Bandit Algorithms for Data-Driven Resolution/Field-of-View Tradeoffs in Multi-Mode Sensing and Intelligence Collection

Jefferson Huang, PhD

Assistant Professor Operations Research Department Naval Postgraduate School

2020 Emerging Techniques Forum

7 December – 10 December Military Operations Research Society

Plan of the Talk

Bottom Line Up Front (BLUF)

We propose an algorithm that can provide data-driven guidance on when to use a

low-resolution/high-field-of-view sensor,

versus a

high-resolution/low-field-of-view sensor.

Outline:

- I. Motivation: Cyber Intrusion Model
- II. Motivation: Routing Imaging Assets
- III. Background: Multi-Armed Bandit Problems
- IV. A Bandit Model of the Resolution/Field-of-View Tradeoff
- V. A Data-Driven Algorithm for Dual-Mode Sensing
- VI. Efficient Employment of the LORES-HIFOV Mode
- VII. Conclusions & Extensions

Motivation: Cyber Intrusion Model

D. Kronzilber (NPS Master's Thesis, 2017) proposed a model for the optimal infiltration of, and intelligence collection from, a computer network.

The intelligence yield from each computer is random, with unknown mean.

Question: Given a set of computers that have been infiltrated, how can the infiltrator simultaneously:

- Learn which computers have the highest mean intelligence yield?
- Maximize the rate of intelligence collection?

Example: Infiltrated network nodes are denoted by a •

In addition to nodes representing computers, Kronzilber suggested the inclusion of **routers** as special nodes.

- Using a router, the infiltrator can observe small/partial bits of intelligence from all computers connected to it.
- The router provides a wider field-of-view (FOV), at the cost of additional noise.

Resolution/FOV Tradeoff

How can the infiltrator effectively employ the router, versus individual infiltrated computers?

Example: Infiltrated network nodes are denoted by a

Motivation: Routing Imaging Assets

An operator is tasked with collecting imagery intelligence over an area of interest.

Collected image frames are fed into an image processing module that assigns a score reflecting the **intelligence value** of the image.

▶ lower-resolution image ⇒ noisier intelligence score

Two imaging modes are available:

LORES-HIFOV: Collect from all frames at once, at low resolution HIRES-LOFOV: Collect from a single frame, at high resolution

Resolution/FOV Tradeoff

How can the operator effectively employ ${\rm LoRes-HiFOV},$ versus ${\rm HiRes-LoFOV?}$

Background: Multi-Armed Bandit Problems

In the old days, a "one-armed ${\color{black} \textbf{bandit}}$ " referred to a lever-operated slot machine.

Multi-Armed Bandit (MAB)

There are k reward sources, referred to as arms.

- Rewards are random.
- **•** The mean reward μ_a for each arm *a* is unknown.

In each round t = 1, ..., n, the operator can collect from exactly one arm.

The operator's **objective** is to minimize their regret R_n ; letting X_t be the reward earned in round t,

$$R_n = \mathbb{E}\left[\sum_{t=1}^n \left(\max_a \mu_a - X_t\right)\right]$$

Exploration/Exploitation Tradeoff

In each round, the operator must balance two considerations:

- Exploration: Learn about the mean rewards.
- Exploitation: Maximize the reward earned.

A classic approach involves assigning iteratively updated indices $\mathcal{I}_a(t)$ to each arm a. They reflect, as of the start of round t,

- the average reward $\bar{X}_a(t)$ earned from arm a and
- the number of times $N_a(t)$ arm a has been collected from

In round t, the operator collects from arm with the highest index, i.e.,

 $a^* = \underset{a=1,\dots,k}{\arg \max} \mathcal{I}_a(t)$

Example: Upper Confidence Bound (UCB) Algorithm

$$\mathfrak{I}_{a}(t) = \bar{X}_{a}(t) + \sqrt{\frac{2\ln(n)}{N_{a}(t)}}$$

A Bandit Model of the Resolution/Field-of-View Tradeoff

Introduce an additional arm, called LORES-HIFOV.

Collecting from LORES-HIFOV means that, for each arm

 $a = 1, \ldots, k$

the operator collects from arm *a*, with probability v_a .

Assumptions for this Talk

- The v_a 's are identically equal to v.
- > The operator knows v.

A Data-Driven Algorithm for Dual-Mode Sensing

Notation:

- $\bar{X}_{a}(t) =$ average reward from arm a up to round t
- $N_a(t) =$ number of collections from arm *a* prior to round *t*
- N_{LH}(t) = number of LORES-HIFOV collections
- A(t) = set of active arms at the start of round t

►
$$\mathfrak{I}_{\mathsf{LH}}(t) = \nu |\mathcal{A}(t)| \sqrt{\frac{2\ln(n)}{\nu N_{\mathsf{LH}}(t)}} = \text{index of LORES-HIFOV}$$

Bandit Algorithm for Dual-Mode Sensing

1. Initialization:

- Collect from LORES-HIFOV until each arm has been collected from at least once.
- **Eliminate** all arms $a \in \{1, ..., k\}$ where

$$\mathbb{J}_{a}(t) < \max_{a=1,\ldots,k} \left\{ \bar{X}_{a}(t) - \sqrt{\frac{2\ln(n)}{N_{a}(t) + \nu N_{\mathsf{LH}}(t)}} \right\}$$

- **2.** Main: For each round $t = 1, \ldots, n$,
 - If J_{LH}(t) > max_{a=1,...,k} J_a(t), collect from LoRes-HIFOV.
 - Otherwise, collect from arm

$$a^* = \underset{a=1,...,k}{\arg \max} \mathcal{I}_a(t)$$

Eliminate all arms $a \in \{1, ..., k\}$ where

$$\mathbb{J}_{a}(t) < \max_{a \in \mathcal{A}(t)} \left\{ \bar{X}_{a}(t) - \sqrt{\frac{2\ln(n)}{N_{a}(t) + \nu N_{\text{LH}}(t)}} \right\}$$

Update A(t)

Efficient Employment of the ${\rm LoRes\text{-}HiFOV}$ Mode

The LORES-HIFOV arm should be especially beneficial when there are many arms, and relatively few are good.

Example (0-1 Rewards)

Each arm yields a reward of 1 (e.g., "Useful Intelligence") or 0.

The mean rewards μ_a vary according to a Beta distribution with parameters $\alpha = 1$ and $\beta = 5$:

- k = 1000 arms.
- n = 40,000 rounds.
- ν = 0.02

The average performance of our algorithm over 100 simulation replications, with and without the $\rm LORES-HIFOV$ mode, is shown on the right.

Without LoRes-HIFOV = UCB Algorithm with Arm Elimination

With LoRes-HiFOV, the less desirable arms are quickly screened.

Conclusions & Extensions

Conclusions:

- We proposed a model and an index-based algorithm for judiciously trading off resolution versus FOV.
- Empirical results indicate that our index-based algorithm can efficiently employ the LORES-HIFOV mode to quickly screen less desirable frames.

Some Potential Extensions:

- **b** Don't know the v_a 's.
- Different noise models for LORES-HIFOV
- More than two resolution/FOV options
- Detecting changes in mean intelligence values.

Contact Information

Jefferson Huang, PhD

Assistant Professor Operations Research Department Naval Postgraduate School

Web: http://faculty.nps.edu/jefferson.huang/ Email: jefferson.huang@nps.edu