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Fig. 1. A notional infrastructure system. (a) A white circle (node) represents a location with demand equal to one barrel of fuel. A black
circle (node) represents a location with supply equal to 10 barrels. Each link is bidirectional, has a fuel flow capacity of 15 barrels, and has
per-barrel transit cost of $1. The penalty for unsatisfied demand per node is $10 per barrel. Nodes 3, 4, and 16 each have two (parallel,
redundant) connections to the rest of the network. This network has been built to be N—1 reliable, meaning that the loss of any single link
does not disconnect any node. (b) Shows baseline flows corresponding to a minimum-cost flow solution, which results in a total cost of $25.

Source: D. L. Alderson, G. G. Brown, and W. M. Carlyle, Operational
Models of Infrastructure Resilience, Risk Analysis 35(4), 2015.
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Fig. 3. Worst: imul i dicti (a) The t- single i diction is of link [10, 13], resulting in a total cost of 33. In this
case, the flow cost increases but all nodes are still served. (b) The t imul two-link i diction is of links [2, 7] and [9, 13],
which denies nodes 1,2, 3, 5, and 9 (now shaded) any flow. The total cost is 62 (=12 + 50), most of which is unmet demand penalty cost. (c)
The t imul three-link interdiction is of links [2, 7], [10, 13], and [11, 15], resulting in a total cost of 87 (=7 + 80). (d) The
t imul four-link interdiction is of links [2, 7], [8, 12], [10, 11], and [10, 13], resulting in a total cost of 113 (=3 + 110). (e)

The t i five-link i iction is of links [6, 10], [7, 8], [8, 12], [10, 11], and [10, 13], resulting in a total cost of 131 (=1
+ 130). (f) The worst-case (rank 1) attack for 1-5 si i ictions i p i linearly. The d t (rank 2)

through fifth-worst (rank 5) attacks do less damage, but all are significantly worse than the baseline (no interdiction) case that has operating
cost 25.

Source: D. L. Alderson, G. G. Brown, and W. M. Carlyle, Operational
Models of Infrastructure Resilience, Risk Analysis 35(4), 2015.



Markov Decision Process (MDP) Model Description

Infrastructure Network Data

N = node set A = arc set

d, = demand at ne N

MDP Model
pn = per-unit demand shortfall cost at n

cjj = unit flow cost for (i,j) € A

state = s = (x,b) € {0,1}M! x [0,1] =:§
gijj = unit penalty for flow on (i, ) if broken

action € {a € {0, 4! | L a5 <K} =i
ujj = flow capacity for (i)
rj = cost to replace (i, )
wjj = prob. that (/,j) will break by next time c(s,a) =
step, if just replaced
djj = increase in break prob. of (i,j) per time
step not broken

The one-step costs have the form

f(x)+ r(a)

The transition probabilities p(s'|s,a) are prod-
ucts of transition probabilities for individual arcs.

K = max. number of edges that can be
replaced at once




One-Step Cost Function

The one-step cost function is

c(s,a) =c((x,b),a) = f(x) + r(a)

The flow cost, given the current broken/non-broken status x € {0, 1} of the arcs, is
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The replacement cost, given the indicator vector a € {0, 1}\A\ of arcs to be replaced, is
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Transition Probabilities

The transition probabilities have the form

where the arc-wise transition probabilities p ((x’

p(s'ls,a)

(
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x5, b)) | (xij, bjj), ajj) are defined by:

Current State | Action Next State Transition Probability
Xij bj; ajj x5 bl; p ((xg b)) (x5, bj), a)
1 1 0 1 1 1

1 1 1 0 wjj 1

0 bj; 0 1 1 bj;

0 b,'j 0 0 min{b,-j + d),'j, 1} 1— b,‘j

0 b,'j 1 0 w jj 1




Some Observations

» For a single arc, this is a classic sequential replacement problem; see e.g., Derman & Sacks
(1960), Derman (1963), and Taylor (1965).

» The arcs deteriorate according to independent Markov chains.
» The one-step costs

c((x,b),a) = f(x) + r(a)

depend non-linearly on the indicator vector x € {0, 1} of broken arcs.
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Our Master's thesis advisee, LT Vincent Wickel (University of the German
Armed Forces, Graduated Dec 2023), applied Q-Learning to find approx-
imately optimal policies for the MDP.



