Online Discrete Convex Optimization

Jefferson Huang

Assistant Professor Operations Research Department Naval Postgraduate School

Joint Work With:

Louis Chen (NPS) Yasushi Kawase (Univ. Tokyo) Tasuku Soma (Institute of Statistical Mathematics),

INFORMS Annual Meeting

Phoenix, AZ 16 October, 2023

Online Combinatorial Optimization

Consider a matroid (N, \mathcal{I}) , where the ground set $N = [n] := \{1, \ldots, n\}$ is finite and $\mathcal{I} \subseteq 2^N$ is the associated family of **independent sets**.

Online Setting

At each time $t \in [T] := \{1, \ldots, T\}$:

- Select an independent set $S_t \in \mathcal{I}$ to play.
- The cost incurred by S_t is evaluated according to an *adversarially* chosen function f_t : ℑ → [0, 1].

We will focus on the **full-information** setting.

i.e., f_t's are revealed via a value oracle.

Objective: Approximate Regret Minimization

Do as well, over the time horizon T, as some constant $\alpha \in [0, 1]$ times the best fixed $S \in \mathcal{I}$ in hindsight, i.e. minimize the α -regret

$$\mathsf{Regret}_{\alpha}(T) := \sum_{t=1}^{T} f_t(S_t) - \alpha \min_{S \in \mathcal{F}} \sum_{t=1}^{T} f_t(S)$$

Examples of applications include online versions of:

- Routing on Networks
- Selecting Products to Produce
- Selecting Items to Bid On
- Selecting Locations of Facilities, Sensors, ...

Online Submodular Optimization

Assumption

```
The f_t's are submodular, i.e.,
```

```
f_t(S) + f_t(S') \ge f_t(S \cup S') + f_t(S \cap S')
```

```
for all S, S' \in 2^N and t \in [T]
```

- ▶ Special Case: The f_t 's are modular (aka linear) if $f_t(S) = \sum_{a \in S} c_t(a)$ for some $c_t : N \to [0, 1]$
- Submodularity models diminishing marginal returns (e.g., profits, coverage).

There are algorithms whose incurred α -regret grows at most sub-linearly in T for, e.g.,

- cardinality-constrained modular optimization for α = 1 [Audibert Bubeck & Lugosi, 2014]
- combinatorially-constrained monotone submodular minimization [Jegelka & Bilmes, 2010]
- cardinality-constrained monotone submodular maximization for α = 1 - ¹/_e [Streeter & Golovin, 2008], [Harvey Liaw & Soma, 2020]
- matroid-constrained monotone submodular maximization for α = 1 ¹/_e ε [Golovin Krause & Streeter 2014], [Harvey Liaw & Soma, 2020]

Motivation: Online Convex Optimization

For optimization problems of the form

 $\min_{x\in\mathbb{R}^n}f(x),\quad f:\mathbb{R}^n\to\mathbb{R}\cup\{+\infty\},$

convexity is a useful way to distinguish between "easy" and "hard" problems [Rockafellar, 1970]

From p. 309 in [Rockafellar & Wets, 2009]

There is a well-developed theory for online minimization when the decisions are vectors in \mathbb{R}^n and the functions f_t are convex [Hazan, 2022].

Examples:

- ▶ 1-regret bounds that grow with \sqrt{T}
- ▶ 1-regret lower bounds that scale with \sqrt{T}

Question

Is there a useful notion of convexity in combinatorial optimization?

Discrete Convexity

DISCRETE CONVEX ANALYSIS

Kazuo Murota

University of Tokyo Tokyo, Japan

siam.

Society for Industrial and Applied Mathematics Philadelphia There is more than one way to usefully define convexity for functions on \mathbb{Z}^n [Murota, 2003].

- Desiderata: duality between convexity and concavity, separation, ...
- Not enough to assume that the discrete function (on Zⁿ) can be extended to a convex function on ℝⁿ [Murota, 2003].

There are two notions of discrete convexity that are useful for modeling certain discrete optimization problems [Murota, 2003]:

- ► L[‡]-Convexity ("Lattice Convexity")
- M⁴-Convexity ("Matroid Convexity")

Online L⁴-Convex Minimization

Proposition (p. 145 in [Murota, 2003])

A function

$$f: 2^N \to \mathbb{R} \cup \{+\infty\}$$

is submodular if and only if its indicator function on $\{0, 1\}^n$ is L^{\natural}-convex.

 L^b-convex minimization is equivalent to submodular minimization

Projected Subgradient Descent (PSD)

Given a step size η and an initial $x_1 \in [0, 1]^n$, for t = 1, ..., T do the following:

- 1. Round x_t to an indicator vector for a subset S_t .
- 2. Play S_t .
- 3. Compute a subgradient p_t of the Lovász extension of f_t at x_t .
- Take a projected gradient step in the direction of -p_t from x_t to x_{t+1}

Theorem [Jegelka & Bilmes 2010]

If the rounding procedure is α -approximate, then the expected α -regret of PSD is bounded by \sqrt{nT} .

Online M⁴-Concave Maximization

Proposition (p. 179 in [Murota, 2003])

If $g:\{0,1\}^n\to\mathbb{R}\cup\{+\infty\}$ is $\mathsf{M}^{\natural}\text{-concave,}$ then its associated set function

$$f: 2^N \to \mathbb{R} \cup \{+\infty\}$$

is submodular.

 M^{\u03e4}-concave maximization is a special case of submodular maximization.

Projected Supergradient Ascent (PSA)

Given a step size η and initial $x_1 \in [0, 1]^n$, for t = 1, ..., T do the following:

- 1. For each $i \in N$, draw a threshold τ_i uniformly at random.
- 2. Play the subset $S_t = \{i : x_t(i) > \tau_i\}$
- Compute a "supergradient" pt of ft at St, i.e., a p that minimizes

 $p \cdot x_t - f^{\circ}(p), \quad p \in \mathbb{Z}^n, \|p\|_{\infty} \leq 2n$

Take a projected gradient step in the direction of p_t from x_t to get x_{t+1}

Theorem [Chen, H. Kawase & Soma]

For
$$\eta = 1/(2n\sqrt{T})$$
, the expected $(1-\frac{1}{e})$ -regret of PSA is bounded by $2n^2\sqrt{T}$.

Ongoing Work

Current Work:

- Derive a parameter-free version of the online M¹concave maximization algorithm
- Study FTPL-type algorithms [Jegelka & Bilmes, 2010]
- Hardness conjecture for online M^{\$\u03ex}-concave maximization.

Future Work: Extension to online optimization of functions on \mathbb{Z}^n

- Inventory Control [Chen & Li, 2021]
- Bike Sharing [Freund Henderson & Shmoys 2022], [Shioura 2022]
- Games [Fujishige Goemans Harks Peis & Zenklusen, 2015]