Bandit Models of Cyber Intrusion

Jefferson Huang, PhD

Assistant Professor
jefferson.huang@nps.edu

Operations Research Department
Naval Postgraduate School

INFORMS Annual Meeting Seattle, WA

October 20, 2019

Network Intrusion Scenario

Task: Collect useful information from computers on a network.

Initially have access to a "home node", from which you can:

- try to collect information from that node, or
- try to infiltrate other computers connected to that node.

Question: How should information collection be balanced with infiltration?

Network Intrusion Scenario

Example:

- 2 dots $=$ infiltrated computer (can try to collect info.)
- 1 dot $=$ accessible computer (can try to infiltrate)
- No dot $=$ inaccessible computer.

Linear Network

The home node is initially at one end of a line of K computers.

Example:

- Trying to collect info from C_{k} yields a unit of info with probability μ_{k}.
- Each infiltration attempt is successful with probability s.

Objective: Maximize the average number of info units collected over a discrete and finite number T of decision epochs.

Linear Network: "Full" Knowledge

"Full" Knowledge Assumption: The values μ_{1}, \ldots, μ_{K} and s are known.

- An optimal collect/infiltrate policy can be computed via dynamic programming.

Definition

Let $\mu^{*}(k):=\max _{i=1, \ldots, k} \mu_{i}$, and define the operators $\mathcal{T}_{C}, \mathcal{T}_{\text {}}$ on functions $f:\{1, \ldots, K\} \rightarrow \mathbb{R}$ by

$$
\mathcal{T}_{C} f(k):=\mu^{*}(k)+f(k)
$$

and

$$
\mathcal{T}_{1} f(x):=s f(k+1)+(1-s) f(k)
$$

Optimality Equations

Letting $V_{0} \equiv 0$, for $t=1, \ldots, T$ the value function V_{t} satisfies

$$
V_{t}(k)= \begin{cases}\max \left\{\mathcal{T}_{C} V_{t-1}(k), \mathcal{T}_{l} V_{t-1}(k)\right\}, & k=1, \ldots, K-1 \\ \mathcal{T}_{C} V_{t-1}(K), & k=K\end{cases}
$$

Linear Network: "Full" Knowledge

Definition

A collect/infiltrate policy is a threshold policy if
collect info at epoch $t \Longrightarrow$ collect info at epoch $t+1$.

Theorem

If $T=3$, then there is an optimal threshold policy.

Conjecture

For any horizon T, there is an optimal threshold policy.

- To prove the conjecture, it suffices to show that for $k=1, \ldots, K-1$,

$$
V_{t}(k+1)-V_{t}(k)
$$

is non-decreasing in t.

Linear Network: "Partial" Knowledge

"Partial" Knowledge Assumption: The chance of successful infiltration s is known, but the values μ_{1}, \ldots, μ_{K} are unknown.

Idea

Consider policies consisting of two phases:

1. Devote the first T_{l} epochs to attempting to infiltrate new computers.
2. During the remaining epochs, collect info from the infiltrated computers using a bandit algorithm (e.g., UCB).

Theorem (Dor Kronzilber (MAJ, IDF), Master's Thesis, NPS, 2017)

To achieve a regret of

$$
O(\sqrt{T \log (T)})
$$

it suffices to let $T_{I}=O(\sqrt{T / \log (T)})$ and to use UCB.

Using Routers Under "Partial" Knowledge

Having access to a router node enables you to simultaneously get filtered intelligence (e.g., "snippets") from all computers connected to it.

Question: Suppose you have access to a router that is connected to K infiltrated computers. How should you optimally extract information from those K computers over T decision epochs?

- lots of filtered information vs. targeted un-filtered information

Using Routers Under "Partial" Knowledge

Filtered Information: Suppose that whenever the router is used, the following occurs for each connected infiltrated computer C_{k} :

- with probability η_{k}, C_{k} responds as if you had tried to collect info from it;
- with probability $1-\eta_{k}, C_{k}$ responds as if you had not tried to collect info from it.

Using Routers Under "Partial" Knowledge

Idea

Consider policies consisting of two phases:

1. Use the router during the first T_{R} decision epochs to select a subset of the connected infiltrated computers.
2. Collect info from the selected subset of computers using a bandit algorithm (e.g., UCB).

Subset selection can be done based on confidence intervals for the μ_{k} 's

- Lykouris, T., E. Tardos, and D. Wali. "Graph regret bounds for Thompson sampling and UCB." arXiv, May 23, 2019.

Theorem

Suppose the number K of connected infiltrated computers is fixed. To achieve a regret of

$$
O\left(\frac{\log (T)}{\min _{k} \eta_{k}}+\sqrt{T \log (T)}\right)
$$

it suffices to let $T_{R}=O\left(\log (T) / \min _{k} \eta_{k}\right)$ and to use UCB.

Summary and Extensions

Summary:

- Sequential network intrusion model, from attacker's point of view.
- Results for linear network.
- Results on using routers that provide filtered batch observations.

Extensions: network topologies, fatal detections, multiple "players", ...