Q-Functions

For each state s, let v, (s) be the optimal infinite-horizon expected discounted cost with
discount factor vy € [0,1). The Q-function is

Q(s,a) = c(s, a) +yZ p(s'ls, a)v.(s') for (s,a) € S x A.
s’eS

Given the Q-function, any policy ¢ : S — A satisfying
@(s) € argmin Q(s, a) VseS
acA

is optimal.

Q-Learning approximates the Q-function via sampled states and actions.




Tabular Q-Learning (Watkins, 1989)

Algorithm 1 Tabular Q-Learning

Require: Learning Rate Schedule a1, as, - - - € (0, 1], Number of Episodes N, Episode Length 7T, ¢ € [0, 1]
1: Initialize )(s,a) = 0 for each state s € S and a € A.

2: for each episode n=1,...,N do

3: Select an initial state s; € S.

4 for each decision epoch t =1,...,T do

5 Select an e-greedy action a; € A.

6 Select the next state s;+1 according to the probability distribution p(-|s¢, at)
g Set Q(sy;ar) = (1 — a)Q(sp,a) + o [C(Su a;) + yminaep Q(s¢41, a)]

8 end for

9: end for

» For our MDP, the number of state-action pairs grows exponentially with the number of
arcs.
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Fitted Q-Learning (Gordon, 1995)

Algorithm 2 Fitted Q-Learning

Require: Learning Rate Schedule aq, ag, - -+ € (0, 1], Number of Episodes N, Episode Length T, € € [0,1]
1: Initialize the parameters to 6 so that Q(s, a;0p) = 0 for all (s,a) € S x A.
2: for each episode n=1,...,N do
3: Select an initial state s; € S.

4 for each decision epoch t =1,...,T do

5 Select an e-greedy action a; € A.

6 Select the next state s;11 according to the probability distribution p(:|s;,a:)
7 Set 0 =60 — oy (Q(st, a;;0) — c(sy,a;) — yminaep Q(Se41,a; 6')) VoQ(ss, as;0).
8 end for

9: end for

> We used feed-forward neural networks (Riedmiller, 2005) for the Q-function approximation

N

QR(s,a;0).
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Contributions

» Implemented simulation environment for the notional infrastructure system from Alderson,
Brown, and Carlyle (2015).

» Using this simulation environment, applied neural fitted Q-learning to compute an
approximately optimal policy.
» Compared the Q-learning-based policy with some baselines:

1. Random: Pick a random subset of broken arcs to replace.
2. Flow-Based: Replace the arcs that carry the most flow under min-cost flows for current network.

3. One-Step Improvement: Perform an approximate one-step policy improvement on greedy policy.

» Evaluated the robustness of these policies to “surprise” increases in failure rates (e.g., due
to climate change).
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Results

» The Q-learning-based policy selects groups of arcs to replace that are consistent with
worst-case simultaneous interdiction solutions.

» There is a clear separation in performance between the heuristic (Random, Flow-Based)
policies, the policy based on one-step policy improvement, and the Q-learning-based policy.

> Knowing the (deterioration) state of the arcs can make a big difference when the failure
rates change unexpectedly.
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Evaluating Repair Policies With and Without Surprise . Hp
¢ OSAS
PIP
« FIPr
Trained with b;; = 0.5 after 15 steps Surprised with ¢;; doubled = FIPy
34
29
Episode 100 Episode 100
Policy performance given trained failure rates Policy performance given surprise failure rates
+ Heuristic policies perform the same + O0SAS, PIP, and FIP, have similar performance
* 0SAS and PIP perform the same * FIP: outperforms all other policies

* FIP; and FIP, perform the same

Source: D. A. Eisenberg, Towards Models for Managing (Climate) Surprise in In-
frastructure Systems, Applied Math Colloquium, University of Arizona, Feb 2024.
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Next Steps

» More computational studies (e.g., try different neural network architectures).
» Rewrite the simulation environment, e.g., as a Gymnasium environment.

» Try more modern (e.g., robust, risk-sensitive) reinforcement learning methods
» Study other types of infrastructure networks (e.g., water distribution networks)

» Identify useful structural properties of the MDP.
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