Online Discrete Convex Optimization

\ ‘PRAESTANTIA PER SCIENTA ¢ )

Jefferson Huang

Assistant Professor
Operations Research Department
Naval Postgraduate School

Joint Work With:
Louis Chen (NPS)
Yasushi Kawase (Univ. Tokyo)
Tasuku Soma (Institute of Statistical Mathematics),

INFORMS Annual Meeting
Phoenix, AZ
16 October, 2023



Online Combinatorial Optimization

Consider a matroid (N, J), where the ground set N =
[n] :={1,...,n} is finite and J C 2N is the associated
family of independent sets.

Online Setting

At each time t € [T]:={1,..., T}
P Select an independent set S; € J to play.

» The cost incurred by S; is evaluated ac-
cording to an adversarially chosen function
fe: 3 — [0,1].

We will focus on the full-information setting.

P i.e., f;'s are revealed via a value oracle.

Objective: Approximate Regret Minimization

Do as well, over the time horizon T, as some
constant o« € [0, 1] times the best fixed S € J
in hindsight, i.e. minimize the x-regret

T

;
Regreto (T) := ) fi(St) — cxgneigz (S)
t=1 t=1

Examples of applications include online versions of:
» Routing on Networks
P Selecting Products to Produce
P Selecting Items to Bid On

P Selecting Locations of Facilities, Sensors, . ..



Online Submodular Optimization

There are algorithms whose incurred «-regret grows at

most sub-linearly in T for, e.g.,

The f;'s are submodular, i.e., P cardinality-constrained modular optimization for
oo = 1 [Audibert Bubeck & Lugosi, 2014]

f(S)+£(S) >R (SUS)Y+£(SNS')

for all S. S € 2N and T » combinatorially-constrained monotone submodular
orelle ah e and t € [T] minimization [Jegelka & Bilmes, 2010]

P cardinality-constrained monotone submodular max-
imization for ¢ = 1— % [Streeter & Golovin, 2008],

» Special Case: The f;'s are modular (aka linear) if [Harvey Liaw & Soma, 2020]

:(S) = ) ,es ct(a) for some ¢; : N — [0,1]

. P . P matroid-constrained monotone submodular maxi-
» Submodularity models diminishing marginal returns o 1 :
(e.g., profits, coverage). mization for ¢ = 1 — 2 — € [Golovin Krause &
' ' Streeter 2014], [Harvey Liaw & Soma, 2020]



Motivation: Online Convex Optimization

For optimization problems of the form

min f(x), f:R" — RU{+oo},
x€ER"

convexity is a useful way to distinguish between “easy”
and “hard” problems [Rockafellar, 1970]

From p. 309 in [Rockafellar & Wets, 2009]

There is a well-developed theory for online minimization
when the decisions are vectors in R” and the functions f;
are convex [Hazan, 2022].

Examples:
» 1-regret bounds that grow with v/ T

P 1-regret lower bounds that scale with /T

Is there a useful notion of convexity in combi-
natorial optimization?




Discrete Convexity
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There is more than one way to usefully define convexity
for functions on Z" [Murota, 2003].

» Desiderata: duality between convexity and concav-
ity, separation, ...

» Not enough to assume that the discrete function

(on Z™) can be extended to a convex function on
R" [Murota, 2003].

There are two notions of discrete convexity that are use-
ful for modeling certain discrete optimization problems
[Murota, 2003]:

» L% -Convexity (“Lattice Convexity”)

> MP-Convexity (“Matroid Convexity”)



Online L-Convex Minimization

Projected Subgradient Descent (PSD)

Given a step size 1 and an initial x; € [0,1]",

Proposition (p. 145 in [Murota, 2003]) EF S, 0000 11 6D G ielEli
i & ' 1. Round x; to an indicator vector for a subset
A function S
2. Play S;.
Y
f:2% = RU {400} 3. Compute a subgradient p; of the Lovasz

. . P . extension of f; at x;.
is submodular if and only if its indicator function t t

on {0,1}" is Lbi-convex. 4. Take a projected gradient step in the direc-
tion of —p; from x; to x¢y1

e . Theorem [Jegelka & Bilmes 2010]
> L-convex minimization is equivalent to submodular

minimization

If the rounding procedure is o-approximate,
then the expected o-regret of PSD is bounded

by vnT.




Online M?-Concave Maximization

Proposition (p. 179 in [Murota, 2003])

If g :{0,1}" — R U {400} is Mf-concave, then
its associated set function

fi2N 5 RU{+o00}

is submodular.

» MP-concave maximization is a special case of sub-
modular maximization.

Projected Supergradient Ascent (PSA)

Given a step size 1 and initial x; € [0,1]", for
t=1,..., T do the following:
1. For each i € N, draw a threshold T; uni-
formly at random.
2. Play the subset Sy = {i : x¢(i) > T;}
3. Compute a “supergradient” p; of f; at S,
i.e., a p that minimizes

p-x—f°(p), peZ,

IPlloo < 2n

4. Take a projected gradient step in the direc-
tion of p; from x; to get x¢+1

Theorem [Chen, H. Kawase & Soma]

For n = 1/(2nﬁ), the expected (17 %)—
regret of PSA is bounded by 2n?v/T.




Ongoing Work

Current Work:

» Derive a parameter-free version of the online Mé-
concave maximization algorithm

» Study FTPL-type algorithms [Jegelka & Bilmes,
2010]

» Hardness conjecture for online Mi-concave maxi-
mization.

Future Work: Extension to online optimization of func-
tions on Z"

P Inventory Control [Chen & Li, 2021]

» Bike Sharing [Freund Henderson & Shmoys 2022],
[Shioura 2022]

P Games [Fujishige Goemans Harks Peis & Zenklusen,
2015]



