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What This Talk is About

I Transformations of certain undiscounted generalized two-player
zero-sum stochastic games to discounted ones.

I Undiscounted = Total or Average Costs

I Generalized = possibly super-stochastic transition rates

I Transition rates for the resulting discounted game are
stochastic, and the one-step costs are bounded

I General (e.g., uncountable) state and action sets

I Special case: Markov decision processes (MDPs)

I Conditions under which these transformations lead to reductions of
the original undiscounted problem to a discounted one.

I Lead to results on the existence of of ε-optimal policies,
validity of optimality equations, computational complexity
estimates . . .
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Why?

I Discounted stochastic games are much easier to study than
undiscounted ones!

I Shapley’s (1953) seminal paper was on the discounted case.
I Relevant issues when costs are undiscounted:

I Total costs: summability, convergence of value iteration
I Average costs: structure of Markov chains induced by

stationary policies

I Discounting total costs in the original model may not be desirable.

I Discounting means we don’t care about the system’s behavior
in the long run.

I Costs may not have a clear economic interpretation.

I Super-stochastic transition rates are relevant to applications.

I controlled branching processes, multi-armed bandits with
risk-seeking utilities, discount factors greater than one . . .
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Plan of the Talk

1. Definition of generalized two-player zero-sum stochastic
games, which include as special cases:

I MDPs (one of the players can’t do anything);
I robust MDPs (see e.g., [Iyengar, 2005]).

2. Transformations of such games to discounted ones.
I Motivated by [Veinott 1969] and [Akian Gaubert 2013].

3. Results about the original game that follow from the
transformations.
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Generalized Two-Player Zero-Sum Stochastic Games

Defined by 5 objects:

1. state space X

2. action spaces A1,A2 for players 1 and 2

3. for each x ∈ X, sets of available actions A1(x) ⊆ A1 and
A2(x) ⊆ A2 for players 1 and 2

4. for each state x ∈ X and pair of actions (a1, a2) ∈ A1(x)× A2(x),

I transition rates q(·|x , a1, a2);
I one-step costs c(x , a1, a2).

For experts: X, A1, A2 are Borel subsets of Polish spaces, for all x ∈ X the sets

A1(x) and A2(x) are measurable, the graph of A1 ×A2 is Borel-measurable, q is

a Borel-measurable transition kernel, and c is Borel-measurable.
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Cost Criteria

Π1,Π2 = set of all (randomized history-dependent) policies for players 1, 2.

For x ∈ X and (π1, π2) ∈ Π1 × Π2, let Eπ
1,π2

x denote the corresponding
“expectation” operator.

For experts: Eπ
1,π2

x can be defined via the the usual definition of randomized

history-dependent policies and the Ionescu-Tulcea theorem

Total cost: For β ∈ [0, 1],

vπ
1,π2

β (x) := Eπ
1,π2

x

∞∑
t=0

βtc(xt , a
1
t , a

2
t ), x ∈ X

and vπ
1,π2

:= vπ
1,π2

1 .

Average cost:

wπ1,π2

(x) := lim sup
T→∞

1

T
Eπ

1,π2

x

T−1∑
t=0

c(xt , a
1
t , a

2
t ), x ∈ X
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Optimality Criteria

Player 1 wants to maximize cost, player 2 wants to minimize cost.

Consider a criterion g ∈ {v ,w}, and ε ≥ 0.

π1
∗ ∈ Π1 is ε-optimal for player 1 if

inf
π2∈Π2

gπ
1
∗,π

2

(x) ≥ inf
π2∈Π2

sup
π1∈Π1

gπ
1,π2

(x)− ε ∀x ∈ X.

π2
∗ ∈ Π2 is ε-optimal for player 2 if

sup
π1∈Π2

gπ
1,π2
∗(x) ≤ sup

π1∈Π1

inf
π2∈Π2

gπ
1,π2

(x) + ε ∀x ∈ X.

0-optimal policies are called optimal.
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Some Useful Definitions. . .

Let F1,F2 denote the set of all deterministic stationary policies for players 1,2.

Given (φ1, φ2) ∈ F1 × F2, a Borel subset B of X, and a Borel-measurable
u : X→ R, let

BQφ1,φ2u(x) :=

∫
X\B

u(y)q(dy |x , φ1(x), φ2(x)), x ∈ X,

for x ∈ X let xQφ1,φ2 := {x}Qφ1,φ2 , and let Qφ1,φ2 := ∅Qφ1,φ2 .

For a weight function W : X→ R, given a transition kernel B(·|·) from X to X,
let

‖B‖W := sup
x∈X

W (x)−1

∫
X
W (y)B(dy |x).
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Transience Assumption (for Total Costs)

Assumption (T)

There is a weight function V : X→ [1,∞) such that

(i) ‖
∑∞

t=0 Q
t
φ1,φ2‖V ≤ K for all (φ1, φ2) ∈ F1 × F2;

(ii) there is a constant c̄ satisfying |c(x , a1, a2)| ≤ c̄V (x) for all x ∈ X and
(a1, a2) ∈ A1(x)× A2(x);

(iii) for every x ∈ X the mapping

(a1, a2) 7→
∫
X
V (y)q(dy |x , a1, a2)

is continuous.

