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Sensing Correlated Numerical Signals

Example: Acoustic signals in the Monterey Bay.

General Problem
Where should data be collected, in order to maximize the
amount of “information” gleaned about the entire area
of operations (AO)?

I i.e., in order to best infer the numerical signal across
the entire AO, where should sensors be placed?
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Sensor Placement Problem

Example: Placing hydrophones to detect vessels.
Suppose the AO has been discretized into a finite number
of locations (e.g., grid squares). Let:

n = number of locations

I The numerical signal Xi at each location i is a ran-
dom variable.

Only a subset of these locations can be monitored (e.g.,
with sensors). Let:

k = number of locations that can be monitored

Problem

Which k out of the n locations should be selected?
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Sensor Placement Problem (Continued)

Each selection has an associated utility. For each subset
A ⊆ {1, . . . , n} =: [n] of the locations, let:

u(A) = utility of monitoring the locations in A

Optimization Problem

maximize u(A)

subject to A ⊆ [n]

|A| = k

What should u(A) be?

Examples: u(A) could measure:

I how well the AO is covered by the sensors; e.g.,
[Zhao, Yoshida, Cheung & Haws 2013], [Craparo &
Karatas 2019]

I the uncertainty (e.g., entropy) associated with the
locations in A; e.g., [Ko, Lee & Queyranne 1995],
[Chen, Fampa & Lee 2022]

I how informative the measurements in A are about
the remaining locations; e.g., [Caselton & Zidek
1984], [Krause, Singh & Gusterin 2008]

Utility Function

Use the mutual information u(A) = MI(A) between the
sensed and un-sensed locations.

4



Gaussian Signals

Suppose X1, . . . ,Xn are jointly Gaussian, where

ΣA = covariance matrix for locations i ∈ A ⊆ [n]

Fact

MI(A) =
1

2
· ln

(
detΣA ·Σ[n]\A

detΣ[n]

)
, A ⊆ [n]

So, in the Gaussian case, our optimization problem is
equivalent to:

maximize ln(detΣA) + ln(detΣ[n]\A)

subject to A ⊆ [n]

|A| = k

(P)

Theorem [Bassett, H & Vargas 2022]

The following semidefinite program can be viewed as a
relaxation of the discrete optimization problem (P):

maximize ln det

(
Σ[n] �

X + 1

2

)
subject to diag(X) = 1

X ∈ PSDn

where PSDn is the set of all symmetric positive semidef-
inite n× n matrices.

I Inspired by Goemans-Williamson relaxation of the
Max Cut Problem [Goemans & Williamson 1995].

The relaxation can be solved efficiently, and be used in
the context of a branch and bound algorithm for (P)
[Bassett, H & Vargas 2022].
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Summary: Maximally Informative Underwater Sensor Placement

I We consider a sensor placement problem formulated
as a mutual information maximization problem.

I We propose a new efficiently solvable relaxation of
the problem.

I The relaxation can be used in an effective branch &
bound algorithm for the original sensor placement
problem.
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Broader Research Interests:

Markov Decision Processes
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MDPs Model (Stochastic) Sequential Decision Problems

Source: M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2005.
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Potential defense-related applications abound. . .

Recent Survey: M. Rempel & J. Cai, A review of approximate dynamic programming
applications within military operations research, Operations Research Perspectives 8, 2021.
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...but computing good solutions at scale is notoriously difficult.

It suffers from what Bellman called “the curse
of dimensionality,” meaning that its compu-
tational requirements grow exponentially with
the number of state variables . . .

. . . but it is still far more efficient and more
widely applicable than any other general
method.

Sutton & Barto, Reinforcement Learning: An Introduction, 2018 (p. 14)

http://norvig.com/atoms.html
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The MDP Model

A Markov decision process (MDP) is defined by

I a state set X,

I sets of feasible actions A(x) for each state x ∈ X,

I one-step rewards r(x , a) for each state x ∈ X and
action a ∈ A(x), and

I transition probabilities p(y |x , a) for x , y ∈ X and
a ∈ A(x).

Objective: Find an optimal policy φ that, for each state x ∈ X, prescribes an action φ(x) ∈ A(x) to take.
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Finding Optimal Policies

I It suffices to solve some associated optimality equa-
tions (aka. “Bellman equations”)

I Solving the optimality equations provides the value
function, which indicates which states are more
valuable to be in than others.

I The value function can then be used to derive an
optimal policy.

Example: When the objective is to maximize the ex-
pected total reward that is earned, the optimality equa-
tions can be viewed as a functional equation

v = T(v), v : X→ R

where T is a non-linear “optimality operator”. Given a
solution v to the optimality equation, an optimal policy
is

φ∗(x) = arg max
a∈A(x)

r(x , a) +
∑
y∈X

v(y)p(y |x , a)


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Algorithms for Computing Optimal Policies

There are two main algorithmic paradigms:

Value Iteration: Iteratively approximate the value func-
tion v : X→ R.

Example: Start with an initial guess v0, and iterate the optimality
operator T :

vk = T(vk−1), k = 1, 2, . . .

Policy Iteration: Iteratively approximate the optimal
policy φ∗.

Example: Start with an initial policy φ0, and iteratively

improve it by identifying actions to switch to.

Note: There is a close connection between policy iteration and applying the

simplex method to an associated linear program. Policy iteration can also be

viewed as applying Newton’s method to finding a root of T(v)−v . (See e.g.,

Puterman (2005) for details.)
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Dealing with Computational Intractability

There are two main algorithmic paradigms:

Value Function Approximation: Search within a struc-
tured classes of value functions.

Examples:

I Piecewise-constant functions (e.g., via state aggregation)
I Parameterized functions (e.g., linear in hand-selected fea-

tures, neural networks, . . . )

Policy Function Approximation: Search within struc-
tured classes of policies.

Examples:

I Piecewise-constant policies (e.g., via state aggregation)
I Parameterized policies (e.g., linear in hand-selected fea-

tures, neural networks, . . . )
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Reinforcement Learning: Dealing with Unknown/Complex System Dynamics

Idea: Use experience from interacting with an environment (or a
simulation model of it) to learn good value or policy function ap-
proximations.

Source: Schulman et al., Proximal policy optimization algorithms, arXiv:1707.06347v2, 2017
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Reinforcement Learning: Dealing with Unknown/Complex System Dynamics

Idea: Use experience from interacting with an environment (or a
simulation model of it) to learn good value or policy function ap-
proximations.

Source:, Sutton & Barto, 2018 (p. 456)
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