Bandit Algorithms for Data-Driven Resolution/Field-of-View Tradeoffs in Multi-Mode Sensing and Intelligence Collection

Jefferson Huang

Assistant Professor Operations Research Department Naval Postgraduate School

31st European Conference on Operational Research

University of West Attica Athens, Greece

14 July, 2021

Plan of the Talk

Outline:

- I. Motivation: Cyber Intrusion Model
- II. Motivation: Routing Imaging Assets
- III. Background: Multi-Armed Bandit Problems
- IV. A Bandit Model of the Resolution/Field-of-View Tradeoff
- V. The Router-Then-Commit (RTC) Algorithm
- VI. A UCB-Type Algorithm
- VII. Summary & Extensions

Motivation: Cyber Intrusion Model

D. Kronzilber (NPS Master's Thesis, 2017) proposed a model for the optimal infiltration of, and intelligence collection from, a computer network.

The intelligence yield from each computer is random, with unknown mean.

Question: Given a set of computers that have been infiltrated, how can the infiltrator simultaneously:

- Learn which computers have the highest mean intelligence yield?
- Maximize the rate of intelligence collection?

Example: Infiltrated network nodes are denoted by a •

In addition to nodes representing computers, Kronzilber suggested the inclusion of routers as special nodes.

- Using a router, the infiltrator can observe small/partial bits of intelligence from all computers connected to it.
- The router provides a wider field-of-view (FOV), at the cost of additional noise.

Resolution/FOV Tradeoff

How can the infiltrator effectively employ the router, versus individual infiltrated computers?

Example: Infiltrated network nodes are denoted by a •

Motivation: Routing Imaging Assets

An operator is tasked with collecting imagery intelligence over an **area of interest**.

Collected image frames are fed into an image processing module that assigns a score reflecting the **intelligence value** of the image.

▶ lower-resolution image ⇒ noisier intelligence score

Two **imaging modes** are available:

LORES-HIFOV: Collect from all frames at once, at low resolution HIRES-LOFOV: Collect from a single frame, at high resolution

Resolution/FOV Tradeoff

How can the operator effectively employ ${\rm LoRes-HiFOV},$ versus ${\rm HiRes-LoFOV?}$

Background: Multi-Armed Bandit Problems

In the old days, a "one-armed ${\color{black} \textbf{bandit}}$ " referred to a lever-operated slot machine.

Multi-Armed Bandit (MAB)

There are k reward sources, referred to as arms.

- Rewards are random.
- The mean reward μ_a for each arm *a* is unknown.

In each round t = 1, ..., n, the operator can collect from exactly one arm.

The operator's **objective** is to minimize their regret R_n ; letting X_t be the reward earned in round t,

$$R_n = \mathbb{E}\left[\sum_{t=1}^n \left(\max_a \mu_a - X_t\right)\right]$$

Exploration/Exploitation Tradeoff

In each round, the operator must balance two considerations:

- Exploration: Learn about the mean rewards.
- Exploitation: Maximize the reward earned.

A classic approach involves assigning iteratively updated indices $\Im_a(t)$ to each arm *a*. They reflect, as of the start of round *t*,

- the average reward $\bar{X}_a(t)$ earned from arm a and
- the number of times $N_a(t)$ arm a has been collected from

In round t, the operator collects from arm with the highest index, i.e.,

$$a^* = \underset{a=1,...,k}{\operatorname{arg\,max}} \mathfrak{I}_a(t)$$

Example: Upper Confidence Bound (UCB) Algorithm

$$\mathfrak{I}_{a}(t) = \bar{X}_{a}(t) + \sqrt{\frac{2\ln(n)}{N_{a}(t)}}$$

A Bandit Model of the Resolution/Field-of-View Tradeoff

Introduce an additional arm, called LORES-HIFOV.

Collecting from LORES-HIFOV means that, for each arm

 $a = 1, \ldots, k$

the operator collects from arm *a*, with probability v_a .

Assumptions for this Talk

- The v_a 's are identically equal to v.
- > The operator knows v.

The Router-Then-Commit (RTC) Algorithm

Use $\operatorname{LoRes-HiFOV}$ to rule out a subset of the arms.

Idea

- 1. Pull LORES-HIFOV a fixed number of times $\tau.$
- **2.** Eliminate a subset $E \subseteq \{1, ..., k\}$ of the arms from further consideration.
- **3.** Consider the resulting (k |E|)-armed bandit problem.

Select τ so that, with high probability, all arms \underline{a} with a "large" optimality gap

$$\Delta_{\underline{a}} := \left(\max_{a=1,\ldots,k} \mu_{a}\right) - \mu_{\underline{a}}$$

will be eliminated.

