
A Security Domain Model for

Implementing Trusted Subject Behaviors

Alan Shaffer, Mikhail Auguston, Cynthia Irvine, Timothy Levin!

Naval Postgraduate School, Computer Science Department, 1411 Cunningham Rd.,

Monterey, California, USA 93943

{abshaffe, maugusto, irvine, levin}@nps.edu

Abstract. Within a multilevel secure (MLS) system, trusted subjects are

granted privileges to perform operations that are not possible by ordinary

subjects controlled by mandatory access control (MAC) policy enforcement

mechanisms. These subjects are trusted not to conduct malicious activity or

degrade system security. We present a formal definition for trusted subject

behaviors, which depends upon a representation of information flow and

control dependencies generated during a program execution. We describe a

security Domain Model (DM) designed in the Alloy specification language for

conducting static analysis of programs to identify illicit information flows,

access control flaws and covert channel vulnerabilities. The DM is compiled

from a representation of a target program, written in an intermediate

Implementation Modeling Language (IML), and a specification of the security

policy written in Alloy. The Alloy Analyzer tool is used to perform static

analysis of the DM to detect potential security policy violations in the target

program. In particular, since the operating system upon which the trusted

subject runs has limited ability to control its actions, static analysis of trusted

subject operations can contribute to the security of the system.

Keywords: Security domain model, trusted subjects, static analysis, automated

program verification, specification language.

1 Introduction

Within a multilevel secure (MLS) system, trusted subjects may be granted privileges

to perform operations, in some cases within prescribed limits [22], not normally

allowed for ordinary subjects controlled by mandatory access control (MAC) policy

enforcement mechanisms. Granting of such privileges is predicated on the idea that

trusted subjects will not conduct malicious activity or degrade the system’s overall

security. This paper presents a formal definition for trusted subject behaviors in

certain program implementations. These behaviors depend upon a representation of

information flow and control dependencies generated during a target program

execution, thus extending classic work in this area [8][19][33]. We describe a

security domain model to formally represent trusted subject behaviors, information

flow tracing through program execution, various types of covert channels, and a

means for conducting static analysis of certain program implementations.

Widely accepted evaluation standards [5][6][18] require that high assurance secure

systems be designed, developed, verified and tested using rigorous processes and

formal methods. This evaluation process must include demonstration of correct

correspondence between system representations at various levels of abstraction, e.g.,

security policy objectives, security specifications, and program implementation.

Formal security models are often based on concepts of program secure state and state

transitions. Our approach analyzes programs for preservation of security properties

through state transitions, and advances the concepts of secure information flow in

classic work by Denning and others [8][33] by describing automated techniques for

information flow static analysis. Our previous work has demonstrated the ability to

detect illicit information flow security violations [24], and covert channel and overt

access control flaws based on control dependency analysis [25].

The Implementation Modeling Language (IML), the first novel element in this

approach, is a language that supports basic information processing via assignment

statements, conditional and loop statements, read/write statements, file random

access, and access to a system clock. The target program is an original high-level

language program from which we extract a base program, the IML abstraction that

provides a basis for analysis of the target program for adherence to a security policy.

The second novel element in this work is the definition of a security Domain

Model (DM), represented as an Alloy [1][9] specification. The DM provides a

framework for specifying program state and state transitions, as well as security-

related concepts such as security policy, information flow, access control, and covert

channel vulnerabilities. The DM is comprised of an Invariant Model, which defines

the generic concepts of program state, information flow, and security policy; and an

Implementation Model, which specifies the behavior of the base program. A

specialized DM-Compiler was developed to translate a base program in IML into an

Implementation Model, and to integrate it with the Invariant Model to form a

complete DM specification.

Our approach uses the Alloy Analyzer tool [1] to perform static analysis of base

programs to identify execution paths that might violate the security policy rules. The

Alloy Analyzer performs symbolic execution of all base program execution paths

within a defined scope (the upper limit of the size of models considered); the scope is

generated heuristically, based on the total number of statements in the base program.

