
Dynamically scheduling and maintaining a flexible server

Jefferson Huang*1, Douglas G. Down2, Mark E. Lewis3, and Cheng-Hung Wu4

1Operations Research Department, Naval Postgraduate School, Monterey, CA 93943-5098, USA
2Department of Computing and Software, McMaster University, Hamilton, Ontario L8S 4L7,

Canada
3School of Operations Research and Information Engineering, Cornell University, Ithaca, NY

14853-3801, USA
4Institute of Industrial Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei

106, Taiwan

February 26, 2021

*Coresponding Author: jefferson.huang@nps.edu

Abstract

Deciding how to jointly schedule jobs and perform preventive maintenance is a funda-

mental problem in flexible manufacturing systems, particularly those arising in semiconductor

manufacturing. At the same time, past work in this area shows that, even when there is only

one station and one type of job, identifying policies that minimize the amount of work-in-

process (WIP) is a difficult problem. In this paper, we study a single-station version of this

problem wth an arbitrary number of job classes, with the objective of minimizing average

maintenance costs plus the weighted average amount of WIP. We identify conditions under

which it suffices to schedule jobs according to both a server-state-dependent version of the

cµ-rule, and a static cµ-rule where the average service rates are used. One of these conditions

states that the ratio between the service rates should remain constant as the server deteriorates.

When this assumption does not hold, scheduling with the cµ-rule can in fact lead to an unstable

system; we illustrate this using a simple example. On the other hand, we also present numeri-

cal evidence that cµ-based scheduling performs well compared to other scheduling rules, and

relative to a policy based on solving a Markov decision process.

Keywords: scheduling, priority, maintenance, Markov decision process, queue

1 Introduction

The yield of a manufacturing process, defined as the fraction of output that is of sufficient qual-

ity, is a key economic performance indicator; see e.g., [3]. In semiconductor manufacturing, yield

improvement has been recognized as an effective means of managing costs and sustaining prof-

itability [2]. In particular, yield increases on the order of even 1-2% can lead to significant savings

in wafer manufacturing costs [9].

One of the key determinants of yield is the health of the machines processing the jobs that

eventually become finished products. As the underlying condition of a given machine deterio-

rates, the increased frequency of significant process deviations (as identified by, e.g., statistical

process control procedures [23]) leads to more re-work and tuning, which in turn reduces the rate

at which good products are produced (i.e., the “service rate” of the machine). Eventually, it can be-

come worthwhile to take the deteriorated machine offline for maintenance, after which the service

rate is improved.

The need for good maintenance policies, and the increasing prevalance of sensorized equip-

ment in the semiconductor and other advanced manufacturing industries, has led to the emer-

gence of condition-based maintenance (CBM) as a potentially cost-effective alternative to more

commonly used age or job-based maintenance rules [8, 13]. At the same time, almost every ma-

chine used to process jobs in the semiconductor manufacturing setting is flexible, in the sense that

it can be used to process more than one type of job. Hence a fundamental problem in semicon-

ductor manufacturing, and more generally in flexible manufacturing systems with deteriorating

equipment, is how to simultaneously (1) allocate jobs to flexible machines that deteriorate over

time, and (2) perform preventive maintenance on those machines.

When there is a single operation to be performed, Kaufman and Lewis [16] show the difficulty

in developing control policies that use as inputs both the current workload in the system and

the condition of the machine. This leaves a broad class of manufacturing system configurations,

which includes configurations arising in the semiconductor industry, without guidance on how to

consider the trade-offs between resource allocation and resource maintenance. In this paper, we

1

consider the question of joint maintenance and scheduling in a parallel queueing setting. When

there are a number of job classes, the manager can decide to assign a single resource (henceforth

called a server) to any of the classes, or to begin preventive maintenance. The goal is to provide

adequate service (in the form of minimizing weighted queue-lengths) to each class, while noting

that a deteriorated server works slower. Since [16] shows in the single queue setting that the usual

monotonicity properties of an optimal control do not hold, there is little hope of finding simple

solutions to the scheduling/maintenance pairing. Instead, we seek insights into the following

questions:

1. Given a choice between prioritizing scheduling or maintenance, where should a decision-

maker focus his/her efforts?

2. Given the complexity of optimal policies in general, are there easier-to-implement heuristics

that perform comparably?

We address both questions by presenting conditions under which scheduling with a natural ex-

tension of the classic cµ-rule is without loss of optimality (Theorem 5), and numerical results

indicating that this heuristic performs well more generally (Section 5).

1.1 Related Literature

The two types of decisions described above, namely maintaining a deteriorating machine and

scheduling jobs in a queueing system, have typically been considered separately in the literature.

In particular, the majority of papers in the maintenance literature do not consider the effect that the

amount of work in the system (i.e., the queue length) may have on optimal maintenance decisions;

see e.g., the surveys [17, 19, 21, 24]. Two papers where such effects are accounted for, via models

that are very closely related to the one presented in Section 2, are Kaufman and Lewis [16] and

Cai et al. [5], which we describe in more detail below. Moreover, while previous work such as

that of Andradóttir et al. [1] and Wu et al. [25, 26] has accounted for server failures in the context

of queueing models of flexible manufacturing systems, with the exception of Cai et al. [5] we are

2

not aware of any other work in this area that combines scheduling with maintenance decisions.

We note that there has been recent work on joint scheduling and maintenance in the contexts

of deterministic scheduling [14], developing metaheuristics [7], and mixed-integer programming

that incorporates constraints specific to semiconductor manufacturing [6, 27].

Kaufman and Lewis [16] analyze the structure of optimal maintenance policies for the server

of an M/M/1 queue with only one type of job, where the service rate deteriorates according to

a pure-death process. In particular, [16, Example 3.6] shows that the optimal policy under the

average cost criterion may not be monotone in the queue lengths. For certain deterioration levels

it may be optimal to perform maintenance when there are no queued jobs, not perform main-

tenance when there are few queued jobs, and to perform maintenance for all sufficiently large

queue lengths. On the other hand, [16, Theorems 3.2, 4.2; Proposition 4.10] provide conditions

under which there is an optimal policy that is monotone in the server’s health. This means that

there is an optimal policy with the following structure: For each fixed number of queued jobs i,

there is a threshold s∗i such that maintenance is performed if and only if the deterioration level

is worse than s∗i . Finally, numerical experiments are presented [16, Section 5] that illustrate some

pitfalls associated with using some simple and natural heuristics, underscoring the difficulty of

the problem.

Cai et al. [5] consider an M/G/1 queueing model with at most two types of jobs, which is

motivated by potential semiconductor manufacturing applications. In this model, the service and

deterioration dynamics differ from those in [16]. In particular, jobs cannot be preempted while

they are being served, and deterioration events can only occur when a service completion occurs.

On the other hand, while in [16] it is assumed that at each deterioration event the server moves to

the “next-worse” state with probability 1, the model in Cai et al. [5] allows the server to move, as a

result of a single deterioration event, to any state that is worse. For this model, analogous results

to the ones in [16] hold. Namely, the optimal policy may not be monotone in the number of jobs

[5, Section 5], but under certain conditions there exists an optimal policy that is monotone in the

server’s health [5, Theorems 3.3, 4.3]. In addition, for the case of two types of jobs, it is shown

3

that it may be suboptimal to always prioritize a job type that seems, from a cost and deterioration

perspective, to be superior to the other [5, Section 4.2]. A monotonicity result [5, Theorem 4.4]

on the value function when one job type is superior to the other in the aforementioned sense is

also provided. Finally, numerical results [5, Sections 5,6] are presented to illustrate the savings

that an optimal joint scheduling and maintenance policy can provide, relative to first-in first-out

scheduling and maintenance after a fixed number of jobs have been completed.

In this paper, we consider joint scheduling and maintenance in the context of a G/M/1 queue

with an arbitrary number of job classes. As in Kaufman and Lewis [16], and in contrast to Cai

et al. [5], we assume that jobs can be preempted by the decision-maker, or interrupted by a fail-

ure event. We also consider deterioration dynamics that are more general than those in [16], and

which differ from those in [5]. In particular, in [5] it is assumed that deterioration events must

coincide with service completions, but that deterioration rates can depend on which type of job is

worked on. In contrast, we assume that deterioration events can happen at any time, but that the

deterioration rates are the same for both job types. While Cai et al. [5] argue that work-dependent

deterioration is important for certain semiconductor manufacturing applications, Sloan and Shan-

thikumar [22] note that for some wafer fabrication processes, such as in etch operations, it is rea-

sonable to assume that deterioration does not depend on the type of job.

1.2 Contributions and Outline

The main contributions of the paper are as follows. After presenting the scheduling and mainte-

nance model in Section 2, we consider the problem of scheduling in the presence of a deteriorating

server in Section 3, without preventive maintenance. We provide a condition (Assumption CR)

under which it is optimal to schedule the jobs according to a static priority rule, when the service

rates are modulated according to a (possibly non-Markovian) point process; see Theorem 2 and

Remark 3. In addition, Example 1 shows that, when the conditions of Theorem 2 do not hold,

scheduling according to the aforementioned priority rule can in fact lead to an unstable system,

in the sense that the average number of queued jobs grows to infinity. From the perspective of

4

system design, this provides a strong incentive to invest in ensuring that Assumption CR below

holds. Next, in Section 4 we return to the joint scheduling and maintenance problem. We use

the results in Section 3 to provide conditions under which it suffices to search for an optimal pol-

icy among those that schedule according to a priority rule and that are monotone in the server’s

health (Theorem 7). In Section 5, we provide numerical results indicating that the priority-rule

based scheduling policies considered in Section 4 can perform well across a range of system pa-

rameters. The numerical results also underscore the value of good maintenance policies, and of

incorporating service rate information in scheduling and maintenance policies. This latter point

was also observed by Iravani and Duenyas [15], in the context of a single job type. Finally, conclu-

sions and future research directions are presented in Section 6. Unless otherwise indicated, proofs

of stated results are provided in Appendix A.

2 Joint Scheduling and Maintenance Model

Jobs from K classes arrive randomly over time. Each arriving job requires a random amount of

work, and all incoming work is processed by a single server. The arrival times of the jobs are

modeled by independent point processes on R+ := [0,∞), while the amount of work required by

each arriving job is assumed to be exponentially distributed with unit mean, independently of the

other jobs. It is assumed that the arrival process is regular, in the sense that with probability 1,

there can be at most a finite number of arrivals during any finite interval of time.

Jobs of the same class are homogeneous. However, both the cost incurred by a waiting job and

the time required to complete a job depend on the job’s class. For k = 1, . . . ,K, the cost incurred

by a waiting job of class k is assumed to accumulate continuously at a constant rate ck.

