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1 Introduction 

1.1 Background 
SecureCore is a research project funded by the National Science Foundation (NSF) to 
investigate the fundamental architectural features required for trustworthy operation of 
mobile computing devices such as smart cards, embedded controllers and hand-held 
computers. The goal is to provide secure processing and communication features for 
resource-constrained platforms, without compromise of performance, size, cost or energy 
consumption. In this environment, the security must also be built-in, transparent and 
flexible. 
 
This document describes the requirements for building extension modules that may be 
incorporated into the Trusted Management Layer (TML), specifically the Least Privilege 
Separation Kernel (LPSK). The LPSK is composed of modules which are used as the 
building blocks of the kernel implementation. These modules are referred to as core 
kernel modules. Kernel extension modules are separate from the core LPSK modules, 
providing additional functionality. 
 
A description of the SecureCore software architecture and definitions can be found 
elsewhere [1].  This document assumes the reader is familiar with the architecture and 
terminology of the SecureCore project. 

2 Kernel extension modules 
Kernel extension modules are functionality outside the LPSK that need to execute within 
the same environment (e.g. privilege level 0, PL0) as the LPSK. Kernel extension 
modules will be developed and maintained separately from the LPSK, and will be 
combined with the LPSK at build time, during the link phase. 

2.1 Layering 
Sound software engineering practices require that a system, such as the LPSK, be 
decomposed into individual modules, and that these modules be organized into ordered 
layers, such that modules can only depend upon (e.g. call into) other modules in lower 
layers. The goal of this design methodology is to avoid circular call sequences. The 
layering and modules are shown in Figure 1. 
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Figure 1. Modules and Layering 

Modules A, B, and C, may call into all modules in lower layers, layers below ‘layer x’. 
Similarly, modules K, and L, may call into layers below ‘layer n’. Modules X, Y, and Z, 
are in the lowest layer and may not call into any other modules. 
 
Kernel extension modules must be designed with this layering in mind. Kernel extension 
modules must be placed in a layer that is 1) above all the modules upon which they 
depend, and 2) below the modules that depend on the kernel extension module. This is 
shown in Figure 2. 
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Figure 2. Layering of Kernel Extension Modules 

2.2 Segment requirements 
The code and data for kernel extension modules must be in segments separate from the 
core kernel modules. The stack segment will be shared by the core kernel modules and 
the kernel extension modules. The kernel extension modules must have at least one code 
segment, but may be composed of more than one code segment, and may have one or 
more data segments. 
 
In the following examples the unique identifier for the kernel extension module, 
kernel_mod_name, does not have to be consistent across an entire kernel extension 
module. All code blocks with the same unique identifier will be combined into a single 
code segment and all data blocks with the same unique identifier will be combined into a 
single data segment. 

2.2.1 Code segments 
To place kernel extension module C-language code into its own segment, the code must 
be specified to be in a code segment other than the default code segment. This is 
accomplished by enclosing all code within a ‘pragma code_seg’ block, as follows: 
 
 #pragma code_seg ( "kernel_mod_name" , "kernel_mod_name_CODE" ); 
 
 Kernel extension module code goes here 
 … 
 
 #pragma code_seg (); 
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where kernel_mod_name is replaced by a unique identifier for the kernel extension 
module. 
 
More than one code segment can be created by having multiple ‘pragma code_seg’ 
blocks, each with a unique identifier. 
 
For assembly language implementations, the following is used to place code within a 
specific code segment: 
 
 _TEXT            segment para public 'kernel_mod_name_CODE' 
 
 Kernel extension module code goes here 
 … 
 
 _TEXT ends 
 
where kernel_mod_name is replaced by a unique identifier for the kernel extension 
module. 
 
More than one code segment can be created by having multiple ‘segment/ends’ blocks, 
each with a unique identifier. To specify multiple code segments the ‘label’ (_TEXT in 
the above example) would have to be unique for each code segment (e.g. _TEXT01, 
_TEXT02). 

2.2.2 Data Segments 
Kernel extension module data must be put into a data segment separate from the core 
kernel module data, using the ‘-nd’ compile switch (see Compilation requirements 
below). Optionally, kernel extension module data may be placed into more than one data 
segment by enclosing all C data declarations within a ‘pragma data_seg’ block, as 
follows: 
 
 #pragma data_seg ( "kernel_mod_name" ); 
 
 Kernel extension module data declarations go here 
 … 
 
 #pragma data_seg (); 
 
where kernel_mod_name is replaced by a unique identifier for the kernel extension 
module. 
 
More than one data segment can be created by having multiple ‘pragma data_seg’ blocks, 
each with a unique identifier. 
 
For assembly language data declarations, the following is used to place data within a 
specific data segment: 
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 _DATA            segment para public 'kernel_mod_name_DATA' 
 
 Kernel extension module data goes here 
 … 
 
 _DATA ends 
 
where kernel_mod_name is replaced by a unique identifier for the kernel extension 
module. 
 
More than one data segment can be created by having multiple ‘segment/ends’ blocks, 
each with a unique identifier. To specify multiple data segments the ‘label’ (_DATA in 
the above example) would have to be unique for each data segment (e.g. _DATA01, 
_DATA02). 

2.3 Compilation requirements 
The core kernel module data and constants must be separate from the kernel extension 
module data and constants. The Open Watcom compiler has a switch that enables this 
functionality. Kernel extension modules must be compiled with the same compiler 
switches as the core kernel modules with the following additional switch: 
 
 -nd=kernel_mod_name 
 
where kernel_mod_name is replaced by a unique identifier for the kernel extension 
module. 
 
The ‘–nd’ switch causes the compiler to create a default data segment that is unique to the 
kernel extension module. This data segment will contain all data, constants, string literals, 
and uninitialized data associated with the kernel extension module. 

2.4 Interfaces 
The kernel extension modules must provide a header file, or files, declaring all functions 
within the kernel extension module that the core kernel modules are expected to call.  
Likewise, the core kernel modules will provide a header file, or files, declaring all 
functions that are exported to kernel extension modules. 
 

2.5 Linking 
The TML is linked using the Open Watcom linker. When linking the TML, the core 
kernel module objects must be first in the list of objects to link, followed by the kernel 
extension modules. The linking will combine all the object code (.o files) for the core 
kernel modules with the object code for the kernel extension modules to create the LPSK 
executable. The developers of the kernel extension modules do not need to be concerned 
with the linking step, but rather simply concentrate on providing the kernel extension 
module object files. 
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