It is assumed that the Alloy small scope hypothesis, which states that most flaws in

models can be revealed on small instances [9], holds for information flow tracing. A

description of the DM structure, and examples of refinement of a base program to

Alloy can be found in [23][25].

Both model checking [4] and Alloy analysis are examples of heuristics for static

analysis. Model checkers build models using finite numbers of states and transitions

to represent system behavior, and temporal logic to represent assertions about those

models. Model checkers are limited by the way they construct models, such that their

subsequent modification is rendered extremely difficult. Alloy, which uses the full

power of sets and first-order predicate calculus, does not have such limitations. The

analysis of a complex model in Alloy may be adjusted by simply modifying the scope

of analysis (size of analyzed instances), a much easier process than redesigning the

entire model. For our approach, Alloy and its Analyzer provide a well-suited tool for

creating and analyzing target program abstractions.

Section 2 of this paper provides background discussion on trusted subjects and

processes. Section 3 presents an overview of the Security DM methodology for

modeling programs and security policies. Sections 4 and 5 describe analyses of

several example base programs using the DM, and summarize our test results with

these examples. Sections 6 and 7 discuss related work, and planned future work in

this research.

2 Trusted Subjects

Users in a multilevel secure (MLS) environment are assigned a clearance level based

on the relative level of trust placed in them by security administrators. A user is

allowed to log into a system at any level that is at or below (dominated by) his

assigned clearance, and a session at that level is created. Subjects that act on behalf

of a given user are labeled with an access class that is at the same level as the user’s

session. A subject is allowed to read information (objects) whose sensitivity level is

up to the subject’s sensitivity level (access class), and write to objects at or above its

access class.

In contrast to this, a trusted subject is one that is allowed to read and write within a

range of access classes [16]. Depending upon the implementation, this can limit the

authority of the trusted subject to “read-up” and “write-down” [3]. MLS systems with

trusted subjects defined this way do not require a separate access control lattice or

special rules specifically for their actions [16]. As a result, a trusted subject does not

need to be given a privilege to bypass or violate the security rules.

Since trusted subjects are allowed to interact with (read and write) information

across access classes, they must be trusted not to abuse these special privileges. The

existence of trusted subjects is generally required for certain services provided in

MLS systems, such as login, information downgrading, and data backup utilities

across multiple access levels. MLS system administration may also require a trusted

subject to interact with and manage regular user accounts and information across

multiple access levels [31]. Such actions represent a good target for trusted subject

implementation, however the design principle that trusted subjects should be small

and minimized within an MLS system [12] is not always observed.

With respect to security policies, a trusted subject should not move data between

sensitivity levels, other than in constrained, explicitly defined ways [30]. The

specification of a trusted subject must explicitly define how it can do this. Levin et al.

[15] point out that trusted subjects do not violate a general policy in place, but their

behavior must be a defined part of a policy. Such a policy for trusted subjects,

referred to as a “relaxed MLS policy,” must be integrated with the general MLS

policy, such that the resultant union of the two can allow trusted subjects to operate

effectively, while ensuring that non-trusted subjects cannot cause unwanted

information flows. In a “downgrader” role, for example, a trusted subject may

essentially change the label of information from high to low by reading the

information from a high object and moving it into another low object.

Trusted subjects can be defined by their behaviors in an MLS system. Although

some [30] would have trusted subjects relabel objects, we maintain the tranquility of

object labels [3], and abstract the idea of downgrading information by changing

variable labels from the viewpoint of, i.e., internal to, the trusted subject. Allowing

movement of information within a range of access classes represents the trusted

subject actions we model in our DM approach.

3 Security Domain Model Methodology

Our approach to program security verification using the Security Domain Model has

been described in [24][25], and an overview is provided below.

A base program represents an abstraction of a target program implementation, and

is written in Implementation Modeling Language (IML) notation. The IML defines a

simple imperative language that captures the basic capabilities and constructs, with

respect to security, of high-level programming languages, such as Java or C++. The

IML was motivated by a requirement to represent the information flow properties in

target program implementations. A complete IML and DM reference manual is

available online at [23].