As time progresses, the health of the server deteriorates. This is modeled by assuming that

when the server is able to perform work, it spends a random amount of time in its current state

s ∈ {0, 1, . . . ,S} before deteriorating to a state that is at least as bad. In particular, lower numbered

states indicate worse health. In addition, given that a deterioration event has occured, the proba-

bility that the server then transitions to state ` from its current state s is q(`|s), where q(`|s) = 0 if

5

` > s. Once the server’s state reaches 0, it undergoes maintenance for a random amount of time,

after which it returns to state S. We assume that the times at which the server changes state are

independent of both the amount and the nature of the work that the server has completed. In

particular, the random times at which the server changes state are modeled by a point process on

R+ that is independent of the arrival processes and work requirements. Like the arrival processes,

this process of deterioration times is also assumed to be regular.

The rate at which the server can complete work of a given class depends on the server’s health.

If the state of the server is s, then the rate at which it can complete work of class k is µsk. We assume

that µ0
k = 0 < µ1

k 6 · · · 6 µSk < ∞ for each class k = 1, . . . ,K. In other words, the server cannot

complete any work while it is undergoing maintenance (i.e., is in state 0), and higher-numbered

states indicate less deterioration.

For ease of exposition, the server is referred to as being online if its state is not 0, and offline if

its state is 0. In addition, the server is said to deteriorate if it transitions from state s > 2 to state

` > 1, and fails if it transitions to state 0 without the influence of the decision-maker. Whenever

a failure occurs, corrective maintenance (CM) is initiated at cost Kc > 0. When the server is online,

the decision-maker can initiate preventive maintenance (PM), which is modeled as an instantaneous

transition of the server state to 0 at cost Kp > 0.

In addition, when the server is online and there is a job in the system, the server may be

assigned to work on that job. Since jobs of the same class are assumed to be homogeneous, we

equate selecting a job to work on with selecting which class to assign the server to.

The decision-maker is only able to exert control over the server at decision epochs, which occur

whenever one of the following events occurs:

• A job arrives and the server is online.

• A job is completed and the server is online.

• The server deteriorates or fails.

• The server comes back online (from state 0).

6

Accordingly, jobs that are currently in service may be preempted.

At each decision epoch, the decision-maker knows the current state of the system, i.e., the

number ik of jobs of each class k ∈ {1, . . . ,K} present and the state s ∈ {0, 1, . . . ,S} of the server.

Let X := {0, 1, . . . }K × {0, 1, . . . ,S} denote the set of all possible system states. We also denote

by i the vector whose kth entry is ik. In addition to the current state, the decision-maker also

knows the history of the system (i.e., the past queue lengths, server states, and event times) up

to the current decision epoch. In deciding whether to serve one of the classes or initiate PM, the

decision-maker follows a policy π that prescribes (possibly in a randomized way) the action to

take at each decision epoch, given the current state and history of the system. We restrict attention

to policies that are non-idling (i.e., never call for an online server to idle when there is work to do)

and non-anticipative (i.e., do not depend on future information). Let Π denote the set of all such

policies. Of particular interest are the deterministic stationary policies; under such a policy π, the

action π(x) is taken whenever the system is in state x ∈ X.

We compare policies on the basis of the long-run average cost per unit time incurred from a

given initial state. To define this optimality criterion, fix any π ∈ Π. Let Qπk(t) denote the number

of jobs in class k, including those in service, at time t and Qπ(t) be the vector whose kth entry is

Qπk(t). Also, let Sπ(t) denote the state of the server at time t under π, letMπ
c (t) (resp. Mπ

p(t)) equal

1 if CM (resp. PM) is initiated at time t under π, and let Mπ
c (t) (resp. Mπ

p(t)) equal 0 otherwise.

Finally, for n = 1, 2, . . . let tπn denote the nth decision epoch under π.

If the system is in state (i, s) ∈ X at time 0, then the long-run expected average cost per unit

time that is incurred by following the policy π is

wπ(i, s) := lim sup
T→∞

1
T

E

 ∑
n:tπn6T

[
KcM

π
c (t

π
n) +KpM

π
p(t

π
n)
]
+

∫T
0

K∑
k=1

ckQ
π
k(t) dt

∣∣∣∣
Qπ(0) = i, Sπ(0) = s

]
.

A policy π∗ ∈ Π is optimal if wπ∗(i, s) = minπ∈Πwπ(i, s) for every initial state (i, s) ∈ X.

7

3 Scheduling Without Preventive Maintenance

We first consider the case where the decision-maker cannot perform PM, and can only schedule

jobs in the presence of a deteriorating server. In this setting, the server can only go offline (i.e.,

enter state 0) via a failure. Note that, since preventive maintenance is not permitted and the server

state evolves independently of the scheduling decisions, the maintenance costs are independent

of the policy used. The decision-maker’s objective is therefore to find a scheduling policy π that

minimizes the weighted long-run average expected number of jobs in the system

lim sup
T→∞

1
T

E

[∫T
0

K∑
k=1

ckQ
π
k(t) dt

]
. (1)

in the presence of uncontrollable server deterioration.

3.1 cµ-Rules

Without server deterioration, it follows from [18, Theorem 2.1] that it is optimal to schedule ac-

cording to the cµ-rule. According to this rule, if the service rate for class k jobs is µk, then priority

is given to any class k∗ where ck∗µk∗ > ckµk for every class k.

When the service rate depends on the state of the server, it is natural to consider prioritizing

the jobs according to a state-dependent cµ-rule. Namely, if the state of the server is s, prioritize

any class k∗ where ck∗µsk∗ > ckµ
s
k for every class k. Alternatively, letting ν(s) denote the long-

run expected fraction of time that the server spends in state s, one could employ the following

average cµ-rule: Assign priority to any class k∗ for which ck∗µ̄k∗ > ckµ̄k for every class k, where

µ̄k :=
∑S
s=0 ν(s)µ

s
k is the average service rate for class k jobs.

3.2 Instability of cµ-Rules

Observe that if ck∗µsk∗ > ckµ
s
k for every server state s, and every class k, then both the state-

dependent and average cµ-rules described above would prioritize class k∗, regardless of the server

8

state. While it is tempting to conjecture that prioritizing class k∗ in this situation is optimal, the

following example shows that doing so could in fact be very suboptimal.

Example 1. Let K = 2. Suppose jobs of classes 1 and 2 arrive according to Poisson processes with rates

λ1 = 5 and λ2 = 0.8, respectively. There are only two server states, q(1|2) = 1, and the inter-deterioration

times are exponential with rate 1. The service rates are µ1
1 = µ2

1 = 10 and µs2 = s for s = 1, 2. Finally,

corrective maintenance occurs instantaneously.

Under both the state-dependent and average cµ-rules, class 1 is given priority regardless of the server

state. Note that under this policy, the average service rate for class 2 jobs is 0.5(0.5 · 2 + 0.5 · 1) = 0.75 <

0.8 = λ2. This indicates that, regardless of the initial state, the system is unstable and has infinite long-run

expected average cost. A formal proof that the system is unstable when class 1 is always prioritized is given

in Appendix A.1.

On the other hand, consider the policy that prioritizes class s jobs when the server state is s, for s = 1, 2.

Since λ2 = 0.8 < (0.5)(2) = 1, this policy incurs a finite long-run expected average cost regardless of the

initial state. This can be proved by showing that the associated fluid model is stable; see Appendix A.2 for

details.

3.3 Optimality of cµ-Rules

The following condition guarantees that it is optimal to prioritize one class over another.

Assumption CR (Constant Ratio). Every state s ∈ {1, . . . ,S} (i.e., where the server is online), as well as

every pair of classes i, j, satisfies

µs−1
i µsj = µ

s
iµ
s−1
j . (2)

Assumption CR states that the ratio of the service rates for class i and class j jobs remains

constant as the server changes state. It can be interpreted as saying that the different service

capabilities of the flexible server are affected equally by deterioration. Note that Assumption CR

implies, but is not equivalent to, the condition that c1µ
s
1 > c2µ

s
2 > · · · > cKµ

s
K for every server

9

state s. For instance, Example 1 satisfies c1µ
s
1 > c2µ

s
2 for every s ∈ {0, 1, . . . ,S}, but does not satisfy

Assumption CR.

The following theorem, which is the main result of this section, states that Assumption CR

guarantees the optimality of the state-dependent and average cµ-rules described at the beginning

of this section.

Theorem 2. If Assumption CR holds, then the cµ-rule is optimal.

Proof. We use Assumption CR to adapt the interchange argument in Nain [18, Proof of Theo-

rem 2.1] to our setting.

The first step is to show that, for every T > 0, the problem of minimizing the finite-horizon

expected weighted queue lengths

E

[∫T
0

K∑
k=1

ckQ
π
k(t) dt

]
(3)

can be reduced to a reward-maximization problem that is amenable to analysis via an interchange

argument. To do this, we define some processes of interest. Consider any policy π ∈ Π and fixed

time t ∈ [0,∞). Let Uπ(t) denote the job class that the server is assigned to at time t under the

policy π, and let1

aπk(t) := 1{Qπk(t−) > 0, Uπ(t) = k}, k = 1, 2, . . . ,K.

Also, recalling that we are considering the case of no preventive maintenance, let S(t) denote the

state of the server at time t, and let

φπ(t) :=

∫t
0

K∑
k=1

ckµ
S(u)
k aπk(u) du.

To reduce the problem of minimizing (1) to that of maximizing

E

[∫T
0
φπ(t) dt

]
, (4)

1Given a function f : [0,∞)→ R, let f(t−) := limu↑t f(u) for t > 0.

10

consider the queue-length processes Qπk(t), k = 1, 2, . . . ,K, under π, and let Ak(t) denote the

cumulative number of class k arrivals during the time interval [0, t]. Using an argument analogous

to that in [18, Proof of Lemma 2.1] (replace µk with µS(u)k and the fact that [4, Partial Result, p. 24]

holds for Poisson processes with rates that depend on S(t)),

E

[∫T
0

K∑
k=1

ckQ
π
k(t) dt

]
= E

[∫T
0

K∑
k=1

ck[Qk(0) +Ak(t)]

]
− E

[∫T
0
φπ(t) dt

]
. (5)

Since the first term on the right-hand side of (5) does not depend on π, it follows that minimizing

(3) is equivalent to maximizing E
[∫T

0 φ
π(t) dt

]
.

