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About Me: A Very Short CV

Recent Academic History:

I Applied Math PhD from Stony Brook University (2016)

I Postdoc in Cornell Operations Research (OR) Department
(2016-2018)

I Assistant Prof. in NPS OR Department (2018-Present)

Main Research Interests:

I Markov Decision Processes (MDPs)

I Dynamic Resource Allocation Problems

I Defense Logistics

Some Recent Thesis Topics:

I Optimizing Supply Blocks for Expeditionary Units (Capt
N.C. Anthony, USMC, June 2021)

I Maximally Informative Underwater Sensor Placement (LT
E.V. Vargas, USN, September 2022; co-advising with
Robert Bassett)

I Monte-Carlo Methods for Naval Aviation Readiness-Based
Sparing Optimization (LCDR A.A. Alleman, USN, Septem-
ber 2022; co-advising with Rudy Yoshida)

I Approximate Dynamic Programming Methods for the Dy-
namic Airlift Routing Problem (LCDR A.J. Cooper, USN,
March 2023)

For more, see https://faculty.nps.edu/jefferson.huang/

1

https://faculty.nps.edu/jefferson.huang/


MDPs Model (Stochastic) Sequential Decision Problems

Source: M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2005.
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Potential defense-related applications abound. . .

Recent Survey: M. Rempel & J. Cai, A review of approximate dynamic programming
applications within military operations research, Operations Research Perspectives 8, 2021.
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...but computing good solutions at scale is notoriously difficult.

It suffers from what Bellman called “the curse
of dimensionality,” meaning that its compu-
tational requirements grow exponentially with
the number of state variables . . .

. . . but it is still far more efficient and more
widely applicable than any other general
method.

Sutton & Barto, Reinforcement Learning: An Introduction, 2018 (p. 14)

http://norvig.com/atoms.html
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The MDP Model

A Markov decision process (MDP) is defined by

I a state set X,

I sets of feasible actions A(x) for each state x ∈ X,

I one-step rewards r(x , a) for each state x ∈ X and
action a ∈ A(x), and

I transition probabilities p(y |x , a) for x , y ∈ X and
a ∈ A(x).

Objective: Find an optimal policy φ that, for each state x ∈ X, prescribes an action φ(x) ∈ A(x) to take.
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Finding Optimal Policies

I It suffices to solve some associated optimality equa-
tions (aka. “Bellman equations”)

I Solving the optimality equations provides the value
function, which indicates which states are more
valuable to be in than others.

I The value function can then be used to derive an
optimal policy.

Example: When the objective is to maximize the ex-
pected total reward that is earned, the optimality equa-
tions can be viewed as a functional equation

v = T(v), v : X→ R

where T is a non-linear “optimality operator”. Given a
solution v to the optimality equation, an optimal policy
is

φ∗(x) = arg max
a∈A(x)

r(x , a) +
∑
y∈X

v(y)p(y |x , a)


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Algorithms for Computing Optimal Policies

There are two main algorithmic paradigms:

Value Iteration: Iteratively approximate the value func-
tion v : X→ R.

Example: Start with an initial guess v0, and iterate the optimality
operator T :

vk = T(vk−1), k = 1, 2, . . .

Policy Iteration: Iteratively approximate the optimal
policy φ∗.

Example: Start with an initial policy φ0, and iteratively

improve it by identifying actions to switch to.

Note: There is a close connection between policy iteration and applying the

simplex method to an associated linear program. Policy iteration can also be

viewed as applying Newton’s method to finding a root of T(v)−v . (See e.g.,

Puterman (2005) for details.)
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Dealing with Computational Intractability

There are two main algorithmic paradigms:

Value Function Approximation: Search within a struc-
tured classes of value functions.

Examples:

I Piecewise-constant functions (e.g., via state aggregation)
I Parameterized functions (e.g., linear in hand-selected fea-

tures, neural networks, . . . )

Policy Function Approximation: Search within struc-
tured classes of policies.

Examples:

I Piecewise-constant policies (e.g., via state aggregation)
I Parameterized policies (e.g., linear in hand-selected fea-

tures, neural networks, . . . )
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Reinforcement Learning: Dealing with Unknown/Complex System Dynamics

Idea: Use experience from interacting with an environment (or a
simulation model of it) to learn good value or policy function ap-
proximations.

Source: Schulman et al., Proximal policy optimization algorithms, arXiv:1707.06347v2, 2017
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Reinforcement Learning: Dealing with Unknown/Complex System Dynamics

Idea: Use experience from interacting with an environment (or a
simulation model of it) to learn good value or policy function ap-
proximations.

Source:, Sutton & Barto, 2018 (p. 456)
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BLAF (Bottom Line After the Fact)

For MDPs, modeling is easy but computation is hard.
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