The IML enables trusted subject behavior by providing a special trusted

assignment statement. This statement allows trusted subjects to modify the labels of

internal variables (“regrading”), while respecting the tranquility of external object

labels. The trusted assignment allows filtering of variable values based on existing

content or label. This filtering is analogous to a “dirty word search” of a document

prior to downgrading its classification level, which ensures that certain sensitive

words are first filtered from the document.

The trusted assignment statement allows a trusted subject to assign a value to a

destination variable, with an explicitly defined security label. When an IML base

program is translated, only a trusted subject may perform trusted assignment. The

trusted assignment syntax follows:

Assign destination from source1 as source2;

In this operation, the destination variable takes on the data value of the source1

variable, however it does not automatically take its label, as would normally be the

case for an assignment statement in IML. Instead, the destination is explicitly

assigned a label, as determined by a filter function that is automatically invoked with

each trusted assignment. The trusted assignment source1 can be either a variable or

constant, and the source2 can be either a variable (in which case the access label

currently assigned to the value stored in this variable is used) or an explicitly defined

access label. The new content and access label of the destination variable are defined

in the DM Invariant Model by an Alloy function TS_filter (further discussed in

Section 4.1), as follows:

(destination_value’, destination_label’) =

 TS_filter((destination_value, destination_label),

 (source1_value, source1_label), (source2_value, source2_label))

This function specifies the behavior of trusted subjects in our model, and examples

are described in detail in section 4.

The DM Invariant Model defines security rules that have the Bell and LaPadula

security model [3] as their basis, i.e., flows from higher to lower secrecy levels are not

allowed by either writing down or reading up. The general DM security policy

defines a lattice with flows allowed from lower to higher (or equal) secrecy levels,

represented by access labels, for instance:

one sig Policy {
 ord: AccessLabel -> AccessLabel }
{ ord = ^((SysLow -> SysMid)
 + (SysMid -> SysHigh))
 + (iden & (AccessLabel -> AccessLabel)) }

In Alloy notation this defines a recursive closure of the access label relations

(SysLow -> SysMid) and (SysMid -> SysHigh). The “basic” security policy is defined

in the DM Invariant Model by reads and writes of external I/O devices that conform

to this policy lattice. The trusted policy is defined such that trusted subjects are

allowed to change labels and data within the constraints of the TS_filter.

4 Testing and Analysis of Trusted Subject Behaviors in the DM

This section presents examples of program security vulnerabilities that illustrate how

trusted subjects are constrained by both the basic security policy and the trusted

policy (as implemented in the TS_filter). In these examples, the security rules for

discovering information flow errors, overt access control flaws and covert channels,

are described using Alloy notation, and a base program written in IML is presented to

illustrate the particular security violation. The complete Alloy models for these and

other examples can be found online at [23].

4.1 Information Flow Violation Caused by a Trusted Subject Operation

The first example illustrates a trusted subject regrade operation that, based on allowed

trusted subject behavior, leads to an information flow violation. In the example, an

attempt is made by a trusted subject to downgrade a destination variable label from

SysHigh to SysLow. Here, trusted subjects are allowed to perform downgrading of

information from SysHigh to SysMid. To support the policy, a TS_filter function is

defined (below in Alloy notation) to ensure that “downward” info flows are allowed

only from SysHigh to SysMid. The function takes as input parameters three Values

and three AccessLabels, specifically, the data values and labels of the destination,

source1 and source2 variables in the Trusted Assignment (see Section 3 for trusted

assignment IML syntax), and returns an instance of FTuple (i.e., a filtered Value

and AccessLabel). In essence, the policy for trusted subject behaviors is captured

in the semantics of this filter function.

For example purposes here, this TS_filter function returns the greater of

constant 0 and the source1 Value (s1v), and the higher of SysMid and the source2

AccessLabel (s2a). As shown in this example TS_filter, it is not necessary

to use all of the parameters passed into the function to generate a resulting FTuple.