The next step is to show that the cµ-rule, denoted by πcµ, maximizes (4) for every finite horizon

T > 0, i.e., that

E

[∫T
0
φπcµ(t) dt

]
> E

[∫T
0
φπ(t) dt

]
. (6)

for all π ∈ Π and T > 0. To prove this, we use a slight modification of the sample-path-based

construction in [18, Proof of Theorem 2.1] to show that in fact,∫T
0
φπcµ(t) dt >

∫T
0
φπ(t) dt (7)

holds with probability 1 (written w.p.1).

Noting that every policy is optimal if T = 0, fix π ∈ Π and T > 0. Suppose Assumption CR

holds, and assume the job classes are numbered so that c1µ
s
1 > c2µ

s
2 > · · · > cKµ

s
K (see the

comments following the definition of Assumption CR). Consider the random time

σπ := inf {t > 0 | Qπ1 (t−) > 0, Uπ(t) 6= 1} ,

which denotes the first time that the policy π does not follow the cµ-rule. If σπ > T w.p.1, then (7)

holds w.p.1., since in this case the policy π follows the cµ-rule during [0, T].

On the other hand, suppose σπ < T with positive probability, in which case there is a positive

probability with which π does not follow the cµ-rule during [0, T]. Let Task A denote the class 1

job that is assigned to the server at time σπ under the cµ-rule and Task B be the class ` job the

server is assigned to under π.

11

Let Π∞ ⊃ Π denote the set of all possibly anticipative policies. We will now construct a policy

π+ ∈ Π∞ that follows the cµ-rule at time σπ and satisfies∫T
0
φπ+(t) dt >

∫T
0
φπ(t) dt w.p.1. (8)

First, for all times t ∈ [0,σπ), let π+ coincide with the cµ-rule. To define π+ for times t > σπ,

consider the random variable

σ∗π := min {TA, τπ} ,

where TA denotes the amount of time required to complete Task Awhen the server state is S(σπ),

and τπ := inf{t > σπ | Uπ(t) 6= ` or S(t) 6= S(σπ)} is the first time after time σπ that either under

π the server stops working on Task B or the server changes state. Assume the policy π+ works on

Task A during [σπ,σπ + σ∗π).

To complete the “interchange” of Tasks A and B, we will complete the definition of π+ so that

after some time νπ, the number of queued jobs under both π+ and π agree w.p.1. In particular,

let νπ denote the time when Task A is completed under the policy π. During [σπ + σ
∗
π,νπ), let π+

mimic the actions taken under π with the following exception: Whenever π works on Task A, but

Task A has already been completed under π+, the latter policy works on Task B instead. Finally,

let π+ mimic the actions taken under π at all times t > νπ.

We claim that at time νπ, both the queue lengths and the amount of work remaining in the

system are the same under both π and π+. To verify this, let

κ :=
µs−1

1
µs1

=
µs−1
`

µs`
, s > 1,

and let In = [θn, θ′n) denote the nth time interval in [σπ + σ∗π,νπ) during which π+ serves class `

while π serves class 1 and the server state does not change. Observe that under π+, the amount

of work done on Task A during [σπ,σπ + σ∗π) is the same as the amount of work done on this job

during ∪nIn under π. Note that by Assumption CR,

µrk = κs−rµsk, k = 1, `, r, s > 1; (9)

12

this is because when r > s > 1,

µrk =
µrk
µr−1
k

· · ·
µ
r−(r−s−1)
k

µsk
= κs−rµsk,

and when s > r > 1,

µrk =
µrk
µr+1
k

· · ·
µ
r+(r−s−1)
k

µsk
= κs−rµsk.

Using (9), the amount of work done on Task A during [σπ,σπ + σ∗π) can be written as

µ
S(σπ)
1 σ∗π =

∑
n

µ
S(θn)
1 (θ′n − θn) = µ

S(σπ)
1

∑
n

κS(σπ)−S(θn)(θ′n − θn). (10)

From (10), we conclude that

σ∗π =
∑
n

κS(σπ)−S(θn)(θ′n − θn). (11)

Hence the amount of work that is done on Task B during ∪nIn under π+ is∑
n

µ
S(θn)
` (θ′n − θn) = µ

S(σπ)
`

∑
n

κS(σπ)−S(θn)(θ′n − θn) = µ
S(σπ)
` σ∗π,

which is precisely the amount of work done on Task B during [σπ,σπ + σ∗π) under the original

policy π. Since π+ selects exactly the same actions as π at all times t ∈ [σπ + σ∗π,νπ) \ ∪nIn, it

follows that both the queue lengths and the remaining amount of work in the system at time νπ

are the same under both π and π+.

Since the policies π and π+ couple at time νπ, the validity of (8) and the optimality of the cµ-

rule for every finite horizon T can be proved by following [18, Proof of Theorem 2.1] and using the

preceding definitions of φπ(t), σ∗π, and the intervals [θn, θ′n). It follows a fortiori that the cµ-rule

is optimal under the average-cost criterion (1).

Remark 3. The proof of Theorem 2 does not rely on the assumption that deterioration events always send

the server to a state that is worse. In particular, it holds when the service rates are simply assumed to be

modulated (not necessarily in a Markovian way) according to the point process that describes the deterio-

ration process. Hence the proof of Theorem 2 implies that, for a two-class G/M/1 queue with modulated

service rates that satisfy Assumption CR, it is optimal to schedule according to the cµ-rule.

13

4 Scheduling with Preventive Maintenance

We now consider the problem of optimally making both scheduling and preventive maintenance

decisions. In Section 4.1, we provide conditions under which it suffices to schedule jobs according

to the state-dependent cµ-rule, or the average cµ-rule, described in Section 3.1. Then, in Section 4.2

we present conditions under which optimal maintenance decisions are monotone in the server’s

health. When the conditions hold, these results simplify the computation of optimal policies.

At the same time, when one or more of the conditions do not hold, they suggest heuristics that

may still perform well. The performance of scheduling with the cµ-rule, when the conditions of

Theorem 4 in this section do not hold, is considered numerically in Section 5.

4.1 Optimal Scheduling

In this section, a maintenance policy is a rule that stipulates, given the current state of the system,

whether or not to initiate maintenance. If maintenance is not initiated, a scheduling policy de-

termines which customer class (if any) should be served. The set of all stationary deterministic

maintenance policies is identified with the set of all functions f : {0, 1, . . . }K × {0, 1, . . . ,S} → {0, 1}

where f(i, s) = 1 (resp. = 0) if and only if the maintenance policy f calls for maintenance to be

initiated (resp. no maintenance) when the state is (i, s). Note that f(i, 0) = 1 for all i.

According to Theorem 2 in Section 3, if Assumption CR holds, then the cµ-rule is the optimal

scheduling policy in the presence of a deteriorating server that cannot be preventively maintained.

In the context of joint scheduling and maintenance, Theorem 2 can be generalized to Theorem 4

below. To state this theorem, a maintenance policy f is said to be queue-oblivious if there exists a

function g : {0, 1, . . . ,S}→ {0, 1} satisfying

f(i, s) = g(s) for all (i, s) ∈ {0, 1, . . . }K × {0, 1, . . . ,S}.

In other words, a queue-oblivious maintenance policy is stationary, deterministic, and does not

depend on any queue-length information. Examples of queue-oblivious maintenance policies

include server threshold policies (where the server is maintained if and only if its state is below

14

a certain threshold), job-based policies (where the server is maintained whenever a certain fixed

number of jobs have been completed), and calendar-based policies (where the server is maintained

whenever a certain fixed amount of time has elapsed).

Theorem 4. Suppose Assumption CR holds. Then under any queue-oblivious maintenance policy, it is

optimal to schedule according to the cµ-rule. In particular, consider any server state s > 1, and assume

that the current state is one in which the maintenance policy calls for no maintenance. If

c1µ
s
1 > c2µ

s
2 > · · · > cKµsK, (12)

then Assumption CR implies that (12) holds for all s ∈ {0, 1, . . . ,S}, and it is optimal to prioritize the classes

in the order 1, 2, . . . ,K.

Proof. Under a queue-oblivious maintenance policy, the evolution of the server state does not

depend on how the jobs are served. The theorem then follows from the proof of Theorem 2, which

does not require any assumptions on where the server state transitions to when deterioration

events occur (see Remark 3).

Theorem 4 immediately implies the following theorem, which is the main result of this section.

Theorem 5. If Assumption CR holds, and the decision-maker is restricted to queue-oblivious maintenance

policies, then it is without loss of optimality to only consider joint scheduling and maintenance policies

where jobs are scheduled according to the (static) priority policy described in Theorem 4.

4.2 Optimal Maintenance Decisions

Up to this point, we have only assumed that the arrival processes are described by independent

point processes on R+. Under Assumption M below, the problem can be formulated as a semi-

Markov decision process (SMDP). The main result in this section (Theorem 6) states that under this

assumption and Assumption S below, the search for an optimal policy can be restricted to policies

that are monotone in the server’s health.

15

Assumption M (Markovian Arrivals and Deterioration).

(i) The point process modeling the arrival times of jobs of class k is a Poisson process with rate λk.

Furthermore, the K arrival processes are mutually independent.

(ii) The server deteriorates according to a continuous-time Markov chain. In particular, if its current state

is s ∈ {1, . . . ,S}, then the time until the next deterioration event is exponentially distributed with rate

αs > 0.

(iii) The maintenance times (i.e., the times that the server spends in the offline state) are independent

and identically distributed with common distribution G(·) whose mean 1/α0 :=
∫∞

0 t dG(t) satisfies

0 < 1/α0 <∞.

Assumption S (Stability).

(i) There is a server state s∗ ∈ {1, . . . ,S} satisfying

K∑
k=1

λk∑S
s=s∗(µ

s
k/αs)

<
1

(1/α0) +
∑S
s=s∗(1/αs)

.

(ii) The server can only deteriorate to the next-worse state, i.e.,

q(s− 1|s) = 1 ∀s > 1.

A joint scheduling and maintenance policy is monotone in the server’s health if, for every fixed

number of jobs of each class in the system, PM is initiated whenever the server’s health state is

sufficiently low. The following proposition states that under Assumptions M and S, one can re-

strict the search for an optimal joint scheduling and maintenance policy to deterministic stationary

policies that are monotone in the server’s health. A proof is provided in Appendix A.3.

Proposition 6. Suppose Assumptions M and S hold. Then there exists an optimal joint scheduling and

maintenance policy that is deterministic, stationary, and monotone in the server’s health.

Combining the conclusions of Propositions 4 and 6 leads to the following theorem, which is

the main result in this section.

16

Theorem 7. Suppose Assumptions CR, M, and S hold. Then there exists an optimal deterministic station-

ary policy that is both monotone in the server’s health and schedules jobs according to the cµ-rule.

