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Motivation: Cyber Intrusion Model

D. Kronzilber (NPS Master’s Thesis, 2017) proposed a model for the opti-
mal infiltration of, and intelligence collection from, a computer network.

I The intelligence yield from each computer is random, with unknown
mean.

Question: Given a set of computers that have been infiltrated, how can the
infiltrator simultaneously:

I Learn which computers have the highest mean intelligence yield?

I Maximize the rate of intelligence collection?

Home

Example: Infiltrated network nodes are denoted by a

In addition to nodes representing computers, Kronzilber suggested the in-
clusion of routers as special nodes.

I Using a router, the infiltrator can observe small/partial bits of intel-
ligence from all computers connected to it.

I The router provides a wider field-of-view (FOV), at the cost of ad-
ditional noise.

Resolution/FOV Tradeoff

How can the infiltrator effectively employ the router, versus individual infil-
trated computers?

Router
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Motivation: Routing Imaging Assets

An operator is tasked with collecting imagery intelligence over an
area of interest.

Collected image frames are fed into an image processing module
that assigns a score reflecting the intelligence value of the image.

I lower-resolution image =⇒ noisier intelligence score

Two imaging modes are available:

LoRes-HiFOV: Collect from all frames at once, at low resolution

HiRes-LoFOV: Collect from a single frame, at high resolution

Resolution/FOV Tradeoff

How can the operator effectively employ LoRes-HiFOV, versus
HiRes-LoFOV?



Background: Multi-Armed Bandit Problems

In the old days, a “one-armed bandit” referred to a lever-operated slot
machine.

Multi-Armed Bandit (MAB)

There are k reward sources, referred to as arms.

I Rewards are random.

I The mean reward µa for each arm a is unknown.

In each round t = 1, . . . , n, the operator can collect from exactly one arm.
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The operator’s objective is to minimize their regret Rn ; letting Xt be the
reward earned in round t,

Rn = E
[

n∑
t=1

(
max
a
µa − Xt

)]

Exploration/Exploitation Tradeoff

In each round, the operator must balance two considerations:

I Exploration: Learn about the mean rewards.

I Exploitation: Maximize the reward earned.

A classic approach involves assigning iteratively updated indices Ia(t) to
each arm a. They reflect, as of the start of round t,

I the average reward X̄a(t) earned from arm a and

I the number of times Na(t) arm a has been collected from

In round t, the operator collects from arm with the highest index, i.e.,

a∗ = arg max
a=1,...,k

Ia(t)

Example: Upper Confidence Bound (UCB) Algorithm

Ia(t) = X̄a(t) +

√
2 ln(n)

Na(t)



A Bandit Model of the Resolution/Field-of-View Tradeoff

Introduce an additional arm, called LoRes-HiFOV.

I Collecting from LoRes-HiFOV means that, for each arm

a = 1, . . . , k

the operator collects from arm a, with probability νa.

Assumptions for this Talk

I The νa’s are identically equal to ν.

I The operator knows ν.
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The Router-Then-Commit (RTC) Algorithm

Use LoRes-HiFOV to rule out a subset of the arms.

Idea

1. Pull LoRes-HiFOV a fixed number of times τ.

2. Eliminate a subset E ⊆ {1, . . . , k} of the arms from further consideration.

3. Consider the resulting (k − |E |)-armed bandit problem.

Select τ so that, with high probability, all arms a with a “large” optimality
gap

∆a :=

(
max

a=1,...,k
µa

)
−µa

will be eliminated.

Lemma

Suppose LoRes-HiFOV is initially pulled t times. For any δ > 0, if

t >
ln(2/δ)

ν
,

then

P

∣∣X̄a(t) −µa
∣∣ >

√√√√ 1

2
ln

(
ν

ν+ (δ/2)1/t − 1

) 6 δ

RTC Algorithm

1. Given a target gap ∆ > 0, pull LoRes-HiFOV

τ = τ(∆) :=

⌈
ln(2kn2)

ν · (1 − e−∆
2/8)

⌉
times.

2. Eliminate every arm a for which

X̄a(τ) +

√√√√ 1

2
ln

(
ν

ν+ [1/(2kn2)]1/τ − 1

)

< max
a=1,...,k

X̄a(τ) −

√√√√ 1

2
ln

(
ν

ν+ [1/(2kn2)]1/τ − 1

)
3. Apply the UCB algorithm to the remaining arms.

Theorem
Suppose the rewards are all between 0 and 1. If n > τ(∆), then the RTC
algorithm incurs a regret of

Rn 6 1 + τ(∆) + 8
√
kn ln(n) + 3k∆.

For example, if ∆ =

√
8 ln

( √
k√

k−1

)
, then O

(√
k ln(kn)

)
pulls of

LoRes-HiFOV ensures Rn = O

(√
k ln(kn)+

√
kn ln(n)+ k

√
ln(
√

k)

)
.



A UCB-Type Algorithm

Operator

. . .
Arm 1 Arm k

LoRes-HiFOV

. . .

Arm 1 Arm k

ν ν

Notation:

I X̄a(t) = average reward from arm a up to round t

I Na(t) = number of collections from arm a prior to round t

I NLH(t) = number of LoRes-HiFOV collections

I A(t) = set of active arms at the start of round t

I Ia(t) = X̄a(t) +

√
2 ln(n)

Na(t)+νNLH(t)
= index of arm a

I ILH(t) = ν|A(t)|

√
2 ln(n)
νNLH(t)

= index of LoRes-HiFOV

UCB-Type Algorithm

1. Initialization:

I Collect from LoRes-HiFOV until each arm has been collected from
at least once.

I Eliminate all arms a ∈ {1, . . . , k} where

Ia(t) < max
a=1,...,k

{
X̄a(t) −

√
2 ln(n)

Na(t) + νNLH(t)

}

2. Main: For each round t = 1, . . . , n,

I If ILH(t) > maxa=1,...,k Ia(t), collect from LoRes-HiFOV.

I Otherwise, collect from arm

a∗ = arg max
a=1,...,k

Ia(t)

I Eliminate all arms a ∈ {1, . . . , k} where

Ia(t) < max
a∈A(t)

{
X̄a(t) −

√
2 ln(n)

Na(t) + νNLH(t)

}

I Update A(t)



Empirical Performance of the UCB-Type Algorithm

The LoRes-HiFOV arm should be especially beneficial when there are many
arms, and relatively few are good.

Example (0-1 Rewards)

Each arm yields a reward of 1 (e.g., “Useful Intelligence”) or 0.

I The mean rewards µa vary according to a Beta distribution with
parameters α = 1 and β = 5:

I k = 1000 arms.

I n = 40, 000 rounds.

I ν = 0.02

The average performance of our algorithm over 100 simulation replications,
with and without the LoRes-HiFOV mode, is shown on the right.

I Without LoRes-HiFOV = UCB Algorithm with Arm Elimination

The UCB-Type Algorithm uses LoRes-HiFOV to quickly screen the less
desirable arms.



Summary & Extensions

Summary:

I We proposed a model for trading off “resolution”
versus “field-of-view”.

I We analyzed the “router-then-commit” algorithm,
where LoRes-HiFOV is pulled a number of times
first to eliminate some of the arms from further con-
sideration.

I We proposed an index-based (“UCB-type”) algo-
rithm that has good empirical performance.

Some Potential Extensions:

I Don’t know the νa’s.

I Different noise models for LoRes-HiFOV

I More than two resolution/FOV options

I Detecting changes in mean intelligence values.
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