Note that a different DM Invariant Model could define a TS_filter function that

would return different results based on the specific input parameters, and thus define a

different security policy for trusted subject behaviors.

sig FTuple {
 val: Value,
 label: AccessLabel
}

fun TS_filter[dv, s1v, s2v: Value,
 da, s1a, s2a: AccessLabel]: FTuple {
{ result: FTuple | {
 result.val = (((s1v->const0) in LT.lt)
 => const0 else s1v)
 result.label = (((da->s2a) in Policy.ord)
 => s2a else
 (((s2a->SysMid) in Policy.ord)
 => SysMid else s2a)) }

} }

The base program example below demonstrates a security violation based on the

trusted subject filter and security policy. Initially, values are read into two variables

with security labels SysHigh and SysMid, respectively (s1-s2). A trusted assignment

operation is then performed (s3), in which the data value stored in x2 is copied into

variable x1, and x1 is assigned a SysLow label. During this statement operation, the

TS_filter function is applied to the parameters of the trusted assignment, "filtering"

the label assignment to SysMid, which results in x1 being assigned a higher label than

was intended by the trusted assignment operation (s3).

(s1) Read_dev (SysHigh, x1);
(s2) Read_dev (SysMid, x2);
(s3) Assign x1 from x2 as SysLow;
(s4) Write_dev (SysLow, x1);
(s5) Stop;

When the next statement (s4) attempts to write the value held in x1 to a SysLow

external device, an illicit flow results since x1 is labeled as SysMid. The Alloy

Analyzer detects this situation as a violation of the Alloy security predicate below,

and correctly reports an illicit information flow, tracing execution through statements

(s1)(s2)(s3)(s4). The same base program, under a DM Invariant Model with a

different policy and filter function, would not necessarily result in this flow violation.

pred consistent_with_FlowPolicy [current: State] {
 let stm = current.stmt | {
 (stm.type in (Write_dev + PutDirectFile) &&
 stm.source in Variable)
 => (current.access_label[stm.source] ->
 stm.subject_label) in Policy.ord
} }

4.2 Trusted Subject Flow Violation & Control Dependency Flaw

The second example base program illustrates two different security violations that

may result from a trusted subject operation. In the program, a successful trusted

subject regrade creates an overt control dependency flaw, however when the trusted

subject regrade fails to occur, illegal information flow results. For purposes of this

example, the security policy and TS_filter function described above apply.

In the base program, values are initially read into three variables, with assigned

security labels SysHigh, SysMid and SysLow, respectively (s1-s3). Depending on the

value stored in x1 (s4), a trusted assignment statement is performed (s5) in which the

value of x1 is modified to that of x2, and the label of x1 is downgraded to that of

x3, SysMid in this case. Since a regrade from SysHigh to SysMid is allowed by the

security policy (as reflected in the TS_filter function), x1 is assigned the SysMid

label.

(s1) Read_dev (SysHigh, x1);
(s2) Read_dev (SysLow, x2);
(s3) Read_dev (SysMid, x3);
(s4) if x1 < 0 then {
(s5) Assign x1 from x2 as x3;
(s6) Write_dev (SysMid, x1); }
 else
(s7) Write_dev (SysMid, x1);
(s8) Stop;

The next statement (s6) attempts to write the value of x1 to a SysMid external

device, a seemingly legal flow. However, since this operation occurs within the if-

block, it creates a control dependency from SysHigh (x1 label when it was examined

in s4) to SysMid, representing an overt access control flaw (i.e., in the SysHigh

context, a write to SysMid violates the security policy). Based on the Alloy security

rule predicate below, the Alloy Analyzer properly detects this violation, tracing

execution through statements (s1)(s2)(s3)(s4)(s5)(s6).

pred dependency_flaw_found [current: State] {
 let stm = current.stmt,
 pre = current.influenced_by[stm.source] |
 {
 stm.type = Write_dev &&
 stm.source in Variable &&
 not ((pre.access_label[pre.stmt.source] ->
 stm.subject_label) in Policy.ord)
} }

An additional violation occurs when the conditional check (s4) evaluates to false,

and the else-branch is executed. In this case, an attempt is made to write the value

stored in x1 (still assigned its original SysHigh label) to a SysMid external device

(s7). Since this represents an overt illegal flow from SysHigh to SysMid, the Alloy

Analyzer properly identifies and reports the error, tracing execution through

statements (s1)(s2)(s3)(s4)(s7).