Remark 8. Under Assumptions M and S, there may not be an optimal policy that is monotone in the queue

lengths. In particular, letting K = 2, Kc = Kp = 0, c1 = c2 = 1, λ1 = λ2 = 1, S = 4, µ1
1 = µ1

2 = 1/2,

µ2
1 = µ2

2 = 1, µ3
1 = µ3

2 = 3/2, µ4
1 = µ4

2 = 2, and αs = 1/5 for s = 0, 1, 2, 3, 4, we obtain the model

instance considered in [16, Example 3.6]. It was shown in [16] that the optimal policy for this model is such

that, for server state 2, initiating maintenance is optimal when there are no jobs, not optimal when there are

1 to 11 jobs, and optimal when there are more than 11 jobs.

5 Numerical Experiments

In this section, we numerically examine policy performance as the problem parameters vary.

Specifically, we consider variations in holding/maintenance costs (Section 5.1.2), maintenance rate

(Section 5.1.3), the degree of service capacity deterioration per server state change (Section 5.1.4),

and the variability of inter-event (i.e., arrival, service, deterioration, or maintenance) times (Sec-

tion 5.1.5). In the simulation model, we relax a number of assumptions used in the preceding

sections. This includes departures from Assumption CR, a lack of the non-preemptive service,

class-dependent deterioration rates αsk, and allowing for non-exponential inter-arrival, service,

and inter-deterioration time distributions.

5.1 Simulation Setup

We restrict attention to three job classes, three server states (2 = like-new, 1 = deteriorated, and

0 = failed), and identical fixed predictive and corrective maintenance costs (i.e., Kp = Kc). The

assumption of equal predictive and corrective maintenance costs was made in part to limit the

number of varying parameters, and is reasonable for modeling systems where the additional cost

due to unexpected failure is small. Service is assumed to be non-preemptive, and both job classes

have unlimited buffers.

17

5.1.1 Model Parameters

A total of 21 parameters are used to specify the sets of model instances considered in Sections 5.1.2,

5.1.3, 5.1.4, and 5.1.5. Each parameter has three levels, corresponding to “low”, “moderate”, and

“high”. The sets of parameter values were selected to balance the objective of examining policy

performance as certain parameters vary, with the computational resources available for this study.

Sections 5.1.2, 5.1.3, 5.1.4, and 5.1.5 provide details on how the parameter values were selected.

The first group of parameters are the system utilization and arrival rate levels λ̃k for each class

k, in jobs per hour. Here, the “utilization level” ρ should be interpreted as stipulating that there

exists a policy such that the utilization level for each job class (i.e., the arrival rate divided by the

average service rate) does not exceed ρ.

Level Utilization λ̃1 λ̃2 λ̃3

Low 0.4 1 1 1

Moderate 0.6 5 5 5

High 0.8 10 10 10

Table 1: The utilization is the arrival rate divided by the average service rate, taken to be the same

for each class. The arrival rate levels λ̃k are in units of jobs per hour.

Note that whether or not the numerical values of the selected arrival rate levels are consistent with

the selected utilization level will depend on the average service rate, which in turn depends on

the service, deterioration, and maintenance rates. For example, if ρ = 0.8 and λ̃1 = λ̃2 = λ̃3 = 10

are selected, then the average service rate should be at least 10/0.8 = 12.5. To account for this,

we select all of the parameter levels first, and then modify the arrival rates to ensure the existence

of a policy with sufficiently large average service rates. This is accomplished by solving a linear

program (LP). Appendix A.4 contains the formulation of this LP, and specifies how a solution to

it is used to determine the modified arrival rates.

The average service rate for class k jobs is µsk jobs per hour, when the server state is s. The

levels for the like-new service rates, and the ratios between the like-new and deteriorated service

18

rates, are given in Table 2.

Level µ2
1 µ2

2 µ2
3

µ1
1
µ2

1

µ1
2
µ2

2

µ1
3
µ2

3

Low 1 1 1 0.01 0.01 0.01

Moderate 5 5 5 0.5 0.5 0.5

High 10 10 10 0.99 0.99 0.99

Table 2: For each class k, the like-new service rate is µ2
k and the deteriorated service rate is µ1

k.

The average deterioration rate when the server is in state s and working on a class k job is

denoted by αsk, and the average maintenance rate is denoted by α0. Moreover, deteriorations are

assumed to always transition the server to the next-worse state, i.e., q(1|2) = q(0|1) = 1. The levels

for the like-new deterioration rates, the ratios between the like-new and deteriorated deterioration

rates, and the maintenance rate are given in Table 3 in units of deterioration events per hour.

Level α2
1 α2

2 α2
3

α1
1
α2

1

α1
2
α2

2

α1
3
α2

3
α0

Low 0.01 0.01 0.01 1.01 1.01 1.01 0.01

Moderate 0.5 0.5 0.5 1.5 1.5 1.5 0.5

High 1 1 1 2 2 2 1

Table 3: For each class k, the deterioration rate when the server is like-new and working on class

k jobs is α2
k, and is α1

k when the server is deteriorated.

Finally, the levels for the holding cost rates ck and the fixed maintenance cost Kc = Kp are

given in Table 4.

19

Level c1 c2 c3 Kc = Kp

Low 0.5 0.5 0.5 5

Moderate 1 1 1 10

High 2 2 2 20

Table 4: For each class k, the holding cost rate is ck. The preventive maintenance cost is Kp, and

the corrective maintenance cost is assumed to be Kc = Kp.

In Sections 5.1.2, 5.1.3, 5.1.4, and 5.1.5, specific combinations of the above parameter levels are

used to estimate the effect of varying, respectively, the holding and maintenance costs, the mainte-

nance rate, the degree of capacity deterioration, and the variability of the inter-event distributions.

5.1.2 Holding vs. Maintenance Costs

We first consider the effect of jointly varying the holding cost rates ck and the fixed maintenance

cost Kp = Kc. The parameter values were determined by first randomly selecting the levels of the

parameters other than the holding cost rates and fixed maintenance cost. Then, the holding cost

rates and fixed maintenance cost were jointly varied. The actual parameter values, obtained by

scaling the selected arrival rate levels to ensure the existence of a stable policy, are given in Table 5.

All inter-event (i.e., inter-arrival, service, inter-deterioration, and maintenance) times are assumed

to be exponentially distributed.

20

Utilization λ1 λ2 λ3 µ2
1 µ2

2 µ2
3 µ1

1 µ1
2 µ1

3 α2
1 α2

2 α2
3 α1

1 α1
2 α1

3 α0 c1 c2 c3 Kp = Kc

1 0.6 0.22 1.1 1.1 5 5 10 2.5 4.95 5 0.01 1 0.01 0.0101 1.01 0.0101 0.5 0.5 0.5 2 5

2 0.6 0.22 1.1 1.1 5 5 10 2.5 4.95 5 0.01 1 0.01 0.0101 1.01 0.0101 0.5 0.5 2 2 5

3 0.6 0.22 1.1 1.1 5 5 10 2.5 4.95 5 0.01 1 0.01 0.0101 1.01 0.0101 0.5 0.5 0.5 2 10

4 0.6 0.22 1.1 1.1 5 5 10 2.5 4.95 5 0.01 1 0.01 0.0101 1.01 0.0101 0.5 0.5 2 2 10

5 0.6 0.22 1.1 1.1 5 5 10 2.5 4.95 5 0.01 1 0.01 0.0101 1.01 0.0101 0.5 0.5 0.5 2 20

6 0.6 0.22 1.1 1.1 5 5 10 2.5 4.95 5 0.01 1 0.01 0.0101 1.01 0.0101 0.5 0.5 2 2 20

Table 5: In the study of holding vs. maintenance costs, a total of six sets of parameter values were selected according

to the procedure described in Section 5.1.2.

21

5.1.3 Maintenance Rates

Next, we will consider the effect of varying the maintenance rate α0, i.e., the rate at which the

server is restored from the failed state 0 to the like-new state 2. The parameter values were deter-

mined by first randomly selecting the levels of the parameters other than the maintenance rate.

Then, the maintenance rate was varied. The actual arrival rates were obtained by scaling the se-

lected arrival rate levels to ensure the existence of a stable policy, resulting in distinct arrival rates

for each possible maintenance rate. The parameter values are given in Table 6. All inter-event (i.e.,

inter-arrival, service, inter-deterioration, and maintenance) times are assumed to be exponentially

distributed.

22

Utilization λ1 λ2 λ3 µ2
1 µ2

2 µ2
3 µ1

1 µ1
2 µ1

3 α2
1 α2

2 α2
3 α1

1 α1
2 α1

3 α0 c1 c2 c3 Kp = Kc

1 0.4 0.038 0.019 0.019 10 5 5 0.1 2.5 2.5 0.5 0.5 1 1 0.75 1.01 0.01 2 0.5 1 5

2 0.4 0.72 0.36 0.36 10 5 5 0.1 2.5 2.5 0.5 0.5 1 1 0.75 1.01 0.5 2 0.5 1 5

3 0.4 0.89 0.44 0.44 10 5 5 0.1 2.5 2.5 0.5 0.5 1 1 0.75 1.01 1 2 0.5 1 5

Table 6: In the study of varying maintenance rates, a total of three sets of parameter values were selected according

to the procedure described in Section 5.1.3.

23

5.1.4 Degree of Service Capacity Deterioration

We also consider the effect of varying the degree of service rate deterioration for one of the classes.

The parameter values were determined by first randomly selecting the levels of the parameters

other than µ1
3
µ2

3
. Then, the value of µ

1
3
µ2

3
was varied across its three levels of 0.01, 0.5, and 0.99. The pa-

rameter values are given in Table 7. All inter-event (i.e., inter-arrival, service, inter-deterioration,

and maintenance) times are assumed to be exponentially distributed.

24

Utilization λ1 λ2 λ3 µ2
1 µ2

2 µ2
3 µ1

1 µ1
2 µ1

3 α2
1 α2

2 α2
3 α1

1 α1
2 α1

3 α0 c1 c2 c3 Kp = Kc

1 0.6 1.03 0.21 1.03 5 5 10 2.5 2.5 0.1 0.5 0.5 0.01 1 0.75 0.0101 0.5 1 1 1 10

2 0.6 1.03 0.21 1.03 5 5 10 2.5 2.5 5 0.5 0.5 0.01 1 0.75 0.0101 0.5 1 1 1 10

3 0.6 1.03 0.21 1.03 5 5 10 2.5 2.5 9.9 0.5 0.5 0.01 1 0.75 0.0101 0.5 1 1 1 10

Table 7: In the study of varying degrees of service capacity deterioration, a total of three sets of parameter values

were selected according to the procedure described in Section 5.1.4.

