
NPS-CS-07-022

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

SecureCore Software Architecture:
Trusted Management Layer (TML)

Kernel Extension Module Integration Guide

by

David J. Shifflett
Paul C. Clark

Cynthia E. Irvine
Thuy D. Nguyen

Timothy M. Vidas
Timothy E. Levin

December 2007

Approved for public release; distribution is unlimited

This page intentionally left blank

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Vice Admiral Daniel T. Oliver (Retired) Leonard Ferrari
President Provost

This material is based upon work supported by the National Science Foundation (NSF).
Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of that agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

________________________ ________________________
David J. Shifflett Paul C. Clark
Research Associate Research Associate

________________________ ________________________
Cynthia E. Irvine Thuy D. Nguyen
Professor Research Associate

________________________ ________________________
Timothy M. Vidas Timothy E. Levin
Research Associate Research Associate Professor

Reviewed by: Released by:

______________________________ _________________
Peter J. Denning, Chair Dan C. Boger
Department of Computer Science Interim Associate Provost

and Dean of Research

This page intentionally left blank

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 20 December 2007

3. REPORT TYPE AND DATES COVERED
 Research; September 2006 - December 2007

4. TITLE AND SUBTITLE

SecureCore Software Architecture: Trusted Management Layer (TML)
Kernel Extension Module Integration Guide

5. FUNDING

 CNS-0430566

6. AUTHOR(S)

David J. Shifflett, Paul C. Clark, Cynthia E. Irvine, Thuy D. Nguyen, Timothy M. Vidas, and
Timothy E. Levin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Center for Information Systems Security Studies and Research (CISR)
1411 Cunningham Road, Monterey, CA 93943

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 NPS-CS-07-022

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Science Foundation (NSF)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
This material is based upon work supported by the National Science Foundation (NSF). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words.)

A mobile computing device has more inherent risk than desktops or most other stationary computing devices. Such mobile devices are
typically carried outside of a controlled physical environment, and they must communicate over an insecure medium. The risk is even greater
if the data being stored, processed and transmitted by the mobile device is classified. The purpose of the SecureCore research project is to
investigate fundamental architectural features required for the trusted operation of mobile computing devices so the security is built-in,
transparent and flexible. A building block for the SecureCore project is a Least Privilege Separation Kernel (LPSK). The LPSK together with
extension modules provides the security base. Integration of extension modules with the LPSK is described, including coding techniques, and
compile and link directions.

14. SUBJECT TERMS

High Assurance, Security Kernel

15. NUMBER OF
PAGES

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-
89)

 18
 16. PRICE

CODE

17. SECURITY CLASSIFICATION
 OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION
OF ABSTRACT OF THIS PAGE OF ABSTRACT

 Unclassified Unclassified Unclassified

 Prescribed by ANSI Std 239-
18

This page left intentionally blank

NPS-CS-07-022

 The Center for Information Systems Security Studies and Research

| SecureCore Technical Report

Trustworthy Commodity Computation
and Communication

SecureCore Software Architecture:
Trusted Management Layer (TML)
Kernel Extension Module Integration Guide

David J. Shifflett, Paul C. Clark, Cynthia E. Irvine, Thuy D.
Nguyen, Timothy M. Vidas, Timothy E. Levin

December 20, 2007

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. CNS-0430566 and CNS-0430598 with support from DARPA
ATO. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation or of DARPA ATO.

Author Affiliation:

Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

Table of Contents

1 Introduction .. 1

1.1 Background... 1
2 Kernel extension modules .. 1

2.1 Layering .. 1
2.2 Segment requirements... 3
2.3 Compilation requirements... 5
2.4 Interfaces... 5
2.5 Linking.. 5

References... 6

 Trustworthy Commodity Computation and Communication i

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

[THIS PAGE IS INTENTIONALLY BLANK]

 Trustworthy Commodity Computation and Communication ii

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

1 Introduction

1.1 Background
SecureCore is a research project funded by the National Science Foundation (NSF) to
investigate the fundamental architectural features required for trustworthy operation of
mobile computing devices such as smart cards, embedded controllers and hand-held
computers. The goal is to provide secure processing and communication features for
resource-constrained platforms, without compromise of performance, size, cost or energy
consumption. In this environment, the security must also be built-in, transparent and
flexible.