4.3 Covert Channel Resulting from a Trusted Subject Operation

The third scenario describes execution of a trusted assignment that could produce a

covert storage channel [14]. Our earlier paper [25] describes in detail how the DM

formalizes the notion of covert channels, and defines a security rule to identify a class

of covert storage channel vulnerabilities in a base program execution.

In the base program below, we assume a direct file with a maximum capacity of

two records, initially empty. To begin, SysLow values are read into variables x1 and

x2 (s1-s2). A trusted assignment is performed (s3) in which x1 is assigned the value

of x2, and upgraded to a SysHigh label. Next, the value of x1 is examined to verify

whether it is non-negative (s4). Since the TS_filter function returns only values of 0

or greater, x1 holding a non-negative value is an indication that the trusted

assignment resulted in the assignment of source data to the destination variable.

When this evaluates to true, the values of x1 and x2 are stored into the direct file by

the SysHigh sender, resulting in the internal full direct file flag being set.

(s1) Read_dev (SysLow, x1);
(s2) Read_dev (SysLow, x2);
(s3) Assign x1 from x2 as SysHigh;
(s4) if x1 > const_minus_1 then {
(s5) PutDirectFile (SysHigh, 1, x1);
(s6) PutDirectFile (SysHigh, 2, x2); }

The next sequence of program statements represent execution by a SysLow covert

channel receiver. When the SysLow subject attempts to store a value into the direct

file using a new key 3 (s7), the system issues a failure indication since the direct file

is full (note that in the translation to an base program, the internal system flag

translates to an explicit flag, accessible in IML as in statement (s8)). Depending on

the success or failure of the direct file store (s8), SysLow writes a constant ‘1’ or a ‘0’

to an external device (s9 & s10) to exploit the storage channel.

(s7) PutDirectFile (SysLow, 3, 1);
(s8) if full = True then
(s9) Write_dev (SysLow, 1);
(s10) else Write_dev (SysLow, 0);
(s11) Stop;

Because a higher-labeled subject caused the direct file to become full, the Alloy

Analyzer detects and reports this violation of the below Alloy security predicate,

tracing the flow of execution through statements (s1)(s2)(s3)(s4)(s5)(s6)(s7). The

actions of two regular subjects at SysHigh and SysLow, acting in collusion to exploit

the direct file, could bring about the same security violation (i.e., a storage channel).

pred storage_channel_found [current: State] {
 let stm = current.stmt | {
 stm.type = PutDirectFile &&
 current.direct_file.full = const1 &&
 not (current.direct_file.last_written ->
 stm.subject_label) in Policy.ord
} }

5 Testing Results

The base program examples presented above were evaluated using Alloy Analyzer

4.1.7, running under Mac OS X™ 10.5.4 on a 2.5 GHz Intel Core 2 Duo processor,

with 2 GB of memory. In test runs, the Alloy Analyzer successfully found valid

counterexamples for violations of each security rule assertion described above.

Test results are summarized in Table 1 below. The Analysis Size defines the size

of Alloy model instances considered (scope) during Alloy Analysis; Analysis Time

represents total time (ms), broken down into (time to generate model, time to find a

counterexample):

Security Violation Description
Analysis

Size (scope)

Analysis

Time (ms)

Information flow violation, resulting from trusted

subject operation
7

1516

(1277, 239)

Overt control dependency flaw, resulting from

trusted subject operation
9

3335

(2290, 1045)

Information flow violation, resulting from trusted

subject operation
9

2692

(2236, 456)

Storage covert channel, resulting from trusted

subject operation
12

48631

(9852, 38779)

Table 1. Results of Alloy Analysis Testing

6 Related Work

Previous work in trusted subject implementation [35] developed a framework for

running a trusted multi-level database management system (DBMS), referred to as a

“trusted subject,” to be hosted on any trusted operating system. This work established

a layered policy, with a general policy for the trusted computing base (TCB) layer of

the operating system, and a separate policy for the DBMS TCB layer. Their premise

was that, for a DBMS hosted on a known secure operating system, only the DBMS

TCB layer must be subjected to security analysis to ensure that it meets all access

control requirements. This work did not appear to outline a concrete policy for

trusted subjects, and allowed modification of object labels as a valid action for trusted

subjects, whereas our model preserves tranquility of object labels.