25

5.1.5 Variability of Inter-Event Distributions

Finally, we consider the effect of varying the coefficient of variation of the inter-event times on pol-

icy performance, where the inter-event times are assumed to be gamma distributed. The parame-

ter values were determined by first randomly selecting the levels for the 21 parameters indicated

in Section 5.1.1, and scaling the λ̃k’s using the solution to the linear program in Appendix A.4.

To specify the gamma inter-event distributions, the selected rates (e.g., the µsk’s) are taken to be

the reciprocals of the corresponding expected inter-event times. To complete the specification of

the relevant gamma distributions, the coefficient of variation (CV) of each inter-event time dis-

tribution was systematically varied between 0.1 (low variability) and 2 (high variability). The

parameter values are given in Table 8.

26

Utilization λ1 λ2 λ3 µ2
1 µ2

2 µ2
3 µ1

1 µ1
2 µ1

3 α2
1 α2

2 α2
3 α1

1 α1
2 α1

3 α0 c1 c2 c3 Kp = Kc

1 – 16 0.6 0.09 0.94 0.94 5 10 5 2.5 5 0.05 0.5 0.5 0.5 1 0.505 1 0.5 1 2 0.5 10

Inter-Arrival CV Service CV Inter-Deterioration CV Maintenance CV

1 0.1 0.1 0.1 0.1

2 2 0.1 0.1 0.1

3 0.1 2 0.1 0.1

4 0.1 0.1 2 0.1

5 0.1 0.1 0.1 2

6 2 2 0.1 0.1

7 2 0.1 2 0.1

8 2 0.1 0.1 2

9 0.1 2 2 0.1

10 0.1 2 0.1 2

11 0.1 0.1 2 2

12 2 2 2 0.1

13 2 2 0.1 2

14 2 0.1 2 2

15 0.1 2 2 2

16 2 2 2 2

Table 8: In the study of the variability of the inter-event distributions, a total of sixteen sets of parameter values were

selected according to the procedure described in Section 5.1.5. Here, CV stands for coefficient of variation, and all of

the inter-event times are gamma distributed.

27

5.2 Policies

We consider the performance of the following five policies.

cµ-Rule (CMU): This policy involves scheduling according to the cµ-rule, and only performing

maintenance when the server fails.

Longest-Waiting-Time-First (LWF): This policy involves scheduling according to which class

has experienced the longest total waiting time so far, and only performing maintenance when the

server fails.

cµ-Rule with Preventive Maintenance (CMUPM): This policy involves scheduling according

to the cµ-rule, and performing preventive maintenance whenever the server transitions from like-

new to deteriorated.

LWF with Preventive Maintenance (LWFPM): This policy involves scheduling according to

LWF, and performing preventive maintenance whenever the server transitions from like-new to

deteriorated.

MDP-Based Policy (DDPM): This is the optimal joint scheduling and maintenance policy for the

discrete-time MDP with finite state and action sets obtained by truncating (at a buffer size of 50

per class), assuming that the inter-arrival, service, inter-deterioration, and maintenance times are

exponentially distributed, and uniformizing the associated continuous-time MDP where service

preemptions are allowed. This is the most computationally-intensive policy.

5.3 Simulation Results

For each of the five heuristics, 30 replications for each parameter set were performed over a sim-

ulation time horizon of 1 year (recall that the inter-event rates are per-hour). The results are sum-

marized in the following sub-sections.

28

A key takeway from the simulation results is that in all of the parameter sets considered,

scheduling according to the cµ-rule can lead to performance comparable to the MDP-based policy,

when preventive maintenance is done properly. We emphasize that in all but one of the parameter

sets on which this observation is based, Assumption CR does not hold. Moreover, the presence of

class-dependent deterioration rates represents a significant complication of the model analyzed in

Section 4, where all of the deterioration rates only depend on the current server state.

While an optimal preventive maintenance policy will generally be complicated (see Kaufman

and Lewis [16]), the simulation results indicate that fixing the scheduling rule to be the cµ-rule,

and then searching for a good preventive maintenance policy, can lead to good performance. In

particular, for all of the parameter sets considered, the best policy with cµ-based scheduling per-

formed comparably, and often much better than, the best policy with longest-waiting-time-first

scheduling. Moreover, the variability of the performance of cµ-based scheduling was much lower

than that of longest-waiting-time-first scheduling; there were several parameter sets, such as those

considered in Section 5.3.4, where combining longest-waiting-time-first scheduling with a poor

maintenance rule is almost an order of magnitude worse than making the same mistake under

cµ-based scheduling.

5.3.1 Holding vs. Maintenance Costs

For this set of parameter values, the priority ordering of job classes under the cµ-rule is class 3,

then class 2, then class 1, regardless of the server state; see Table 9. Moreover, note that the constant

ratio assumption (Assumption CR) does not hold for this set of parameter values; in particular,
µ1

1
µ2

1
=
µ1

3
µ2

3
= 0.5, while µ

1
2
µ2

2
= 0.99.

29

c1µ
2
1 c2µ

2
2 c3µ

2
3 c1µ

1
1 c2µ

1
2 c3µ

1
3

µ1
1
µ2

1

µ1
2
µ2

2

µ1
3
µ2

3

1, 3, 5 2.5 2.5 20 1.25 2.475 10 0.5 0.99 0.5

2, 4, 6 2.5 10 20 1.25 9.9 10 0.5 0.99 0.5

Table 9: This table contains the indices ckµsk used by the cµ-rule for each of the six sets of param-

eter values used in the study of holding vs. maintenance costs, along with the service rate ratios

µ1
k/µ

2
k.

Figure 1 summarizes the observed performance of the five policies. Figure 1 indicates that

the priority ordering based on the cµ-rule, without preventive maintenance, performs compara-

bly to the MDP-based policy, and clearly outperforms the other policies. In contrast, LWF-based

scheduling can perform poorly if preventive maintenance is done, doing significantly worse than

even cµ-based scheduling with preventive maintenance. For this set of parameter values, the

maintenance rate of α0 = 0.5 is low enough that the gains in service rates from doing preventive

maintenance are more than offset by the holding costs incurred by queued class 2 and class 3 jobs,

which account for the vast majority of the arrivals (λ2 = λ3 = 1.1, while λ1 = 0.22) and have the

highest holding cost rates (c1 = 0.5, while c2 > 0.5 and c3 = 2). Notably, Figure 1 indicates that the

relative performance of the five policies remains roughly the same as the holding and maintenance

costs varied.

30

(a) (b)

(c) (d)

(e) (f)

Figure 1: Policy Performance for Holding vs. Maintenance Costs (In all cases, c1 = 0.5 and c3 = 2.)
31

5.3.2 Maintenance Rates

For this set of parameter values, the priority ordering of job classes under the cµ-rule changes as

the server deteriorates. In particular, class 1 has the highest priority when the server is like-new,

but lowest priority when the server is deteriorated; see Table 10. This priority reversal due in part

to the severe amount of service capacity loss when deterioration occurs; see Table 6. Specifically,

deterioration results in a 99% service rate reduction for class 1 jobs, and a 50% reduction for class

2 and 3. Table 10 also indicates that the constant ratio assumption (Assumption CR) does not hold

for this set of parameter values.

c1µ
2
1 c2µ

2
2 c3µ

2
3 c1µ

1
1 c2µ

1
2 c3µ

1
3

µ1
1
µ2

1

µ1
2
µ2

2

µ1
3
µ2

3

1, 2, 3 20 2.5 5 0.2 1.25 2.5 0.01 0.5 0.5

Table 10: This table contains the indices ckµsk used by the cµ-rule for each of the three sets of

parameter values used in the study of varying maintenance rates, along with the service rate

ratios µ1
k/µ

2
k.

Figure 2 summarizes the observed performance of the five policies. The results reflect the

expectation, in light of the severe degree of deterioration, that the two policies that do not employ

preventive maintenance (i.e., CMU and LWF) will perform increasingly poorly as the maintenance

rate increases. The relative performance of the remaining three policies was roughly constant

with increasing maintenance rate; CMUPM performed comparably with the MDP-based policy

(DDPM), while LWFPM tended to perform worse.

32

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Policy Performance: Varying Maintenance Rates

33

5.3.3 Degree of Service Capacity Deterioration

For this set of parameter values, the priority ordering of job classes under the cµ-rule changes as

the server deteriorates; the priority indices are given in Table 11. The ratios between deteriorated

and like-new service rates are also given in Table 11; note that Assumption CR only holds for the

second set of parameter values.

c1µ
2
1 c2µ

2
2 c3µ

2
3 c1µ

1
1 c2µ

1
2 c3µ

1
3

µ1
1
µ2

1

µ1
2
µ2

2

µ1
3
µ2

3

1 5 5 10 2.5 2.5 0.1 0.5 0.5 0.01

2 5 5 10 2.5 2.5 5 0.5 0.5 0.5

3 5 5 10 2.5 2.5 9.9 0.5 0.5 0.99

Table 11: This table contains the incides ckµsk used by the cµ-rule for each of the three sets of

parameter values used in the study of varying degrees of service capacity deterioration, along

with the service rate ratios µ1
k/µ

2
k.

Figure 3 summarizes the observed performance of the five heuristic policies. As expected, the

performance of the policies that eschew preventive maintenance (i.e., CMU and LWF) worsens

as the loss in service capacity increases (i.e., as µ1
3/µ

2
3 decreases). This is especially true for LWF,

which becomes unstable when µ1
3/µ

2
3 = 0.01. On the other hand, the performance of the other

three policies (i.e., CMUPM, LWFPM, and DDPM) is fairly insensitive to changes in µ1
3/µ

2
3, with

CMUPM tending to outperform LWFPM.

34

(a) (b) (c)

Figure 3: Policy Performance: Degree of Service Capacity Deterioration

(a) (b)

Figure 4: Policy Performance: Degree of Service Capacity Deterioration (µ
1
3
µ2

3
= 0.01 only)

5.3.4 Variability of Inter-Event Distributions

Recall that, for this set of parameter values, the inter-event times are gamma distributed. The

priority ordering of job classes under the cµ-rule is class 2, then class 1, then class 3, regardless of

the server state; see Table 12. The ratios between deteriorated and like-new service rates are also

35

given in Table 12; note that Assumption CR does not hold.

c1µ
2
1 c2µ

2
2 c3µ

2
3 c1µ

1
1 c2µ

1
2 c3µ

1
3

µ1
1
µ2

1

µ1
2
µ2

2

µ1
3
µ2

3

1 – 16 5 20 2.5 2.5 10 0.025 0.5 0.5 0.01

Table 12: This table contains the indices ckµsk used by the cµ-rule for each of the sixteen sets of

parameter values used in the study of variability in the inter-event distributions, along with the

service rate ratios µ1
k/µ

2
k.

