
Idea: Trusted Emergency Management

Timothy E. Levin1, Cynthia E. Irvine1, Terry V. Benzel2, Thuy D. Nguyen1,
Paul C. Clark1, and Ganesha Bhaskara2

1 Naval Postgraduate School, Monterey, CA 93943, USA,
{levin,irvine,tdnguyen,pcclark}@nps.edu

2 USC Information Sciences Institute, Marina Del Rey, CA 90292
{tbenzel,bhaskara}@isi.edu

Abstract. Through first-responder access to sensitive information for
which they have not been pre-vetted, lives and property can be saved. We
describe enhancements to a trusted emergency information management
(EIM) system that securely allows for extraordinary access to sensitive
information during a crisis. A major component of the architecture is
the end-user device, the security of which is enhanced with processor-
level encryption of memory. This paper introduces an approach to more
efficiently use the processor-encryption feature for secure data storage,
as well as ISA instructions for the management of emergency state.

1 Introduction

During crises, first-responders can more effectively save lives and property if
given access to certain restricted information relating to physical security (e.g.,
blueprints); individual privacy (e.g., medical records); and classified informa-
tion (e.g., continuity of government plans), etc. However, the large number of
potential first responders makes it infeasible to pre-screen them all, e.g. via na-
tional security clearances. Yet, if sensitive information is made available but not
protected adequately, extensive damage could result. We describe a policy and
operational model for emergency information management (EIM), and an ar-
chitectural foundation for the realization of EIM in a modern IT environment
where transient trust is possible [1]. We introduce a technique for leveraging
processor-level encryption of data in memory to protect data in persistent stor-
age; and we describe a set of new processor features for secure distributed state
management, and describe how they are used to in the EIM context [2]. The
target platform for this research is a dual-use hand-held computer, the E-device.

2 Model for Emergency Information Management (EIM)

In the emergency-response milieu we consider the following roles, each of which
has a direct stake in effectiveness of the E-device. First responders, are, e.g.,
members of medical, police, fire, transportation, communication, construction,
maintenance and other organizations, who may be called on at the scene of a dis-
aster. The Authority is an organization that coordinates emergency response in a



2 Trusted Emergency Management

given context, such as the Department of Homeland Security, non-governmental
organization, or a selected enterprise department. The Third Party is one or
more data providers that supply emergency information. As a simplification for
our initial work, we consider Third Parties to be mutually trusting and are rep-
resented simply as a single Third Party. Emergency information is information
designated to be available to emergency first responders, which they may not
have been vetted or cleared to see.

Emergency information is owned by third parties, who may not wish it to be
generally distributed or shared, or may be constrained from doing so (currently)
due to regulatory hurdles.The E-device is initialized with certain emergency
information, which can be updated in the field. The collection of E-devices, and
the Authority’s and the Third Parties’ trusted systems, comprise the Emergency
Network. For simplicity, we characterize the emergency state of the Emergency
Network as either on or off. The Authority manages the emergency state, and
communicates state changes to E-devices and Third Parties.

3 Transient Trust Policy and Stakeholder Trust Model

We assume a strict policy regarding the authorized accesses of users to data
objects that is consistent across the emergency network. The Authority defines
an emergency policy that allows additional, extraordinary accesses by end users
to emergency information, which may occur only (transiently) during an emer-
gency. While such accesses do not violate the security policy, per se, they are
beyond the pale of usual MAC and DAC controls [3]. Together the strict pol-
icy and the emergency policy describe the complete emergency network security
policy. The temporal constraint on extraordinary accesses is a key element of
this policy, as it reduces the window of opportunity for inappropriate use of
information resulting from adverse security events outside of the control of the
trusted computing base, e.g., inadvertent password disclosure, or malicious in-
sider behavior. The natural variability of mobile device connectivity means that
the emergency network stakeholders must agree on a revocation policy should an
E-device lose connectivity during an emergency, e.g., an upper bound on delayed
revocation [4].

Operational agreements define the information sharing policies and levels of
protection to be afforded to shared information, including the level of assurance
provided by the E-device. The agreements may provide for Third Party trusted

applications to be hosted in the E-device’s Trusted Partition (see below). The
Third Parties rely on the Authority to declare the start and end of the emergen-
cies, and to correctly configure the E-devices, including communication keys.

