of 
the antenna.  When losses are included, the gain is 
 

G D  
where   is the efficiency factor.  
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Phase Shifter Roundoff 
 

Phase shifters are used to control the location and shape of the antenna beam.  Generally 
a linear phase shift is desired to point a focussed beam in space.  The phase shift can be specified 
in degrees per element or total degrees across the length of the array.   

Most phase shifters are digital devices, or at least are digitally controlled.  Therefore only 
discrete values of phase shift are allowed, and they may not be the precise values required a 
particular element as depicted below: 
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In practice a roundoff method must be prescribed. Simply truncating or rounding to the 
closest value will yield a periodic quantization error that causes large sidelobes to occur.  
Furthermore the beam pointing can deviate significantly from the case of no quantization error.  
With regard to beam pointing, it is usually best to employ some type of randomization when 
rounding off.  A common method is weighted random roundoff, which is a type of fuzzy logic.  
Randomization is most effective when the amplitudes of the elements are all roughly the same 
(i.e., roundoff errors will sum to zero).  If not, then large roundoff errors at elements with large 
amplitudes Amn  can dominate.   

 
Directivity calculation 
 

When selected, the directivity of the array is calculated by integration of the pattern as 
follows:   
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where  
2

( , ) sinA F d d        

 
is the beam solid angle and the normalized pattern function is  
 

( , ) ( , ) ( , ) ( , )F AF EF GF        . 

 
AF is the normalized array factor, EF is the normalized element factor, and GF is the normalized 
ground plane factor. The limits of integration are 0 , 0 2 .        

The calculation is done in the script ArrayDirectivity.m.  Gaussian quadrature is used 
with 20 points per interval.  The number of intervals can be varied: ndivt for the  integration and 
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ndivp for the integration.  More intervals are required for larger arrays that have greater pattern 
variations. Caution: this calculation can be time consuming for large arrays.  

Convergence can be tested by increasing the number of intervals to see of the result 
changes significantly. 
 
Ground plane 
 

An infinite ground in the z =0 plane can be selected.  The method of images is used to 
compute the pattern in the upper hemisphere (z >0).  If the directivity of an array with a ground is 
being calculated the limits of integration are automatically changed 0 / 2    and ndivt is 
halved. The ground plane factor is included in the pattern and directivity calculations. 
 
Array Elements 
 

Several array elements are selectable including isotropic and dipoles aligned in x, y or z.  
The half wave dipole formulas are used.  For a half wave dipole along the z axis:   
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For a half wave dipole along the y axis:   
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For a half wave dipole along the x axis:   
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When dipole elements are used the components E  and E  are plotted.  Note that the pattern 

function F normally includes both components (often called the composite field): 
 

22( , ) ( , ) ( , )F E E        . 

References: 
[1] C. A. Balanas, Antenna Theory, Wiley. 
[2] J. D. Kraus, Antennas, McGraw-Hill.
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Examples 
 
Example 1:  Comparison of roundoff methods for a linear array of 60 elements (30 dB Taylor 
distribution).  If the number of phase shifter bits is B, then the phase shift per element can be as 

small as 360 / 2B .  For example, a 4-bit phase shifter has 22.5 degree phase steps. 
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Example 2: Difference beam: 60 elements, 25 dB Bayliss distribution, dx  0.4  
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Example 3: Multiple beam antenna, 4 beams squinted at 2.3 degree increments.  (In order to plot 
multiple patterns the user must go into the program an insert “hold on” statements.) 
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Example 4: Grating lobes; 50 elements, 1.5 wavelength spacing,30 degree scan angle, 25 dB 
Taylor distribution.  Grating lobes are located at about 10  and 56 . 

 



 8

Example 5: Planar array of 10 by 5 elements; uniform distribution in both planes; half 

wavelength spacing in both planes; no beam scan.  The range of values computed are   90  
and 0

    360  in 1 degree increments. Mesh and contour plots are shown. 
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