Figures 5, 6, 7, and 8 summarize the observed performance of the five heuristic policies; in

the following, CV stands for coefficient of variation. Each boxplot represents the observed perfor-

mance of a particular policy over all of the parameter sets, with the CV of one of the inter-event

time distributions held constant. For example, in Figure 5, the boxplot for DDPM under the plot

titled “Inter-Arrival CV = 0.1” was generated using the simulation performance data for DDPM

on those parameter sets for which the coefficient of variation of the interarrival times is equal to

0.1 (i.e., parameter sets 1, 3, 4, 5, 9, 10, 11, and 15).

The relative performance of the policies is insensitive to changes in variability. In all cases,

longest-waiting-time-first scheduling leads to poor performance relative to the MDP-based pol-

icy (DDPM), especially when no preventive maintenance is performed. The poor performance

without preventive maintenance is not surprising, in light of the significant amount of service rate

deterioration for class 3 jobs, and applies to cµ-based scheduling without preventive maintenance

as well. In contrast, cµ-based scheduling with preventive maintenance (CMUPM) matches the

MDP-based policy (DDPM) in performance.

36

(a) (b)

(c) (d)

Figure 5: Policy Performance: Varying Inter-Arrival Time Coefficient of Variation (CV)

37

(a) (b)

(c) (d)

Figure 6: Policy Performance: Varying Service Time Coefficient of Variation (CV)

38

(a) (b)

(c) (d)

Figure 7: Policy Performance: Varying Inter-Deterioration Time Coefficient of Variation (CV)

39

(a) (b)

(c) (d)

Figure 8: Policy Performance: Varying Maintenance Time Coefficient of Variation (CV)

6 Conclusion

In this work, we used a queueing control model to study the problem of how to jointly allocate

work and perform preventive maintenance for a flexible server. We identified a condition (As-

sumption CR) under which it is optimal to schedule according to a state-dependent cµ-rule, as

well as an average cµ-rule where the mean service rates are used, when preventive maintenance

is not possible (Theorem 2). When Assumption CR does not hold, using these cµ-based schedul-

40

ing rules may result in an unstable system (Example 1), but our numerical results indicate that it

is still possible for such scheduling rules to perform well without Assumption CR.

We then used Theorem 2 to show that, when the preventive maintenance policies are restricted

to be age-based, calendar-based, or more generally independent of the queue lengths, it is without

loss of optimality to use the aforementioned cµ-based scheduling rules (Theorem 5). In the context

of semiconductor manufacturing, the implementation of condition-based maintenance is still very

much on the cutting-edge of current research (see e.g., Djurdjanovic [13]), and that age/job-based

preventive maintenance policies remain very relevant to practice (see e.g., Yao et al. [27]). Regard-

ing the structure of preventive maintenance policies, we were able to prove that under assump-

tions analogous to those considered in Kaufman and Lewis [16] for one job class, the monotonicity

property of optimal maintenance policies identified in [16, Theorem 3.2] is preserved when there

are an arbitrary number of job types. In particular, there exists an optimal joint scheduling and

maintenance policy where, for each fixed number of jobs of each class, the maintenance decisions

are based on a threshold on the server state.

Finally, we presented the results of numerical experiments that compared the performance of

cµ-based scheduling with a more naı̈ve scheduling rule (longest-queue-first) and with scheduling

based on solving an MDP (Section 5). We observed that, regardless of whether preventive mainte-

nance was performed, the cµ-based scheduling rules are competitive with MDP-based scheduling.

Moreover, the worse and more variable performance of longest-queue-first scheduling illustrated

the value of incorporating service-rate information. On the other hand, the numerical experi-

ments did not suggest an easy distinction between situations where scheduling has more of a

performance impact than preventive maintenance, or vice versa. A better understanding of this

distinction, as well as other research directions described in Section 6.1 below, is left for future

work.

6.1 Future Work

Our work suggests a number of promising research directions.

41

Optimality Conditions for the cµ-Rule: Assumption CR, which only involves the service rates,

does not depend on the deterioration dynamics of the server. For situations where Assumption CR

is too strong, it would be worthwhile to identify conditions on the deterioration process under

which cµ-based scheduling remains optimal. Moreover, it may be possible to relax the queue-

obliviousness of maintenance policies in Theorem 4. Finally, it would be interesting to determine

whether there are any guarantees on the optimality of cµ-based scheduling as a function of some

measure of the degree to which Assumption CR is violated.

Good and Implementable Maintenance Policies: The focus of this paper has been on identi-

fying conditions under which it suffices to follow a simple policy for the scheduling decisions.

This of course leaves open the question of how maintenance policies should be derived. As was

pointed out in Kaufman and Lewis [16], the optimal MDP-based policies can be very complicated.

It would therefore be worthwhile to develop maintenance heuristics that both perform well across

system parameters of interest, and that are easy to implement.

Relaxing Modeling Assumptions: In many applications, including some in semiconductor man-

ufacturing [5, 7], the assumption that the server deteriorates independently of the work it performs

is too strong. It would also be of interest to consider multiple servers and/or stations, or to assume

that the server state is only partially observable.

Acknowledgments. The authors thank Chiao-Ju Sun and James Wu for their help with the nu-

merical experiments. The work of the second author is supported by the Natural Sciences and

Engineering Research Council of Canada.

References

[1] S. Andradóttir, H. Ayhan, and D. G. Down. Compensating for failures with flexible servers.

Operations Research, 55(4):753–768, 2007.

42

[2] K. Backer, R. J. Huang, M. Lertchaitawee, M. Mancini, and C. Tan. Taking the next leap

forward in semiconductor yield improvement. McKinsey & Company, May 2018.

[3] R. E. Bohn and C. Terwiesch. The economics of yield-driven processes. Journal of Operations

Management, 18(1):41–59, 1999.

[4] P. Brémaud. Point Processes and Queues: Martingale Dynamics. Springer-Verlag New York,

1981.

[5] Y. Cai, J. J. Hasenbein, E. Kutanoglu, and M. Liao. Single-machine multiple-recipe predictive

maintenance. Probability in the Engineering and Informational Sciences, 27(2):209–235, 2013.

[6] Y. Cai, E. Kutanoglu, J. Hasenbein, and J. Qin. Single-machine scheduling with advanced

process control constraints. Journal of Scheduling, 15(2):165–179, 2012.

[7] M. Celen and D. Djurdjanovic. Integrated maintenance decision-making and product se-

quencing in flexible manufacturing systems. Journal of Manufacturing Science and Engineering,

137(4):041006–041006–15, 2015.

[8] M. E. Cholette, M. Celen, D. Djurdjanovic, and J. D. Rasberry. Condition monitoring and

operational decision making in semiconductor manufacturing. IEEE Transactions on Semicon-

ductor Manufacturing, 26(4):454–464, 2013.

[9] Integrated Circuit Engineering Corporation. Yield and Yield Management. In Cost Effective

IC Manufacturing. Scottsdale, AZ, 1997.

[10] J. G. Dai. On positive Harris recurrence of multiclass queueing networks: A unified approach

via fluid limit models. The Annals of Applied Probability, 5(1):49–77, 1995.

[11] J. G. Dai. A fluid limit model criterion for instability of multiclass queueing networks. The

Annals of Applied Probability, 6(3):751–757, 1996.

43

[12] J. G. Dai and S. P. Meyn. Stability and convergence of moments for multiclass queueing

networks via fluid limit models. IEEE Transactions on Automatic Control, 40(11):1889–1904,

November 1995.

[13] D. Djurdjanovic. Condition monitoring and operational decision-making in modern semi-

conductor manufacturing systems. In Proceedings of the Pacific Rim Statistical Conference for

Production Engineering, ICSA Book Series in Statistics, pages 41–66. Springer, Singapore, 2018.

[14] L. Grigoriu and D. Briskorn. Scheduling jobs and maintenance activities subject to job-

dependent machine deteriorations. Journal of Scheduling, 20(2):183–197, 2017.

[15] S. M. R. Iravani and I. Duenyas. Integrated maintenance and production control of a deteri-

orating production system. IIE Transactions, 34(5):423–435, 2002.

[16] D. L. Kaufman and M. E. Lewis. Machine maintenance with workload considerations. Naval

Research Logistics, 54(7):750–766, 2007.

[17] J. J. McCall. Maintenance policies for stochastically failing equipment: A survey. Management

Science, 11(5):493–524, 1965.

[18] P. Nain. Interchange arguments for classical scheduling problems in queues. Systems & Con-

trol Letters, 12(2):177–184, 1989.

[19] W. P. Pierskalla and J. A. Voelker. A survey of maintenance models: The control and surveil-

lance of deteriorating systems. Naval Research Logistics, 23(3):353–388, 1976.

[20] L. I. Sennott. Average cost semi-Markov decision processes and the control of queueing sys-

tems. Probability in the Engineering and Informational Sciences, 3(2):247–272, 1989.

[21] Y. S. Sherif and M. L. Smith. Optimal maintenance models for systems subject to failure–A

review. Naval Research Logistics, 28(1):47–74, 1981.

44

[22] T. W. Sloan and J. G. Shanthikumar. Combined production and maintenance scheduling for a

multiple-product, single-machine production system. Production and Operations Management,

9(4):379–399, 2000.

[23] C. J. Spanos. Statistical process control in semiconductor manufacturing. Microelectronic En-

gineering, 10(3):271–276, 1991.

[24] C. Valdez-Flores and R. M. Feldman. A survey of preventive maintenance models for stochas-

tically deteriorating single-unit systems. Naval Research Logistics, 36(4):419–446, 1989.

[25] C. Wu, D. G. Down, and M. E. Lewis. Heuristics for allocation of reconfigurable resources in

a serial line with reliability considerations. IIE Transactions, 40(6):595–611, 2008.

[26] C. Wu, M. E. Lewis, and M. Veatch. Dynamic allocation of reconfigurable resources in a two-

stage tandem queueing system with reliability considerations. IEEE Transactions on Automatic

Control, 51(2):309–314, 2006.

[27] X. Yao, E. Fernández-Gaucherand, M. C. Fu, and S. I. Marcus. Optimal preventive mainte-

nance scheduling in semiconductor manufacturing. IEEE Transactions on Semiconductor Man-

ufacturing, 17(3):345–356, 2004.

A Appendix

A.1 Instability of Statically Prioritizing Class 1 in Example 1

Consider the (non-idling) policy that always prioritizes class 1 when the server is online. To show

that this policy is unstable, in the sense that it incurs an infinite long-run expected average cost

regardless of the initial state, we consider its associated fluid model.