4 Security Architecture for EIM

The foundation of our solution is the SecureCore security architecture [5]. Its
Trusted Management Layer (TML) comprises the Least Privilege Separation
Kernel [6][7] and the Trusted Services Layer (TSL) layer [8]. The LPSK partitions



Trusted Emergency Management 3

the platform’s physical resources and controls interactions between the partitions
in the form of a lattice-flow policy; controlling access to data while it is in transit;
at rest (on disk); and when processed (in both on-chip and on-board memory).
The TSL layer virtualizes certain LPSK resources for the use of applications
(e.g., commercial OSs), and associates MLS security labels with the kernel’s
exported resources.

Users have interactive sessions with one partition at a time. The Trusted Par-
tition provides high integrity services, such as logon-on and partition selection
provided by the Trusted Path Application (TPA), and other services that may
be provided by Third Parties, such as for the secure sealing of documents. Nor-
mal Partitions host a commercial OS and typical office applications, providing
familiar and functionally rich user interfaces. Emergency information is stored
and accessed in the Emergency Partition. The TML ensures that the only way a
user can ever access emergency information is through an Emergency Partition
during an emergency. When an emergency ends, the TML renders the Emer-
gency Partition inaccessible to the E-device user; and it can transmit updated
emergency data to the Third Party. Now to our hardware protection scheme.

We utilize several hardware cryptographic primitives like those postulated
for the Secret Protected (SP) processor [9] 3. The processor provides a spe-
cial “crypto mode”, in which access to both the cryptographic primitives and
several non-volatile processor registers (DRK, SRK and CEM) are available to
software. Three crypto-transform functions are provided: sp derive hashes two
words with the DRK; secure store marks a cache line for transformation (i.e.,
hash and encryption with the DRK) upon eviction from the processor cache;
and secure load decrypts memory as it is loaded into the processor cache and
validates its hash. To this, we introduce the code integrity check (CIC) proces-
sor mode, which supports privileged supervisor program protection: at compile
time, the TML code is hashed with the DRK, and when this code is executed the
inline hash values are validated, and execution halts if the validation fails. As a
result of using CIC, TML code can only be executed on the intended device, and
any unintended changes to TML code are immediately detected, thus adding to
the TML’s high assurance self-protection mechanisms.

5 Secure Storage Solution

The sp secure store instruction is intended to be used for transient memory
encryption. Yet, we also need to efficiently encrypt data as it is transferred
between memory and the disk, and the built-in hardware encryption function
appears ideal for this purpose. However, the secure load instruction decrypts
data as it is loaded into the processor. The solution presented here addresses
this by marking data for encryption with secure load, pushing it out of cache
(e.g., with clflush with the x86 ISA), and then using device DMA to move it,
encrypted, onto the disk. Alternatively, if it is desired to use programmed I/O

3 While we characterize these features as part of the hardware instruction set, some
may be suitably instantiated through an off-chip device [10].



4 Trusted Emergency Management

to write to disk, data previously marked with secure store can be moved from
memory into the processor with a normal load instruction, which will cause it
to arrive in the processor register encrypted. On re-accessing the encrypted data
from disk, it is decrypted using secure load, and its integrity can be validated
relative to memory-segment and disk-volume seals generated upon storage.

6 Emergency State Management Solution

The security of the Emergency Network depends on how securely the emergency
state is managed. Although TML functions to receive, store, and respond to
emergency status updates could be implemented in software, to make emergency
management more robust, we extend the processor ISA with key state manage-

ment primitives: two new instructions, hw update state and hw get state; a
local state counter: e counter; and a state bit: e state, described next [5].

The Authority associates a sequential number with each emergency state
change. To announce a change to the emergency state, the Authority gener-
ates a point-to-point message for each E-device and sends them over a trusted
channel. The message contains the new emergency state and the corresponding
state-change number, as well as the hash of this payload. Each message is also
encrypted with the target E-device’s DRK (secure broadcast is left for future
work). When the TML receives an emergency message it submits it to the pro-
cessor using hw update state. The processor validates the message hash against
the payload and decrypts it with the DRK; it checks that the new counter value
is greater than the previous value, to prevent message replay; and finally writes
the payload state to the hardware e-state register. If the hw update state opera-
tion is successful, the TML sends an acknowledgement to the Authority and uses
hw get state to retrieve the new e-state value. The TML then either announces
a new emergency to the user and makes the Emergency Partition available, or
terminates the existing emergency.