Lemma

Suppose LORES-HIFOV is initially pulled t times. For any $\delta > 0$, if

$$t > rac{\ln(2/\delta)}{v}$$
 ,

then

$$\mathbb{P}\left(\left|\bar{X}_{\mathsf{a}}(t)-\mu_{\mathsf{a}}\right| \geqslant \sqrt{\frac{1}{2}\ln\left(\frac{\nu}{\nu+(\delta/2)^{1/t}-1}\right)}\right) \leqslant \delta$$

RTC Algorithm

1. Given a target gap $\Delta > 0$, pull LORES-HIFOV

$$\tau = \tau(\Delta) := \left\lceil \frac{\ln(2kn^2)}{\nu \cdot (1 - e^{-\Delta^2/8})} \right\rceil$$

times.

2. Eliminate every arm <u>a</u> for which

$$\begin{split} \bar{X}_{\underline{a}}(\tau) + \sqrt{\frac{1}{2}\ln\left(\frac{\nu}{\nu + [1/(2kn^2)]^{1/\tau} - 1}\right)} \\ & < \max_{\underline{a}=1,\dots,k} \left[\bar{X}_{\underline{a}}(\tau) - \sqrt{\frac{1}{2}\ln\left(\frac{\nu}{\nu + [1/(2kn^2)]^{1/\tau} - 1}\right)} \right] \end{split}$$

3. Apply the UCB algorithm to the remaining arms.

Theorem

Suppose the rewards are all between 0 and 1. If $n \geqslant \tau(\Delta)$, then the RTC algorithm incurs a regret of

$$\mathsf{R}_n \leqslant 1 + \tau(\Delta) + 8\sqrt{kn\ln(n)} + 3k\Delta.$$

For example, if $\Delta = \sqrt{8 \ln \left(\frac{\sqrt{k}}{\sqrt{k-1}}\right)}$, then $O\left(\sqrt{k} \ln(kn)\right)$ pulls of LORES-HIFOV ensures $R_n = O\left(\sqrt{k} \ln(kn) + \sqrt{kn(n)} + k\sqrt{\ln(\sqrt{k})}\right)$.

A UCB-Type Algorithm

Notation:

- $\bar{X}_{a}(t) =$ average reward from arm a up to round t
- N_{LH}(t) = number of LORES-HIFOV collections
- A(t) = set of active arms at the start of round t

►
$$\mathfrak{I}_{\mathsf{LH}}(t) = \nu |\mathcal{A}(t)| \sqrt{\frac{2\ln(n)}{\nu N_{\mathsf{LH}}(t)}} = \text{index of LORES-HIFOV}$$

UCB-Type Algorithm

1. Initialization:

- Collect from LORES-HIFOV until each arm has been collected from at least once.
- **Eliminate** all arms $a \in \{1, \ldots, k\}$ where

$$\mathbb{J}_{a}(t) < \max_{a=1,\ldots,k} \left\{ \bar{X}_{a}(t) - \sqrt{\frac{2\ln(n)}{N_{a}(t) + \nu N_{\mathsf{LH}}(t)}} \right\}$$

- **2.** Main: For each round $t = 1, \ldots, n$,
 - If J_{LH}(t) > max_{a=1,...,k} J_a(t), collect from LoRes-HIFOV.
 - Otherwise, collect from arm

$$a^* = \underset{a=1,...,k}{\arg \max} \mathcal{I}_a(t)$$

Eliminate all arms $a \in \{1, ..., k\}$ where

$$\mathbb{J}_{a}(t) < \max_{a \in \mathcal{A}(t)} \left\{ \bar{X}_{a}(t) - \sqrt{\frac{2\ln(n)}{N_{a}(t) + \nu N_{\text{LH}}(t)}} \right\}$$

Update A(t)

Empirical Performance of the UCB-Type Algorithm

The ${\rm LoRES-HiFOV}$ arm should be especially beneficial when there are many arms, and relatively few are good.

Example (0-1 Rewards)

Each arm yields a reward of 1 (e.g., "Useful Intelligence") or 0.

The mean rewards μ_a vary according to a Beta distribution with parameters $\alpha = 1$ and $\beta = 5$:

- k = 1000 arms.
- n = 40,000 rounds.
- $\sim v = 0.02$

The average performance of our algorithm over 100 simulation replications, with and without the ${\rm LORES-HIFOV}$ mode, is shown on the right.

Without LORES-HIFOV = UCB Algorithm with Arm Elimination

The UCB-Type Algorithm uses LoRes-HiFOV to quickly screen the less desirable arms.

Summary & Extensions

Summary:

- We proposed a model for trading off "resolution" versus "field-of-view".
- We analyzed the "router-then-commit" algorithm, where LORES-HIFOV is pulled a number of times first to eliminate some of the arms from further consideration.
- We proposed an index-based ("UCB-type") algorithm that has good empirical performance.

Some Potential Extensions:

- **b** Don't know the v_a 's.
- Different noise models for LORES-HIFOV
- More than two resolution/FOV options
- Detecting changes in mean intelligence values.

Contact Information

Jefferson Huang, PhD

Assistant Professor Operations Research Department Naval Postgraduate School

Web: http://faculty.nps.edu/jefferson.huang/ Email: jefferson.huang@nps.edu