Assumption (T)(i) is equivalent to the existence of a function µ that is upper

semianalytic satisfying V ≤ µ ≤ KV and

µ(x) ≥ V (x) +

∫
X
µ(y)q(dy |x , a1, a2)

for all x ∈ X,(a1, a2) ∈ A1(x)× A2(x).
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Hitting Time Assumption (for Average Costs)

Assumption (HT)

There is a weight function V : X→ [1,∞) such that

(i) ‖
∑∞

t=0 `Q
t
φ1,φ2‖V ≤ K <∞ for all (φ1, φ2) ∈ F1 × F2;

(ii) there is a constant c̄ satisfying |c(x , a1, a2)| ≤ c̄V (x) for all x ∈ X and
(a1, a2) ∈ A1(x)× A2(x);

(iii) for every x ∈ X the mapping

(a1, a2) 7→
∫
X\{`}

V (y)q(dy |x , a1, a2)

is continuous.

Assumption (HT)(i) is equivalent to the existence of a function µ that is upper

semianalytic satisfying V ≤ µ ≤ KV and

µ(x) ≥ V (x) +

∫
X\{`}

µ(y)q(dy |x , a1, a2)

for all x ∈ X,(a1, a2) ∈ A1(x)× A2(x).
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Transformation for Total Costs

β̃ := (K − 1)/K

X̃ := X ∪ {x̃}, and Ãi := Ai ∪ {ãi} for i = 1, 2

For i = 1, 2, Ãi (x) := Ai (x) if x ∈ X and Ãi (x̃) := {ã}.

For Borel sets B ⊆ X̃,

p̃(B|x , a1, a2) :=

{ 1
β̃µ(x)

∫
B µ(y)q(dy|x, a1, a2), B ⊆ X, x ∈ X, (a1, a2) ∈ A1(x)× A2(x),

1− 1
β̃µ(x)

∫
X µ(y)q(dy|x, a1, a2), B = {x̃}, x ∈ X, (a1, a2) ∈ A1(x)× A2(x),

1 B = {x̃}, (x, a1, a2) = (x̃, ã1, ã2).

c̃(x , a1, a2) :=

{
c(x , a1, a2)/µ(x), x ∈ X, (a1, a2) ∈ A1(x)× A2(x),

0, (x , a1, a2) = (x̃ , ã1, ã2).

Introduction Model Definitions The Transformations Results 10/13



Transformation for Average Costs

β̄ := (K − 1)/K

X̄ := X ∪ {x̄}, and Āi := Ai ∪ {āi} for i = 1, 2

For i = 1, 2, Āi (x) := Ai (x) if x ∈ X and Āi (x̄) := {ā}.

For Borel sets B ⊆ X̄,

p̄(B|x , a1, a2) :=


1

β̄µ(x)

∫
B µ(y)q(dy|x, a1, a2), B ⊆ X \ {`}, x ∈ X;

1
β̄µ(x)

[µ(x)− 1−
∫
X\{`} µ(y)q(dy|x, a1, a2)] B = {`}, x ∈ X;

1− 1
β̄µ(x)

[µ(x)− 1], B = {x̄}, x ∈ X;

1 B = {x̄}, (x, a1, a2) = (x̄, ā1, ā2).

c̄(x , a1, a2) :=

{
c(x , a1, a2)/µ(x), x ∈ X, (a1, a2) ∈ A1(x)× A2(x),

0, (x , a1, a2) = (x̄ , ā1, ā2).
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Results for Undiscounted MDPs

Some types of results that follow from the transformation and results for
discounted games, when Assumption (T) holds:

I Existence of a “value” of the game, and of a stationary ε-optimal policy
for player 1 and optimal stationary policy for player 2, under
compactness-continuity assumptions for player (by [Nowak 1985])

I Existence of stationary optimal strategies for both players, under
compactness-continuity assumptions for both players (by [Nowak 1984])

I When K is fixed, the state & action sets are finite, and the game has
perfect information, a pair of deterministic stationary optimal policies can
be computed in strongly polynomial time (by [Hansen Miltersen Zwick
2013]).

For MDPs:

I Validity of optimality equations and characterization of stationary optimal
policies (by [Schäl 1993], [Feinberg Kasyanov Zadoianchuk 2012]).

I When K is fixed and the state & action sets are finite, a deterministic
stationary optimal policy can be computed in strongly polynomial time
(by [Scherrer 2016]).
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Summary of the Talk

I Under certain “reachability” conditions, undiscounted
stochastic games (and hence MDPs) can be reduced to
discounted ones.

I These reductions lead to results about the original
undiscounted game.

I In particular, the reductions have implications about the
complexity of algorithms for undiscounted game.
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