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Marine Expeditionary Units (MEUs)

Marines from the 13th MEU disembarking from a landing craft. (Image Source)
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Marine Expeditionary Units (MEUs)

View of the amphibious assault ship USS Iwo Jima from a deployed landing craft. (Image Source)
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Marine Expeditionary Units (MEUs)

Marines from the 15th MEU aboard the amphibious assault ship USS Boxer. (Image Source)
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Building Supply Blocks

Question

What should a MEU take with them
when they deploy?

▶ Frequent periods of days – weeks when re-
supply is infeasible.

▶ Limited budget and storage capacity.

▶ Many NIINs (National Item Identifica-
tion Numbers) (i.e., item types) to con-
sider.

Marine Corps Logistics Command (LOG-
COM) currently provides guidance on what to
bring.

▶ Use heuristics and subject-matter expertise.

▶ Constraints such as weight and volume often
handled in an ad-hoc way.

▶ Time-consuming.
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Optimization Model

Nonlinear Knapsack Problem: minimize
∑
i∈I

ℓi ∑
d⩽si

(si − d)pi(d) + bi
∑
d>si

(d − si)pi(d)


subject to

∑
i∈I

ri ,k si ⩽ Rk ∀k ∈ K

si ∈ N ∀i ∈ I

Demand Data

▶ pi(d) = probability that exactly d units of
NIIN i ∈ I will be demanded

Costs

▶ ℓi = per-unit leftover cost for NIIN i ∈ I

▶ bi = per-unit shortage cost for NIIN i ∈ I

Constraints

▶ ri ,k = per-unit amount of resource type
k ∈ K consumed for NIIN i ∈ I

▶ Rk = amount of resource type k ∈ K

available
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Linearized Model

Equivalent 0-1 Linear Program: minimize
∑
i∈I

ℓi

∑
d⩾1

xi ,d −µi

+ (ℓi + bi)

µi −
∑
d⩾1

F̄i(d)xi ,d


subject to

∑
i∈I

ri ,k
∑
d⩾1

xi ,d ⩽ Rk ∀k ∈ K

xi ,d ∈ {0, 1} ∀i ∈ I, d ∈ N+

Demand Data

▶ µi = mean demand for NIIN i ∈ I

▶ F̄i(d) = probability that more than d
units of NIIN i ∈ I will be demanded

Costs

▶ ℓi = per-unit leftover cost for NIIN i ∈ I

▶ bi = per-unit shortage cost for NIIN i ∈ I

Constraints

▶ ri ,k = per-unit amount of resource type
k ∈ K consumed for NIIN i ∈ I

▶ Rk = amount of resource type k ∈ K

available
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Implementation

▶ Currently implemented in Pyomo.

▶ Reasonable solution times using glpk.

▶ Example: Roughly 28 seconds on an
Apple M1 Pro, for randomly generated
realistically-sized instances. (roughly
860,000 columns)

▶ For Class IX (Repair) parts, the recom-
mended stock levels from the optimization
model outperform those recommended
by existing methods, while only using
about half the amount of weight and vol-
ume.

▶ Evaluated performance using historical
part usage data from a past MEU de-
ployment.

▶ Demand occurrences modeled as Pois-
son processes with NIIN-specific rates.

▶ Currently working with LOGCOM to ob-
tain a publicly releasable item usage
dataset.
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Conclusions & Future Work

Summary

▶ We formulated an integer linear
program modeling a multi-item
newsvendor problem with knap-
sack constraints.

▶ Tractable for instance sizes of inter-
est.

▶ Provides an alternative quantitative
perspective for LOGCOM planners.

Research Questions

▶ How does the performance of the
recommended supply blocks depend
on parameter estimation errors
(e.g., errors in demand distribution
estimation)?

▶ Current formulation is risk-neutral;
what about criteria based on risk
measures?

▶ Other applications?
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