7 Related Work

Our work utilizes currently-proposed concepts for CPU-based cryptographic sup-
port. Although mechanisms for cryptographic support using coprocessors are
available, e.g. the IBM 4758 co-processor [11] and the TCG Trusted Platform
Module [10], these off-chip schemes are more vulnerable to internal attack by
elements within the platform architecture

Anderson proposed a model for patient medical information protection, which
accommodates extraordinary access to information under certain conditions [12].
In this model, access control lists restrict access to patient records. Usually,
changes to the lists require user consent; if an emergency results in an over-ride
of the access list mechanism, the user is “notified.” In contrast, our approach
provides the ability to control when emergency overrides may occur, control the
extent of emergency override, and revoke permissions to information in real time.



Trusted Emergency Management 5

8 Conclusions

We have described a system for secure dissemination and control of sensitive
information during crises, and two significant enhancements to emergency infor-
mation management: transient-memory encryption for secure data storage, and
new hardware instructions to support distributed emergency state management.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-0430566 and CNS-0430598 with
support from DARPA ATO. This paper does not necessarily reflect the views of
the National Science Foundation or of DARPA ATO.

References

1. Irvine, C.E., Levin, T.E., Clark, P.C., Nguyen, T.D.: A security architecture for
transient trust. In: Proc. of Computer Security Architecture Workshop, Fairfax,
Virginia, USA, ACM (2008)

2. Levin, T.E., Irvine, C.E., Benzel, T.V., Nguyen, T.D., Clark, P.C., Bhaskara, G.:
Trusted emergency management. Technical Report NPS-CS-09-001, Naval Post-
graduate School, Monterey, CA (Naval Postgraduate School)

3. McCollum, C.J., Messing, J.R., Notargiacomo, L.: Beyond the pale of MAC and
DAC: defining new forms of access control. In: Proc. of Symposium on Security
and Privacy, Oakland, CA, IEEE Computer Society (1990) 190 – 200

4. Grossman, G.: Immediacy in distributed trusted systems. In: Proc. of Annual Com-
puter Security Applications Conference, New Orleans, Louisiana, IEEE Computer
Society (1995)

5. Levin, T., Bhaskara, G., Nguyen, T.D., Clark, P.C., Benzel, T.V., Irvine, C.E.: Se-
curecore security architecture: Authority mode and emergency management. Tech-
nical Report NPS-CS-07-012 and ISI-TR-647, Naval Postgraduate School and USC
Information Science Institute, Monterey, CA (2007)

6. NSA: U.S. Government Protection Profile for Separation Kernels in Environments
Requiring High Robustness, Version 1.03. National Security Agency (2007)

7. Levin, T.E., Irvine, C.E., Weissman, C., Nguyen, T.D.: Analysis of three multilevel
security architectures. In: Proc, of Computer Security Architecture Workshop,
Fairfax, Virginia, USA, ACM (2007) 37–46

8. Clark, P.C., Irvine, C.E., Levin, T.E., Nguyen, T.D., Vidas, T.M.: Securecore
software architecture: Trusted path application (TPA) requirements. Technical
Report NPS-CS-07-001, Naval Postgraduate School, Monterey, CA (2007)

9. Dwoskin, J.S., Lee, R.B.: Hardware-rooted trust for secure key management and
transient trust. In: Proc. of 14th ACM conference on Computer and communica-
tions security, Alexandria, Virginia, USA, ACM (2007) 389–400

10. TCG: TCG specification architecture overview. Technical Report 1.2, Trusted
Computing Group (2004)

11. Smith, S., Weingart, S.: Building a high-performance, programmable secure co-
processor. Computer Networks 31 (1999) 831–860

12. Anderson, R.: A security policy model for clinical information systems. In: IEEE
Symposium on Security and Privacy, Oakland, CA (1996) 30–43


