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Defense Logistics Agency (DLA)

Distribution Center at DLA Distribution Susquehanna

(Image Source)
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Naval Station Norfolk

Waterfront at Naval Station Norfolk (Image Source)
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DLA Distribution Norfolk, Virginia (DDNV)

DDNV is co-located with the Naval Supply Systems
Command (NAVSUP) Fleet Logistics Center at Naval
Station Norfolk (Image Source)

▶ Largest tenant on the world’s largest naval
base.

▶ Activities include storage & warehousing,
container & pier operations, facilities &
equipment maintenance, . . .

▶ Customers include:
▶ roughly 70 homeported ships, including

6 aircraft carriers (CVNs)

▶ transient ships (e.g., USS Philippine
Sea in 2020)

▶ local shore commands (e.g., Norfolk
Naval Shipyard, Joint Base Langley–
Eustis)
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Material Processing Center (MPC) at DDNV

Inside the DDNV MPC (Image Source)

▶ Standardized receiving point for customer
orders (e.g., F/A-18 tires, small packages).

▶ Services include customized sorting, receipt
processing, and delivery services.

▶ Orders are received, inducted, sorted &
consolidated, manifested, and delivered to
aircraft carriers, amphibious assault ships,
guided-missile destroyers, submarines, . . .

▶ Approximately 40,000 transactions pro-
cessed per month, on average.

4

https://www.dla.mil/portals/104/Images/Distribution/MPC.png


Workload at the DDNV MPC

MPC Receiving Cell 1 on 13 October, 2021. MPC Receiving Cell 1 on 08 November, 2021.

Unanticipated workload spikes lead to significant delivery delays.
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Workload Data

▶ DLA’s Distribution Standard System
(DSS) tracks the distinct products in-
cluded in each order.

▶ Each row is associated with a particu-
lar National Item Identification Number
(NIIN) and Document Number.

▶ The columns record the induction date,
date shipped, order destination by DOD
Activity Address Code (DODAAC), . . .

Current Workload Proxy

Weekly DSS Record Counts
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Workload at the DDNV MPC
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Forecasting Workload at the DDNV MPC

▶ Some spikes are predictable, e.g., End of Fiscal Year (EOFY).

▶ Many others have been “unpredictable”.

▶ Workload is driven by the needs of the Fleet.

▶ DLA currently has little/no direct visibility on planned Fleet activities.
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Our FY23 Contributions

1. Initial Data Collection and Identification of Potential Predictors

2. Development of Preliminary Workload Forecasting Models

2.1 Baseline Autoregressive Integrated Moving Average (ARIMA) Model

2.2 Deployment-Aware Dynamic Regression Model
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Starting Point: Time Series Modeling

How far can we get using historical workload
data only?

▶ Current forecasts for manpower planning rely on
heuristics involving historical averages and trends.

The autoregressive (AR) model is a standard tool for
forecasting (stationary) time series.

AR(p) Model

yt = c +

p∑
i=1

ϕiyt−i + ϵt

▶ yt = workload during week t

▶ ϵt = “white noise”

▶ Model Parameters: c, ϕ1, . . . , ϕp

The ARIMA model extends the AR model to account for
non-stationarity, past forecast errors, seasonality, . . .
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Baseline ARIMA Model

▶ Training Data: Weekly DSS record counts during FY18 – FY22.

▶ The model order (e.g., lag lengths) and seasonality were determined using the Hyndman-
Khandakar Algorithm.

Fitted Model

The predicted workload ŷt during week t is

ŷt = 1490.98+ 0.67yt−1 + 0.30(yt−52 − 0.67yt−53) − 0.21(yt−1 − ŷt−1)

▶ Test Data: Weekly DSS record counts during FY23, up to 30 June 2023.
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Baseline ARIMA Model: Test Set Performance

Note: Solid Black Line = Actual Number of Records
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Next Step: Regression with Autocorrelated Errors (aka Dynamic Regression)

Classical regression models assume that errors are un-
correlated.

Example: A standard linear regression model with k pre-
dictors has the form

yt = β0 +

k∑
j=1

βjxj ,t + ϵt

where the ϵt ’s are independent.

In a time series context, it can make more sense
to allow the errors to be (auto)correlated.

▶ For example, model the errors with an AR model.

Definition

A dynamic (linear) regression model with
AR(p) errors and k predictors has the form

yt = β0 +

k∑
j=1

βjxj ,t + ηt

where

ηt = c +

p∑
i=1

ϕiηt−1 + ϵt

▶ yt = workload during week t

▶ ϵt = “white noise”

▶ Model Parameters: β0, β1, . . .βk , c, ϕ1,
. . . , ϕp

▶ Can use an ARIMA model for ηt .
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Deployment-Related Predictors

Idea: Create variables tracking how many deployments will happen “soon”.
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Dynamic Regression Model

▶ Predictors: For j ∈ {CG, CVN,DDG, LHD, LPD, SSN},

xj ,t = number of j deployments within T-minus w weeks of week t

(we used w = 28 weeks).

▶ Training Data: Weekly DSS record counts and publicly releasable deployment dates
during FY18 – FY22.

▶ The model order (e.g., lag lengths) and seasonality were determined using the Hyndman-
Khandakar Algorithm.

▶ Test Data: Weekly DSS record counts and publicly releasable deployment dates during
FY23, up to 30 June 2023.
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Dynamic Regression Model: Test Set Performance

Note: Solid Black Line = Actual Number of Records
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Conclusions

1. “Vanilla” time series models capture
high-level workload patterns.

▶ Including deployment informa-
tion can improve forecasts.

2. Still a huge amount of forecast un-
certainty.

▶ Lots of un-explained variability.
▶ Use upper confidence bounds as

“spike indicators”?

Ongoing Work

1. Collecting more data.
▶ E.g., allowancing schedules, funding

patterns

2. Developing better workload mea-
sures and predictors.
▶ Continuing stakeholder engagement

(e.g., DDNV Leadership, DLA Head-
quarters, Atlantic Fleet Type Com-
manders)

3. Evaluating/developing other types
of models.
▶ E.g., based on exponential smoothing

or neural networks
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