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Sensing Correlated Numerical Signals

Example: Acoustic signals in the Monterey Bay.

General Problem
Where should data be collected, in order to maximize the
amount of “information” gleaned about the entire area
of operations (AO)?

I i.e., in order to best infer the numerical signal across
the entire AO, where should sensors be placed?
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Sensor Placement Problem

Example: Placing hydrophones to detect vessels.
Suppose the AO has been discretized into a finite number
of locations (e.g., grid squares). Let:

n = number of locations

I The numerical signal Xi at each location i is a ran-
dom variable.

Only a subset of these locations can be monitored (e.g.,
with sensors). Let:

k = number of locations that can be monitored

Problem

Which k out of the n locations should be selected?
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Sensor Placement Problem (Continued)

Each selection has an associated utility. For each subset
A ⊆ {1, . . . , n} =: [n] of the locations, let:

u(A) = utility of monitoring the locations in A

Optimization Problem

maximize u(A)

subject to A ⊆ [n]

|A| = k

What should u(A) be?

Examples: u(A) could measure:

I how well the AO is covered by the sensors; e.g.,
[Zhao, Yoshida, Cheung & Haws 2013], [Craparo &
Karatas 2019]

I the uncertainty (e.g., entropy) associated with the
locations in A; e.g., [Ko, Lee & Queyranne 1995],
[Chen, Fampa & Lee 2022]

I how informative the measurements in A are about
the remaining locations; e.g., [Caselton & Zidek
1984], [Krause, Singh & Gusterin 2008]

Utility Function

Use the mutual information u(A) = MI(A) between the
sensed and un-sensed locations.

3



Gaussian Signals

Suppose X1, . . . ,Xn are jointly Gaussian, where

ΣA = covariance matrix for locations i ∈ A ⊆ [n]

Fact

MI(A) =
1

2
· ln

(
detΣA ·Σ[n]\A

detΣ[n]

)
, A ⊆ [n]

So, in the Gaussian case, our optimization problem is
equivalent to:

maximize ln(detΣA) + ln(detΣ[n]\A)

subject to A ⊆ [n]

|A| = k

(P)

Theorem [Bassett, H & Vargas 2022]

The following semidefinite program can be viewed as a
relaxation of the discrete optimization problem (P):

maximize ln det

(
Σ[n] �

X + 1

2

)
subject to diag(X) = 1

X ∈ PSDn

where PSDn is the set of all symmetric positive semidef-
inite n× n matrices.

I Inspired by Goemans-Williamson relaxation of the
Max Cut Problem [Goemans & Williamson 1995].

The relaxation can be solved efficiently, and be used in
the context of a branch and bound algorithm for (P)
[Bassett, H & Vargas 2022].

4



Summary

I We consider a sensor placement problem formulated
as a mutual information maximization problem.

I We propose a new efficiently solvable relaxation of
the problem.

I The relaxation can be used in an effective branch &
bound algorithm for the original sensor placement
problem.
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