Previous work in using sound type systems for secure information flow has

focused on areas such as: encryption and decryption of information, where flows from

plaintext (high secrecy) information to ciphertext (low secrecy) information must be

addressed in light of noninterference rules that would seem to prevent such interaction

[11][28]; probabilistic noninterference, where probability distributions are used to

determine a likelihood of interference from high to low variables, primarily for multi-

threaded processes where scheduling is nondeterministic [32][20]; and type inference,

in which the flow of information is automatically determined based on semantic

analysis [26][7]. Eventually, Smith & Thober [29] enhanced the linguistic type

system model of secure information flow such that sensitivity labels need to be

assigned only at I/O boundaries, while the labels of variables and constants, as well as

data information flow through a program’s execution, are automatically derived

relative to the I/O (device) labels.

In contrast, our work differs from the linguistic type system approach in that, rather

than constructing a type-safe language with which to write secure programs, we apply

abstract interpretation (the base program) to the analysis of target programs in order

to detect potential problems, and otherwise demonstrate security of the abstraction

with respect to select security properties. Our approach performs exhaustive

information flow tracing of all execution paths in a program, to a predetermined

length (defined by the Alloy model scope). This tracing is applied for both overt and

covert channel static analysis, using dynamic slicing techniques, where appropriate,

such that read-up, as well as violations of noninterference, are detected [34].

Additionally, we provide a compiler to generate a formal specification of a program.

Although it yet lacks a formal soundness proof, the DM-Compiler enables generation

of formal logic that can be automatically analyzed (using the DM) for secure

information flows.

Landauer et al. [10] introduced a formal model for managing trusted processes, by

defining a state machine whose state space can be locked, or isolated, in order to

allow privileged actions to overlap. The authors described a trusted process as

possessing special privileges to alter operating system kernel access control decisions,

or other security critical operations. This paper provided an in-depth mathematical

analysis of the security policy derived from trusted process principles, and is a useful

source regarding security policy issues for trusted subjects.

Steffan and Clow [30] defined a set of trusted process classes, to identify their

relative privileged status. These classes correspond to combinations of override

privileges in the areas of Tranquility (labels), MAC (content) and DAC (privileges).

As the class numbers increase, so do the privileges granted, and the risk associated

with using a trusted process in that class. In contrast to this paper, our work

characterizes trusted subjects without violating tranquility of object labels.

Levin et al, [13] discussed trusted subject actions within a security kernel

architecture. With respect to the principle of least privilege [21], they described how

a trusted subject in a downgrader role must be constrained to perform only the

minimum required operations, namely, downgrading of labels in this case. Other

operations such as “dirty word search” (DWS) of a document for specific words or

phrases prior to downgrade, must be handled by other trustworthy system processes to

prevent unintended or malicious consequences. They defined a framework for

performing filtering and downgrade of information, separating tasks between users

and processes, both untrusted and trusted. We believe our model is in line with this

thinking, when one considers that if our trusted subject acts as a downgrader, the

Invariant Model filter function can reflect a separate untrusted process in the target

program that performs DWS. We generalize this concept by allowing the trusted

subject to downgrade based on content or label information. In our model, the DWS

might represent examination of a highly classified document for specific references to

some classified topic, with subsequent removal of these references prior to

downgrading the document. Alternately, the DWS could represent filtering of a

document by its creation date, where downgrading of the document will occur only if

this information is older than some predetermined date.

