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About Me: A Very Short CV

Recent Academic History:
» Applied Math PhD from Stony Brook University (2016)

P Postdoc in Cornell Operations Research (OR) Department
(2016-2018)

P Assistant Prof. in NPS OR Department (2018-Present)

Main Research Interests:
P Markov Decision Processes (MDPs)
» Dynamic Resource Allocation Problems

» Defense Logistics

Some Recent Thesis Topics:

>

>

Optimizing Supply Blocks for Expeditionary Units (Capt
N.C. Anthony, USMC, June 2021)

Maximally Informative Underwater Sensor Placement (LT
E.V. Vargas, USN, September 2022; co-advising with
Robert Bassett)

Monte-Carlo Methods for Naval Aviation Readiness-Based
Sparing Optimization (LCDR A.A. Alleman, USN, Septem-
ber 2022; co-advising with Rudy Yoshida)

Approximate Dynamic Programming Methods for the Dy-
namic Airlift Routing Problem (LCDR A.J. Cooper, USN,
March 2023)

For more, see https://faculty.nps.edu/jefferson.huang/
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MDPs Model (Stochastic) Sequential Decision Problems
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Figure 1.1.1 Symbolic representation of a sequential decision problem.

Source: M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2005.



Potential defense-related applications abound. ..

Recent Survey: M. Rempel & J. Cai, A review of approximate dynamic programming
applications within military operations research, Operations Research Perspectives 8, 2021.



..but computing good solutions at scale is notoriously difficult.

It suffers from what Bellman called “the curse b d

of dimensionality,” meaning that its compu-

tational requirements grow exponentially with

the number of state variables . ..

... but it is still far more efficient and more

widely applicable than any other general

method.

Sutton & Barto, Reinforcement Learning: An Introduction, 2018 (p. 14)

http://norvig.com/atoms.html
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The MDP Model

A Markov decision process (MDP) is defined by

P> a state set X,
P sets of feasible actions A(x) for each state x € X,

» one-step rewards r(x, a) for each state x € X and
action a € A(x), and

» transition probabilities p(y|x, a) for x,y € X and
ac€ A(x).
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Figure 1.1.1 Symbolic representation of a sequential decision problem.

Source: M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2005.

Objective: Find an optimal policy ¢ that, for each state x € X, prescribes an action ¢ (x) € A(x) to take.



Finding Optimal Policies

P It suffices to solve some associated optimality equa-
tions (aka. “Bellman equations”)

» Solving the optimality equations provides the value
function, which indicates which states are more
valuable to be in than others.

» The value function can then be used to derive an
optimal policy.

Example: When the objective is to maximize the ex-
pected total reward that is earned, the optimality equa-
tions can be viewed as a functional equation

v=T(v), v:X—R

where T is a non-linear “optimality operator”. Given a
solution v to the optimality equation, an optimal policy
is

$*(x) = argmax |r(x,a) + ) _v(y)pl(ylx,a)
acA(x) yex



Algorithms for Computing Optimal Policies

There are two main algorithmic paradigms:

Value Iteration: lteratively approximate the value func- Policy Iteration: Iteratively approximate the optimal
tion v : X — R. policy ¢&*.

Example: Start with an initial guess vy, and iterate the optimality

Example: Start with an initial policy ¢¢, and iteratively
operator T:

improve it by identifying actions to switch to.
Vi = T(vk—1), k=1,2,...

Note: There is a close connection between policy iteration and applying the
simplex method to an associated linear program. Policy iteration can also be
viewed as applying Newton's method to finding a root of T(v) —v. (See e.g.,
Puterman (2005) for details.)



Dealing with Computational Intractability

There are two main algorithmic paradigms:

Value Function Approximation: Search within a struc-
tured classes of value functions.

Examples:

P Piecewise-constant functions (e.g., via state aggregation)

P Parameterized functions (e.g., linear in hand-selected fea-
tures, neural networks, ...)

Policy Function Approximation: Search within struc-
tured classes of policies.

Examples:

P Piecewise-constant policies (e.g., via state aggregation)

» Parameterized policies (e.g., linear in hand-selected fea-
tures, neural networks, .. .)



Reinforcement Learning: Dealing with Unknown/Complex System Dynamics

Idea: Use experience from interacting with an environment (or a
simulation model of it) to learn good value or policy function ap-
proximations.

Figure 5: Still frames of the policy learned from RoboschoolHumanoidFlagrun. In the first six frames, the
robot runs towards a target. Then the position is randomly changed, and the robot turns and runs toward
the new target.

Source: Schulman et al., Proximal policy optimization algorithms, arXiv:1707.06347v2, 2017



Reinforcement Learning: Dealing with Unknown/Complex System Dynamics

Idea: Use experience from interacting with an environment (or a
simulation model of it) to learn good value or policy function ap-
proximations.

| |
0.4] ° S
| = >~ ‘
N x EO.S g
503 - H N
= | -
0.2{ ° ) 04l ° .
< < ~_
—0.10 o~ 005 10
¥ 005 T 010 7 T
(km) - m)0:15

™) 000015 *

Figure 16.10: Sample thermal soaring trajectories, with arrows showing the direction of
flight from the same starting point (note that the altitude scales are shifted). Left: before
learning: the agent selects actions randomly and the glider descends. Right: after learning:
the glider gains altitude by following a spiral trajectory. Adapted with permission from PNAS
vol. 113(22), p. E4879, 2016, Reddy, Celani, Sejnowski, and Vergassola, Learning to Soar in
Turbulent Environments.

Source:, Sutton & Barto, 2018 (p. 456)
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BLAF (Bottom Line After the Fact)

For MDPs, modeling is easy but computation is hard.
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