This document describes the requirements for building extension modules that may be
incorporated into the Trusted Management Layer (TML), specifically the Least Privilege
Separation Kernel (LPSK). The LPSK is composed of modules which are used as the
building blocks of the kernel implementation. These modules are referred to as core
kernel modules. Kernel extension modules are separate from the core LPSK modules,
providing additional functionality.

A description of the SecureCore software architecture and definitions can be found
elsewhere [1]. This document assumes the reader is familiar with the architecture and
terminology of the SecureCore project.

2 Kernel extension modules
Kernel extension modules are functionality outside the LPSK that need to execute within
the same environment (e.g. privilege level 0, PL0) as the LPSK. Kernel extension
modules will be developed and maintained separately from the LPSK, and will be
combined with the LPSK at build time, during the link phase.

2.1 Layering
Sound software engineering practices require that a system, such as the LPSK, be
decomposed into individual modules, and that these modules be organized into ordered
layers, such that modules can only depend upon (e.g. call into) other modules in lower
layers. The goal of this design methodology is to avoid circular call sequences. The
layering and modules are shown in Figure 1.

 Trustworthy Commodity Computation and Communication 1

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

Layer x

Layer n

Layer 1

.

.

.

Module A Module B Module C

Module K Module L

Module X Module Y Module Z

.

.

.

Figure 1. Modules and Layering

Modules A, B, and C, may call into all modules in lower layers, layers below ‘layer x’.
Similarly, modules K, and L, may call into layers below ‘layer n’. Modules X, Y, and Z,
are in the lowest layer and may not call into any other modules.

Kernel extension modules must be designed with this layering in mind. Kernel extension
modules must be placed in a layer that is 1) above all the modules upon which they
depend, and 2) below the modules that depend on the kernel extension module. This is
shown in Figure 2.

 Trustworthy Commodity Computation and Communication 2

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

Layer x

Layer n

Layer 1

Module A Module B Module C

Kernel
Extension
Module

Module K Module L

Module X Module Y Module Z

.

.

.

.

.

.

Figure 2. Layering of Kernel Extension Modules

2.2 Segment requirements
The code and data for kernel extension modules must be in segments separate from the
core kernel modules. The stack segment will be shared by the core kernel modules and
the kernel extension modules. The kernel extension modules must have at least one code
segment, but may be composed of more than one code segment, and may have one or
more data segments.

In the following examples the unique identifier for the kernel extension module,
kernel_mod_name, does not have to be consistent across an entire kernel extension
module. All code blocks with the same unique identifier will be combined into a single
code segment and all data blocks with the same unique identifier will be combined into a
single data segment.

2.2.1 Code segments
To place kernel extension module C-language code into its own segment, the code must
be specified to be in a code segment other than the default code segment. This is
accomplished by enclosing all code within a ‘pragma code_seg’ block, as follows:

 #pragma code_seg ("kernel_mod_name" , "kernel_mod_name_CODE");

 Kernel extension module code goes here
 …

 #pragma code_seg ();

 Trustworthy Commodity Computation and Communication 3

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

where kernel_mod_name is replaced by a unique identifier for the kernel extension
module.

More than one code segment can be created by having multiple ‘pragma code_seg’
blocks, each with a unique identifier.

For assembly language implementations, the following is used to place code within a
specific code segment:

 _TEXT segment para public 'kernel_mod_name_CODE'

 Kernel extension module code goes here
 …

 _TEXT ends

where kernel_mod_name is replaced by a unique identifier for the kernel extension
module.

More than one code segment can be created by having multiple ‘segment/ends’ blocks,
each with a unique identifier. To specify multiple code segments the ‘label’ (_TEXT in
the above example) would have to be unique for each code segment (e.g. _TEXT01,
_TEXT02).