7 Discussion and Future Work

This paper has provided a survey of ongoing research to develop a formal security

domain model that formalizes security policies for both regular and trusted subjects.

The model formalizes trusted subject behaviors, using the specialized imperative

language. Our approach defines a formal security Domain Model (DM) that

facilitates specification of security vulnerabilities and trusted subject behaviors,

independent of program implementation.

By Alloy’s small scope hypothesis [9] it is assumed that most program errors may

be revealed by relatively small counterexamples. Using the Analyzer to perform

static analysis of the DM provides assurance that, within a specified search scope, a

counterexample will be found when one exists, and that false negatives and false

positives are eliminated within the defined scope. This assumption necessitates our

implementation of a relatively small trusted subject, which is aligned with the

Reference Monitor Concept principle that a reference validation mechanism “must be

small enough to be subject to analysis and tests” [2] to ensure its correctness.

Future work will expand the DM to enable dynamic security policies [14]. This

concept would allow the DM to support a sequence of polices during program

execution, and support the ability of a system to adapt to a dynamically changing

security environment by using different policies [17]. We could extend this by adding

functionality for multiple trusted subjects. By defining multiple filter functions

within a DM Invariant Model, and modifying the IML syntax to support this, the

model could represent separate trusted subjects, each governed by a different policy

as defined by its own filter function.

Additionally, extension of this research will focus on tailoring our approach toward

the model-driven software design process. We understand that automation of the

software development cycle, such that resulting software systems fully conform to the

Common Criteria Development requirements, is not a trivial effort. We have focused

specifically on the Implementation Representation and Security Objectives stages of

development [5], devising an automated way to verify that the former abides by the

latter. A framework to automate the actual production of the implementation

representation, based on functional requirements and security objectives, is an ideal

goal.

8 Acknowledgements

The authors are grateful for support from the Office of Naval Research and the

National Science Foundation under grant CNS-0430566. Any opinions, findings and

conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the ONR or the NSF.

References

1. The Alloy Analyzer, http://alloy.mit.edu/.

2. Anderson, J. (1972). Computer Security Technology Planning Study. Technical Report

ESD-TR-73-51, Air Force Electronic Systems Division, Hanscom AFB, Bedford, MA.

3. Bell, D., & LaPadula, L. (1973). Secure Computer Systems: Mathematical Foundations

and Model, MITRE Report. The MITRE Corp.

4. Clarke, E., Emerson, E., & Sistla, A. (1986). Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Transactions on

Programming Languages and Systems, 8(2), 244-263.

5. Common Criteria for Information Technology Security Evaluation, Part 1: Introduction

and General Model, version 3.1. Document number CCMB-2006-09-001. September

2006.

6. Department of Defense Trusted Computer Security Evaluation Criteria, DOD 5200.28-

STD, National Computer Security Center, December 1985.

7. Deng, Z., & Smith, G. (2006). Type inference and informative error reporting for secure

information flow. Proceedings of the 44th ACM Southeast Conference, 543-548.

8. Denning, D. E., & Denning, P. J. (1977). Certification of programs for secure information

flow. Communications of the ACM, 20(7), 504-512. ACM Press.

9. Jackson, D. (2006). Software Abstractions: Logic, Language, and Analysis. Cambridge,

MA, USA, and London, England: MIT Press.

10. Landauer, J., Redmond, T., & Benzel, T. (1989). Formal policies for trusted processes.

Proceedings of the Computer Security Foundations Workshop II, 31-40.

11. Laud, P. (2003). Handling encryption in analyses for secure information flow.

Proceedings 12th European Symposium on Programming, (ESOP), 159-173.

12. Levin, T., Irvine, C., Benzel, T., Bhaskara, G., Clark, P., & Nguyen, T. (2007). Design

principles and guidelines for security. Technical Report NPS-CS-07-014, Naval

Postgraduate School, Monterey, California.

13. Levin, T., Irvine, C., and Nguyen, T. (2006). Least Privilege in Separation Kernels.

Proceedings of the 2006 International Conference on Security and Cryptography, 355-

362.