Let Tk,s(t) denote the total amount of time during [0, t] that the server has spent serving class

k jobs while it is in state s, and suppose Q1(0) = Q2(0) = 0. Arguments analogous to those in

[11, p. 753] (replace k with k, s) imply that for every sequence {qn,n > 0} such that qn → ∞
45

there exists a subsequence {qm,m > 0} such that limm→∞ Tk,s(qmt)/qm =: Tk,s(t) exists for

k = 1, 2, s = 1, 2, and t > 0. According to [11, Proposition 3.1], the associated scaled queue lengths

Qk(t) := limm→∞Qk(qmt)/qm, k = 1, 2, satisfy

Qk(t) = λkt− µ
1
kTk,1(t) − µ

2
kTk,2(t), k = 1, 2, t > 0, (13)

where λ1 = 5, λ2 = 0.8, µ1
1 = µ2

1 = 10, µ1
2 = 1, and µ2

2 = 2. In what follows, we will require

derivatives of Tk,s(t) and Qk(t), for k = 1, 2 and s = 1, 2. For t > s > 0, Tk,s(t) − Tk,s(s) 6 t− s,

so Tk,s(t) is Lipschitz continuous. Hence, by (13), Qk(t) is also Lipschitz continuous. As a result,

the required derivatives exist almost everywhere.

Since class 1 is prioritized in states s = 1, 2, and the server is always online (corrective main-

tenance occurs instantaneously), the server is always busy at class 1 whenever class 1 jobs are

present. As a result,

Q1(t) > 0 =⇒ d

dt
T 1,1(t) +

d

dt
T 1,2(t) = 1 =⇒ d

dt
Q1(t) = −5 < 0. (14)

Note that for a nonnegative function f(t), if d
dtf(t) < 0 whenever f(t) > 0, then if f(t0) = 0 for

some t0 > 0, f(t) = 0 for all t > t0. As Q1(0) = 0, it then follows from (14) that Q1(t) = 0 for all

t > 0 which, according to (13), implies that d
dtT 1,1(t) +

d
dtT 1,2(t) =

1
2 . But since the deterioration

rates for states s = 1, 2 are equal and q(1|2) = 1, this means

d

dt
T 1,1(t) =

d

dt
T 1,2(t) =

1
4

. (15)

The equality of the deterioration rates and q(1|2) = 1 yield that the limiting proportion of times

spent in s = 1 and s = 2 are equal. This and the fact that the server cannot be busy more than 100

percent of the time imply that

d

dt
T 1,s(t) +

d

dt
T 2,s(t) 6

1
2

, s = 1, 2. (16)

Combining (13), (15), and (16), we conclude that

d

dt
Q2(t) = 0.8 − (1)

d

dt
T 2,1(t) − (2)

d

dt
T 2,2(t)

> 0.8 − (1)
(

1
2
−
d

dt
T 1,1(t)

)
− (2)

(
1
2
−
d

dt
T 1,2(t)

)
= 0.05 > 0.

46

According to [11, Theorem 3.2], this implies that statically prioritizing class 1 is unstable.

A.2 Existence of a Stable Policy in Example 1

Consider the policy that prioritizes class s when the server state is s, for s = 1, 2. To show that

this policy incurs a finite long-run expected average cost regardless of the initial state, by [12,

Theorem 4.1] it suffices to show that its associated fluid model is stable in the sense that it drains

and remains empty after a finite amount of time [10].

To define the fluid model, again consider the function Tk,s(t) defined in Appendix A.1, and let

q = Q1(0) +Q2(0). Any limit point as q→∞ of the scaled process(
Q1(qt)

q
,
Q2(qt)

q
,
T1,1(qt)

q
,
T2,1(qt)

q
,
T1,2(qt)

q
,
T2,2(qt)

q

)
is called a fluid limit of the original system. Every fluid limit

(
Q1(t),Q2(t), T 1,1(t), T 1,2(t), T 2,1(t), T 2,2(t)

)
satisfies a set of differential equations known as the fluid model. For the system in Example 1 under

the proposed policy, the fluid model is:

d

dt
Q1(t) = λ1 − µ

1
1
d

dt
T 1,1(t) − µ

2
1
d

dt
T 1,2(t), (17)

d

dt
Q2(t) = λ2 − µ

1
2
d

dt
T 2,1(t) − µ

2
2
d

dt
T 2,2(t), (18)

where λ1 = 5, λ2 = 0.8, µ1
1 = µ2

1 = 10, µ1
2 = 1, and µ2

2 = 2.

We now show that, under the proposed policy, every fluid limit is stable. In other words, for

every fluid limit there exists a finite time te > 0 such that Q1(t) = Q2(t) = 0 for all t > te. First,

recall that the deterioration rates are equal to 1, and that CM occurs instantaneously. This implies

that the limiting proportions of time spent in states s = 1 and s = 2 are equal and the server is

always online and busy if there are jobs present. Thus,

Q1(t) +Q2(t) > 0 =⇒ d

dt

[
T 1,s(t) + T 2,s(t)

]
=

1
2
∀s ∈ {1, 2}. (19)

47

Recall that class 2 is prioritized when s = 2. Hence, according to (19),

Q2(t) > 0 =⇒ d

dt
T 2,2(t) =

1
2

. (20)

Combining (18) with (20), and recalling that ddtT2,1(t) > 0 for all t, we conclude that

Q2(t) > 0 =⇒ d

dt
Q2(t) 6 λ2 − 1 < 0, (21)

since λ2 = 0.8 < 1. So, as Q2(te) = 0 for te = Q2(0)/(1 − λ2), this with (21) yields

Q2(t) = 0, t > te. (22)

Next, we consider what happens to the fluid in queue 1 after queue 2 has drained. In general,

since class 1 is prioritized when the server state s = 1, we know from (19) that d
dtT 1,1(t) = 1

2

whenever Q1(t) > 0. According to (17), this means

Q1(t) > 0 =⇒ d

dt
Q1(t) = 5 − 10 · d

dt
T 1,2(t). (23)

On the other hand, suppose t > te. From (22), we know that ddtQ2(t) = 0. Moreover, since class 1

is prioritized when s = 1, we also know that ddtT 2,1(t) = 0. In light of (18), these two observations

imply that ddtT 2,2(t) =
λ2
2 . According to (19) and the fact that λ2 < 1, this means

d

dt
T 1,2(t) =

1 − λ2

2
> 0. (24)

We therefore conclude from (23) that

t > t0 and Q1(t) > 0 =⇒ d

dt
Q1(t) < 0. (25)

In summary, (22) and (25) imply that both queues drain and remain empty after a finite amount

of time, i.e., that the fluid model is stable.

A.3 Proof of Theorem 6

In this section, we assume that Assumptions M and S hold. Under Assumption M, the joint

scheduling and maintenance model described in Section 2 is a semi-Markov decision process (SMDP);

for background on SMDPs, see e.g., Sennott [20] and the references therein.

An SMDP is defined by the following objects:

48

1. the state set X,

2. sets of available actions A(x) for each x ∈ X,

3. transition probabilities p(y|x,a) for each x,y ∈ X and a ∈ A(x),

4. distributions F(·|x,a,y) for the time spent in each state x ∈ X given that action a ∈ A(x) is

taken and the next state of the process is y ∈ X,

5. immediate costs D(x,a) and cost rates d(x,a) for each x ∈ X and a ∈ A(x).

Recalling that we are only considering nonidling policies, for the joint scheduling and mainte-

nance problem the above objects are defined as follows.

1. X = {0, 1, . . . }K × {0, 1, . . . ,S};

2. letting k = 0, 1, . . . ,K denote idling (k = 0) or serving class k (k > 0), and letting PM and

CM respectively denote initiating preventive and corrective maintenance, for (i, s) ∈ X let

A(i, s) =


{CM}, if s = 0;

{0,PM}, if
∑K
k=1 ik = 0, s > 1;

{` : i` > 0}∪ {PM}, if
∑K
k=1 ik > 0, s > 1;

(26)

3. for (i, s),y ∈ X and a ∈ A(i, s), letting ek be the vector in RK+1 where the kth entry is a 1
and all others are zero, n = (n1, . . . ,nK) and µs0 ≡ 0, and recalling that by Assumption M(iii)
the maintenance times are iid with distribution G(·),

p(y|(i, s),a) =



∫∞
0
∏K
`=1

e−λ`t(λ`t)
n`

n` !

if s = 0,a = CM,y = (i + n,S)

or s > 1,a = PM,y = (i + n,S);

λk∑K
`=1 λ`+µ

s
k+αs

if s > 1,a = k,y = (i + ek, s);

αs∑K
`=1 λ`+µ

s
k+αs

if s > 1,a = k,y = (i, s− 1);

µsk∑K
`=1 λ`+µ

s
k+αs

if s > 1,a = k,y = (i, s) − ek;

49

4. for (i, s),y := (j,u) ∈ X and a ∈ A(x) (where j = (j1, . . . , jK)),

F(t | (i, s),a,y) =



G(t) if s = 0,a = CM, j > i,u = S

or s > 1,a = PM, j > i,u = S;

1 − e−λkt if s > 1,a ∈ {0, 1, . . . ,K}, (j,u) = (i + ek, s);

1 − e−αst if s > 1,a ∈ {0, 1, . . . ,K}, (j,u) = (i, s− 1);

1 − e−µ
s
kt if s > 1,a = k, (j,u) = (i − ek, s);

where j > i is interpreted componentwise.

5. for (i, s) ∈ X and a ∈ A(i, s),

D((i, s),a) =


Kc if a = CM;

Kp if a = PM;

0 otherwise;

and

d((i, s),a) =
K∑
k=1

ckik.

It is useful to consider discounting the expected total cost incurred over an infinite horizon. In

particular, given a discount rate β > 0, the expected β-discounted cost incurred from the initial state

(i, s) ∈ X under the policy π ∈ Π is

vπβ(i, s) := E

 ∑
n:tπn6t

e−βt
π
n
[
KcM

π
c (t

π
n) +KpM

π
p(t

π
n)
]
+

∫∞
0
e−βt

K∑
k=1

ckQ
π
k(t) dt

∣∣∣∣∣ Qπ(0) = i, Sπ(0) = s

]
.

Moreover, a policy π∗ is β-optimal if vπ∗β (x) = infπ∈Π vπβ(x) =: vβ(x) for all x ∈ X.

Definition 9. A function v : X→ R is monotone in the server’s health if

i 6 i′, s > s′ =⇒ v(i, s) 6 v(i′, s′).

