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Markov Decision Process (MDP) Model Description

Infrastructure Network Data

N = node set A = arc set

dn = demand at n ∈ N

pn = per-unit demand shortfall cost at n

cij = unit flow cost for (i , j) ∈ A

qij = unit penalty for flow on (i , j) if broken

uij = flow capacity for (i , j)

rij = cost to replace (i , j)

ωij = prob. that (i , j) will break by next time
step, if just replaced

ϕij = increase in break prob. of (i , j) per time
step not broken

K = max. number of edges that can be
replaced at once

MDP Model

state = s = (x,b) ∈ {0, 1}|A| × [0, 1]|A| =: S

action ∈
{
a ∈ {0, 1}|A|

∣∣∣ ∑
(i ,j) aij ⩽ K

}
=: A

The one-step costs have the form

c(s, a) = f (x) + r(a)

The transition probabilities p(s′|s, a) are prod-
ucts of transition probabilities for individual arcs.
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One-Step Cost Function

The one-step cost function is

c(s, a) = c((x,b), a) = f (x) + r(a)

The flow cost, given the current broken/non-broken status x ∈ {0, 1}|A| of the arcs, is

f (x) := min
Y ,U


∑

(i ,j)∈A

[(
cij + qijxij

)
Yij +

(
cji + qjixij

)
Yji

]
+

∑
n∈N

pnUn

∣∣∣∣∣∣∣∣∣

∑
(n,j)∈A

Ynj −
∑

(j ,n)∈A

Yin − Un ⩽ dn∀n ∈ N

0 ⩽ Yij + Yji ⩽ uij ∀(i , j) ∈ A

Un ⩾ 0 ∀n ∈ N


The replacement cost, given the indicator vector a ∈ {0, 1}|A| of arcs to be replaced, is

r(a) :=
∑

(i ,j)∈A

rijaij
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Transition Probabilities

The transition probabilities have the form

p(s′|s, a) =
∏

(i ,j)∈A

ρ((x ′ij , b
′
ij) | (xij , bij), aij)

where the arc-wise transition probabilities ρ((x ′ij , b
′
ij) | (xij , bij), aij) are defined by:

Current State Action Next State Transition Probability
xij bij aij x ′ij b′ij ρ((x ′ij , b

′
ij)|(xij , bij), aij)

1 1 0 1 1 1
1 1 1 0 ωij 1
0 bij 0 1 1 bij
0 bij 0 0 min{bij +ϕij , 1} 1− bij
0 bij 1 0 ωij 1
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Some Observations

▶ For a single arc, this is a classic sequential replacement problem; see e.g., Derman & Sacks
(1960), Derman (1963), and Taylor (1965).

▶ The arcs deteriorate according to independent Markov chains.

▶ The one-step costs

c((x,b), a) = f (x) + r(a)

depend non-linearly on the indicator vector x ∈ {0, 1}|A| of broken arcs.
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Game developed by the NPS Center for Infrastructure Defense (Documentation)
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https://faculty.nps.edu/cid/dysruption/index.html


Our Master’s thesis advisee, LT Vincent Wickel (University of the German
Armed Forces, Graduated Dec 2023), applied Q-Learning to find approx-
imately optimal policies for the MDP.

8



Q-Functions

For each state s, let v∗(s) be the optimal infinite-horizon expected discounted cost with
discount factor γ ∈ [0, 1). The Q-function is

Q(s, a) := c(s, a) + γ
∑
s′∈S

p(s′|s, a)v∗(s
′) for (s, a) ∈ S× A.

Given the Q-function, any policy φ : S → A satisfying

φ(s) ∈ argmin
a∈A

Q(s, a) ∀ s ∈ S

is optimal.

Q-Learning approximates the Q-function via sampled states and actions.
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Tabular Q-Learning (Watkins, 1989)

▶ For our MDP, the number of state-action pairs grows exponentially with the number of
arcs.
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Fitted Q-Learning (Gordon, 1995)

▶ We used feed-forward neural networks (Riedmiller, 2005) for the Q-function approximation

Q̂(s, a; θ).
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Contributions

▶ Implemented simulation environment for the notional infrastructure system from Alderson,
Brown, and Carlyle (2015).

▶ Using this simulation environment, applied neural fitted Q-learning to compute an
approximately optimal policy.

▶ Compared the Q-learning-based policy with some baselines:

1. Random: Pick a random subset of broken arcs to replace.

2. Flow-Based: Replace the arcs that carry the most flow under min-cost flows for current network.

3. One-Step Improvement: Perform an approximate one-step policy improvement on greedy policy.

▶ Evaluated the robustness of these policies to “surprise” increases in failure rates (e.g., due
to climate change).

12



Results

▶ The Q-learning-based policy selects groups of arcs to replace that are consistent with
worst-case simultaneous interdiction solutions.

▶ There is a clear separation in performance between the heuristic (Random, Flow-Based)
policies, the policy based on one-step policy improvement, and the Q-learning-based policy.

▶ Knowing the (deterioration) state of the arcs can make a big difference when the failure
rates change unexpectedly.
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Source: D. A. Eisenberg, Towards Models for Managing (Climate) Surprise in In-
frastructure Systems, Applied Math Colloquium, University of Arizona, Feb 2024.
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Next Steps

▶ More computational studies (e.g., try different neural network architectures).

▶ Rewrite the simulation environment, e.g., as a Gymnasium environment.

▶ Try more modern (e.g., robust, risk-sensitive) reinforcement learning methods

▶ Study other types of infrastructure networks (e.g., water distribution networks)

▶ Identify useful structural properties of the MDP.
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