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Online Combinatorial Optimization

Consider a matroid (N, I), where the ground set N =
[n] := {1, . . . , n} is finite and I ⊆ 2N is the associated
family of independent sets.

Online Setting

At each time t ∈ [T ] := {1, . . . ,T }:

▶ Select an independent set St ∈ I to play.

▶ The cost incurred by St is evaluated ac-
cording to an adversarially chosen function
ft : I → [0, 1].

We will focus on the full-information setting.

▶ i.e., ft ’s are revealed via a value oracle.

Objective: Approximate Regret Minimization

Do as well, over the time horizon T , as some
constant α ∈ [0, 1] times the best fixed S ∈ I

in hindsight, i.e. minimize the α-regret

Regretα(T) :=

T∑
t=1

ft(St) −αmin
S∈F

T∑
t=1

ft(S)

Examples of applications include online versions of:

▶ Routing on Networks

▶ Selecting Products to Produce

▶ Selecting Items to Bid On

▶ Selecting Locations of Facilities, Sensors, . . .
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Online Submodular Optimization

Assumption

The ft ’s are submodular, i.e.,

ft(S) + ft(S
′) ⩾ ft(S ∪ S ′) + ft(S ∩ S ′)

for all S,S ′ ∈ 2N and t ∈ [T ]

▶ Special Case: The ft ’s are modular (aka linear) if
ft(S) =

∑
a∈S ct(a) for some ct : N → [0, 1]

▶ Submodularity models diminishing marginal returns
(e.g., profits, coverage).

There are algorithms whose incurred α-regret grows at
most sub-linearly in T for, e.g.,

▶ cardinality-constrained modular optimization for
α = 1 [Audibert Bubeck & Lugosi, 2014]

▶ combinatorially-constrained monotone submodular
minimization [Jegelka & Bilmes, 2010]

▶ cardinality-constrained monotone submodular max-
imization for α = 1− 1

e [Streeter & Golovin, 2008],
[Harvey Liaw & Soma, 2020]

▶ matroid-constrained monotone submodular maxi-
mization for α = 1 − 1

e − ϵ [Golovin Krause &
Streeter 2014], [Harvey Liaw & Soma, 2020]
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Motivation: Online Convex Optimization

For optimization problems of the form

min
x∈Rn

f (x), f : Rn → R∪ {+∞},

convexity is a useful way to distinguish between “easy”
and “hard” problems [Rockafellar, 1970]

From p. 309 in [Rockafellar & Wets, 2009]

There is a well-developed theory for online minimization
when the decisions are vectors in Rn and the functions ft
are convex [Hazan, 2022].

Examples:

▶ 1-regret bounds that grow with
√
T

▶ 1-regret lower bounds that scale with
√
T

Question

Is there a useful notion of convexity in combi-
natorial optimization?
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Discrete Convexity

There is more than one way to usefully define convexity
for functions on Zn [Murota, 2003].

▶ Desiderata: duality between convexity and concav-
ity, separation, . . .

▶ Not enough to assume that the discrete function
(on Zn) can be extended to a convex function on
Rn [Murota, 2003].

There are two notions of discrete convexity that are use-
ful for modeling certain discrete optimization problems
[Murota, 2003]:

▶ L♮-Convexity (“Lattice Convexity”)

▶ M♮-Convexity (“Matroid Convexity”)
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Online L♮-Convex Minimization

Proposition (p. 145 in [Murota, 2003])

A function

f : 2N → R∪ {+∞}

is submodular if and only if its indicator function
on {0, 1}n is L♮-convex.

▶ L♮-convex minimization is equivalent to submodular
minimization

Projected Subgradient Descent (PSD)

Given a step size η and an initial x1 ∈ [0, 1]n,
for t = 1, . . . ,T do the following:

1. Round xt to an indicator vector for a subset
St .

2. Play St .

3. Compute a subgradient pt of the Lovász
extension of ft at xt .

4. Take a projected gradient step in the direc-
tion of −pt from xt to xt+1

Theorem [Jegelka & Bilmes 2010]

If the rounding procedure is α-approximate,
then the expected α-regret of PSD is bounded
by

√
nT .
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Online M♮-Concave Maximization

Proposition (p. 179 in [Murota, 2003])

If g : {0, 1}n → R∪ {+∞} is M♮-concave, then
its associated set function

f : 2N → R∪ {+∞}

is submodular.

▶ M♮-concave maximization is a special case of sub-
modular maximization.

Projected Supergradient Ascent (PSA)

Given a step size η and initial x1 ∈ [0, 1]n, for
t = 1, . . . ,T do the following:

1. For each i ∈ N, draw a threshold τi uni-
formly at random.

2. Play the subset St = {i : xt(i) > τi }

3. Compute a “supergradient” pt of ft at St ,
i.e., a p that minimizes

p · xt − f ◦(p), p ∈ Zn,∥p∥∞ ⩽ 2n

4. Take a projected gradient step in the direc-
tion of pt from xt to get xt+1

Theorem [Chen, H. Kawase & Soma]

For η = 1/(2n
√
T), the expected

(
1− 1

e

)
-

regret of PSA is bounded by 2n2
√
T .
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Ongoing Work

Current Work:

▶ Derive a parameter-free version of the online M♮-
concave maximization algorithm

▶ Study FTPL-type algorithms [Jegelka & Bilmes,
2010]

▶ Hardness conjecture for online M♮-concave maxi-
mization.

Future Work: Extension to online optimization of func-
tions on Zn

▶ Inventory Control [Chen & Li, 2021]

▶ Bike Sharing [Freund Henderson & Shmoys 2022],
[Shioura 2022]

▶ Games [Fujishige Goemans Harks Peis & Zenklusen,
2015]
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