2.2.2 Data Segments
Kernel extension module data must be put into a data segment separate from the core
kernel module data, using the ‘-nd’ compile switch (see Compilation requirements
below). Optionally, kernel extension module data may be placed into more than one data
segment by enclosing all C data declarations within a ‘pragma data_seg’ block, as
follows:

 #pragma data_seg ("kernel_mod_name");

 Kernel extension module data declarations go here
 …

 #pragma data_seg ();

where kernel_mod_name is replaced by a unique identifier for the kernel extension
module.

More than one data segment can be created by having multiple ‘pragma data_seg’ blocks,
each with a unique identifier.

For assembly language data declarations, the following is used to place data within a
specific data segment:

 Trustworthy Commodity Computation and Communication 4

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

 _DATA segment para public 'kernel_mod_name_DATA'

 Kernel extension module data goes here
 …

 _DATA ends

where kernel_mod_name is replaced by a unique identifier for the kernel extension
module.

More than one data segment can be created by having multiple ‘segment/ends’ blocks,
each with a unique identifier. To specify multiple data segments the ‘label’ (_DATA in
the above example) would have to be unique for each data segment (e.g. _DATA01,
_DATA02).

2.3 Compilation requirements
The core kernel module data and constants must be separate from the kernel extension
module data and constants. The Open Watcom compiler has a switch that enables this
functionality. Kernel extension modules must be compiled with the same compiler
switches as the core kernel modules with the following additional switch:

 -nd=kernel_mod_name

where kernel_mod_name is replaced by a unique identifier for the kernel extension
module.

The ‘–nd’ switch causes the compiler to create a default data segment that is unique to the
kernel extension module. This data segment will contain all data, constants, string literals,
and uninitialized data associated with the kernel extension module.

2.4 Interfaces
The kernel extension modules must provide a header file, or files, declaring all functions
within the kernel extension module that the core kernel modules are expected to call.
Likewise, the core kernel modules will provide a header file, or files, declaring all
functions that are exported to kernel extension modules.

2.5 Linking
The TML is linked using the Open Watcom linker. When linking the TML, the core
kernel module objects must be first in the list of objects to link, followed by the kernel
extension modules. The linking will combine all the object code (.o files) for the core
kernel modules with the object code for the kernel extension modules to create the LPSK
executable. The developers of the kernel extension modules do not need to be concerned
with the linking step, but rather simply concentrate on providing the kernel extension
module object files.

 Trustworthy Commodity Computation and Communication 5

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

References

[1] Clark, Paul C., Irvine, Cynthia E., Levin, Timothy E., Nguyen, Thuy D., Vidas,

Timothy M., “SecureCore Software Architecture: Trusted Path Application (TPA)
Requirements”, NPS-CS-07-001, December 2007.

 Trustworthy Commodity Computation and Communication 6

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

Initial Distribution List

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013 2

Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09 1

Naval Postgraduate School
Monterey, CA 93943-5138

4. Karl Levitt 1

National Science Foundation
4201 Wilson Blvd.
Arlington, VA 22230

5. Lee Badger 1

DARPA
3701 Fairfax Drive
Arlington, VA 22203

6. David J. Shifflett 1

Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

7. Paul C. Clark 1
Code CS/Cp
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

8. Cynthia E. Irvine 2
Code CS/Ic
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

 Trustworthy Commodity Computation and Communication 7

SecureCore Software Architecture: TML Kernel Extension Module Integration Guide

9. Timothy E. Levin 1

Code CS/Tl
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

10. Thuy D. Nguyen 1

Code CS/Tn
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

11. Timothy M. Vidas 1

Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

 Trustworthy Commodity Computation and Communication 8

	1 Introduction
	1.1 Background

	2 Kernel extension modules
	2.1 Layering
	2.2 Segment requirements
	2.2.1 Code segments
	2.2.2 Data Segments

	2.3 Compilation requirements
	2.4 Interfaces
	2.5 Linking

	References
	Initial Distribution List