14. Levin, T., Irvine, C., & Spyropoulou, E. (2006). Quality of security service: Adaptive

security. Handbook of Information Security (H. Bidgoli, ed.), vol. 3, 1016–1025.

Hoboken, NJ: John Wiley and Sons.

15. Levin, T., Irvine, C., Weissman, C., & Nguyen, T. (2007). Analysis of three multilevel

security architectures. Proceedings of the 2007 ACM Workshop on Computer Security

Architecture, 37-46. ACM Press, New York, NY.

16. Lunt, T., Denning, D., Schell, R., Heckman, M., & Shockley, W. (1990). The seaview

security model. IEEE Transactions on Software Engineering, 16(6), 593-607.

17. National Security Agency IA Directorate. (2004). Global Information Grid Information

Assurance Reference Capability/Technology Roadmap, Version 1.0.

18. National Security Agency. (2007). U.S. Government Protection Profile for Separation

Kernels in Environments Requiring High Robustness, Version 1.03.

19. Sabelfeld, A., & Myers. A. (2003). Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1), 5-19. IEEE Press.

20. Sabelfeld, A., & Sands, D. (2000). Probabilistic noninterference for multi-threaded

programs. Proceedings of the IEEE Computer Security Foundations Workshop, 200-214.

21. Saltzer, J. & Schroeder, M. (1975). The protection of information in computer systems.

Proceedings of the IEEE, 63(9), 1278-1308.

22. Schell, R., Tao, T., & Heckman, M. (1985). Designing the GEMSOS Security Kernel for

Security and Performance. Proceedings of the 8th National Computer Security

Conference, 108 - 119.

23. Security Domain Model Project website, http://cisr.nps.edu/projects/sdm.html.

24. Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2007). Toward a security domain

model for static analysis and verification of information systems. Proceedings of the 7th

OOPSLA Workshop on Domain-Specific Modeling, 160-171. Montreal, Canada.

25. Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2008). A Security Domain Model to

Assess Software for Exploitable Covert Channels. Proceedings of the ACM SIGPLAN

Third Workshop on Programming Languages and Analysis for Security (PLAS'08), 45-56.

Tucson, Arizona. ACM Press.

26. Simonet, V. (2003). Type inference with structural subtyping: A faithful formalization of

an efficient constraint solver. Proceedings of the Asian Symposium on Programming

Languages and Systems (APLAS'03), vol 2895, 283-302. Beijing, China: Springer-Verlag.

27. Smith, G. (2006). Improved typings for probabilistic noninterference in a multi-threaded

language. Journal of Computer Security 14(6), 591-623.

28. Smith, G., & Alpizar, R. (2006). Secure information flow with random assignment and

encryption. Proceedings of the 4th ACM Workshop on Formal Methods in Security, 33-44.

ACM Press.
29. Smith, S., & Thober, M. (2007). Improving usability of information flow security in java.

Proceedings of the 2007 Workshop on Programming Languages and Analysis for Security
(pp. 11-20). ACM Press, New York, NY.

30. Steffan, W., & Clow, J. (1996). Trusted process classes. Proceedings of the 19th National

Information Systems Security Conference.

31. Thomas, R., & Sandhu, R. (1996). A trusted subject architecture for multilevel secure

object-oriented databases. IEEE Transactions on Knowledge and Data Engineering, 8(1),

16-31.

32. Volpano, D., & Smith, G. (1999). Probabilistic noninterference in a concurrent language.

Journal of Computer Security 7(2,3), 231–253.

33. Volpano, D., Smith, G., & Irvine, C. (1996). A sound type system for secure flow analysis.

Journal of Computer Security, 4(3), 167-187.

34. von Oheimb, D. (2004). Information flow control revisited: Noninfluence =

noninterference + nonleakage. Proceedings of the 9th European Symposium on Research

Computer Security, 225-243. Sophia Antipolis, France.

35. Wilson, J. (1989). A security policy for an A1 DBMS (a trusted subject). Proceedings of

the 1989 IEEE Symposium on Security and Privacy, 116-125.