A straightforward adaptation of the sample-path argument in [16, Proof of Proposition 3.3]

can be used to prove the following useful monotonicity property of vβ.

50

Proposition 10. The value function vβ is monotone in the server’s health.

Lemma 11. Assumptions M and S imply that the hypotheses of [20, Theorem 2, Proposition 4] hold.

Proof. The hypotheses of [20, Theorem 2] consist of [20, Assumptions 1-5].

1. For t > 0, x,y ∈ X, and a ∈ A(x), let

H(t|x,a) :=
∑
y∈X

p(y|x,a)F(t|x,a,y).

The first assumption states that there exist ε, δ > 0 such that

1 −H(δ|x,a) > ε ∀x ∈ X, a ∈ A(x). (27)

First, recall that according to Assumption M(iii), 1/α0 =
∫∞

0 tdG(t) > 0. This implies that

there exists a δ∗ > 0 such that 1 −G(δ∗) > 0. Moreover, letting

γ := max{λ1, . . . , λK,α1, . . . ,αB,µ1
1, . . . ,µS1 , . . . ,µ1

K, . . . ,µSK} > 0

and

ε∗ := min{1 −G(δ∗), e−γδ
∗
} > 0,

it follows that (27) holds with ε = ε∗ and δ = δ∗.

2. For x ∈ X and a ∈ A(x), let

τ(x,a) :=
∑
y∈X

p(y|x,a)
∫∞

0
tdF(t|x,a,y). (28)

The second assumption states that there exists a constant B <∞ such that

τ(x,a) 6 B ∀x ∈ X, a ∈ A(x). (29)

Letting

γ := min{λ1, . . . , λK,α1, . . . ,αB,µ1
1, . . . ,µS1 , . . . ,µ1

K, . . . ,µSK} > 0

and

B∗ := max{1/α0, 1/γ} <∞,

it follows that (29) holds with B = B∗.

51

3. The third assumption states that

vβ(x) <∞ ∀β > 0, x ∈ X. (30)

According to [20, Remark 1], a sufficient condition for (30) to hold is the existence of a policy

π such that

wπ(x) <∞ ∀x ∈ X. (31)

Let s∗ be a state that satisfies Assumption S(i). By analyzing a fluid model analogous to the

one in [16, Proof of Proposition 3.1], it can be shown that (31) is satisfied by any policy that

initiates PM whenever the server state is less than s∗, and otherwise does not idle an online

server if the system is nonempty. Hence (30) holds.

4. Let 0 := (0, . . . , 0,S), and

hβ(x) := vβ(x) − vβ(0), x ∈ X.

The fourth assumption states that there exists a β0 > 0 andM : X→ [0,∞) such that

hβ(x) 6M(x) ∀β ∈ (0,β0), x ∈ X (32)

and

∃a(x) ∈ A(x) such that
∑
y∈X

p(y|x,a(x))M(y) <∞ ∀x ∈ X. (33)

Let Xπ(t) := (Qπ(t),Sπ(t)) denote the state of the system at time t under the policy π. For

z ∈ X, let τπz := inf{t > 0 | Xπ(t) = z} and, for x,y ∈ X, let

Cπ(x,y) := E

 ∑
n:tπn6τπy

[
KcM

π
c (t

π
n) +KpM

π
p(t

π
n)+

∫τπy
0

K∑
k=1

ckQ
π
k(t) dt

∣∣∣∣∣Xπ(0) = x
]

.

denote the expected total cost incurred up to a first passage from x to y under the policy π.

According to [20, Remark 1], a sufficient condition for (32) and (33) to hold for some β0 > 0,

M : X→ [0,∞) is the existence of a stationary policy ϕ such that

Cϕ(x, 0) <∞ ∀x ∈ X. (34)

52

Let s∗ be a state that satisfies Assumption S(i), and let ϕs∗ be any stationary policy that

initiates PM whenever the server state is less than s∗, and otherwise does not idle an online

server if the system is nonempty. By analyzing a fluid model analogous to the one in [16,

Proof of Proposition 3.1], it can be shown that ϕs∗ satisfies (31), and that the embedded state

process under ϕs∗ is a unichain Markov chain where the set of states {(i, s) | s∗ 6 s 6 S} is

the ergodic class and the remaining states are transient. By [20, Lemma 2], it follows that

(34) holds with ϕ = ϕs∗ . Hence there exist β0 > 0 and M : X → [0,∞) such that (32) and

(33) hold.

5. The fifth assumption states that there exist a β0 > 0 and N > 0 such that

−N 6 hβ(x) ∀β ∈ (0,β0), x ∈ X. (35)

Since hβ(x) = vβ(x) − vβ(0) for x ∈ X, and 0 = (0, . . . , 0,S), it follows from Proposition 10

that (35) holds with N = 0 and any β0 > 0.

Next, the hypotheses of [20, Proposition 4] consist of [20, Assumptions 1-5] and the following

assumption: there exist ε > 0 and a finite set G ⊂ X such that

min
a∈A(x)

d(x,a) >
B(g+ ε)

infx,a τ(x,a)
∀x ∈ X \G (36)

where g is a constant from [20, Theorem 2], and infx,a τ(x,a) > 0 by [20, Lemma 1]. Recalling that

d((i, s),a) =
K∑
k=1

ckik, (i, s) ∈ X, a ∈ A(i, s),

consider any ε∗ > 0 and let

G∗ :=

{
(i1, 0, . . . , 0, s) ∈ X

∣∣∣∣ i1 < ⌊ B(g+ ε∗)

c1 infx,a τ(x,a)

⌋}
.

Then |G∗| <∞, and (36) holds with ε∗ = ε and G∗ = G.

53

For f : X→ R, x ∈ X, and a ∈ A(x), let

Taβf(x) := D(x,a) + d(x,a)
∑
y∈X

p(y|x,a)
∫∞

0

∫t
0
e−βu du dF(t|x,a,y)

+
∑
y∈X

p(y|x,a)
∫∞

0
e−βt dF(t|x,a,y) f(y)

Theorem 12. Under Assumptions M and S, the following statements hold.

(i) The value function vβ satisfies the discounted-cost optimality equation (DCOE)

vβ(x) = min
a∈A(x)

Taβvβ(x) ∀x ∈ X. (37)

(ii) For every β > 0 there exists a β-optimal deterministic stationary policy πβ.

(iii) A deterministic stationary policy π is β-optimal if and only if

π(x) ∈ arg min
a∈A(x)

Taβvβ(x) ∀x ∈ X.

(iv) Every β-optimal deterministic stationary policy is monotone in the server’s health.

Proof. According to Lemma 11, [20, Assumptions 1,3] hold, which implies that statements (i)-(iii)

hold by [20, Theorem 1].

Next, suppose that it is not β-optimal to perform PM in state (i, s). Then by statement (iii),

TPMβ vβ(i, s) > vβ(i, s).

Since PM incurs the same fixed cost whenever it is initiated, and the subsequent maintenance

times are iid, it follows from Proposition 10 that

TPMβ vβ(i, s+ 1) = TPMβ vβ(i, s) > vβ(i, s) > vβ(i, s+ 1).

By statement (iii), this implies that it is also not β-optimal to perform PM in state (i, s+ 1). Hence

statement (iv) holds.

54

Proof of Theorem 6. Lemma 11 implies that [20, Theorem 2, Proposition 4] hold for the SMDP for-

mulated in this section. In particular, [20, Theorem 2, Proposition 4] state that there exists a deter-

ministic stationary optimal policy π∗ that is a limit point of a sequence of β-optimal deterministic

stationary policies. Since the action sets are finite, it follows that π∗ is actually β-optimal for some

β > 0. According to Theorem 12(iv), π∗ is monotone in the server’s health.

A.4 Linear Program for Arrival Rate Scaling

In this section, we formulate the linear program used in Section 5 to scale the selected arrival rate

levels λ̃k to actual arrival rates λk to ensure the existence of a stable policy.

Data

• K = number of job classes

• S = number of server states

• λ̃k = arrival rate level for class k jobs; see Section 5.1.1

• µsk = service rate for class k jobs, when the server state is s

• αsk = deterioration rate when the server is in state s and working on a class k job

• α0 = maintenance rate

Decision Variables

• xsk = long-run fraction of time that the server is in state s and serving class k jobs

• x0 = long-run fraction of time that the server is in state 0

• ys = long-run average rate at which maintenance is intiated when the server is in state s

55

Optimization Problem

maximize m

subject to
S∑
s=1

µskx
s
k > (1 +m)λ̃k k = 1, . . .K

S∑
s=1

xsk 6 1 k = 1, . . . ,K

S∑
k=1

α1
kx

1
k +

S∑
s=1

ys = α0x
0

K∑
k=1

αSkx
S
k = α0x

0

K∑
k=1

αs+1
k xs+1

k =

K∑
k=1

αskx
s
k + y

s s = 1, . . . ,S− 1

ys 6
K∑
k=1

αs+1
k xs+1

k s = 1, . . . ,S− 1

K∑
k=1

S∑
s=1

xsk + x
0 = 1

0 6 xsk 6 1 k = 1, . . . ,K, s = 1, . . . ,S− 1

0 6 x0 6 1

ys > 0 s = 1, . . . ,S− 1

The first constraint ensures that the average rate at which class i jobs are served is at least

equal to the inflated arrival rate for that class i. The second constraint ensures that the proportion

of time that the server is serving class i jobs is at most 1. (Redundant with the seventh constraint

and non-negativity of the xki ’s.) The third constraint is the rate balance constraint for server state

0. It states that the average rate at which the server deteriorates while in state 1 and serving

class i jobs, plus the total rate at which maintenance is initiated, equals the average rate at which

maintenance/repair is completed. The fourth constraint is the rate balance constraint for server

state K. It states that the rate at which the server deteriorates while in state K and serving class

56

i jobs equals the rate at which maintenance/repair is completed. The fifth constraint is the rate

balance constraint for server state k. It states that the average rate at which the server deteriorates

while in state k+ 1 and serving class i jobs equals the rate at which the server deteriorates while

in state k and serving class i jobs plus the rate at which maintenance is initiated from state k. The

sixth constraint states that the average rate at which maintenance is initiated while the server is in

state k is at most the average rate at which the server deteriorates from state k+ 1 while serving

class i jobs. The seventh constraint states that the proportion of time that the server is doing

something (i.e., serving or being maintained) equals 1.

Given a solution to the linear program, and a target utilization ρ, the actual arrival rate λk for

class k jobs is given by ρ times the average service rate for class k jobs:

λk = ρ

S∑
s=1

µskx
s
k, for k = 1, . . . ,K.

57

