
NPS-CS-06-012

ISI-TR-2006-619

| SecureCore Technical Report

Trustworthy Commodity Computation and
Communication

Integration of User Specific Hardware for
SecureCore Cryptographic Services
Ganesha Bhaskara, Timothy E. Levin, Thuy D. Nguyen, Terry V. Benzel,
Cynthia E. Irvine and Paul C. Clark

Integration of User Specific Hardware for SecureCore
Cryptographic Services

ii

This material is based upon work supported by the National Science Foundation under Grant No.
CNS-0430566 and CNS-0430598 with support from DARPA ATO. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation or of DARPA ATO.

Author Affiliations

Naval Postgraduate School:
Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen, and Paul C. Clark
Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

USC Information Sciences Institute:
Terry V. Benzel and Ganesha Bhaskara
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, Ca 90292

 Integration of User Specific Hardware for SecureCore
 Cryptographic Services

 Trustworthy Commodity Computation and Communication iii

Table of Contents

I. INTRODUCTION .. 1

A. Overview of SecureCore Architecture...1

B. Overview of SP...3

II. ASSUMPTIONS IN SECURECORE ARCHITECTURE 5

A. Assumptions about usage scenarios..6

B. Assumptions about HW ..6

C. Assumptions about SW ..6

III. VIRTUALIZATION OF SP INTERFACES WITH SINGLE UMK SUPPORT . 6

A. Hardware support for virtualization of SP ..7

B. Integrated SecureCore Architecture ..8
3.2.1 Key Chain Management and Enforcement of MLS policies ..10

IV. SECURECORE USAGE SCENARIOS .. 10

REFERENCES ... 12

 Integration of User Specific Hardware for SecureCore
 Cryptographic Services

 Trustworthy Commodity Computation and Communication 1

I. Introduction
The objective of this document (internal to ISI/NPS/Princeton) is to hash out details and
design issues that may arise while integrating Secret Protected (SP) [rlee05] with the
SCHW and the SecureCore architecture. This document describes the use of
cryptographic hardware like SP and Trusted Platform Module (TPM) [tcgp05] within the
context of the SecureCore project to provide cryptographic services. We start with
describing the assumptions about the architecture, hardware, software and usage of the
SecureCore device. We then describe the hardware requirements for virtualization of SP
and how the virtualized SP is integrated into and used in the SecureCore architecture.

A. Overview of SecureCore Architecture

The SecureCore architecture (Illustration 1) is designed around a Least Privilege
Separation Kernel (LPSK) running on SecureCore Hardware (SCHW), which along with
the Secure Core Security Services (SCSS) and the SecureCore Operating System (SCOS)
provides a platform to perform commercial as well as highly trusted transactions via the
trusted SC Process [irvi05]. The LPSK partitions all resources into distinct blocks. The
LPSK and the SCSS together form the Trusted Management Layer (TML) underlying all
active blocks.

The SCHW provides a ring architecture (with at least 4 positive and 2 negative rings) to
provide least privilege domains. It also supports hardware isolation between its blocks as
well as individual tasks or processes. (“Threads” are execution streams within the context
of a task.) The LPSK, of which the SCHW is an integral part, exploits hardware privilege
levels as well as the hardware tasks to manage and enforce separation between the
blocks. Resources are allocated to blocks at the time of initialization or startup. The
SCSS layer virtualizes the static resources exported by the LPSK and exports interfaces
that hide the static nature of the LPSK from the OS that resides in that block. It provides
cryptographic, networking, user I/O and storage services.
The secureCore architecture is configured to support one [confidentiality-level/integrity-
level] pair per block. Similar to all exported resources (e.g., subjects, objects, devices),
keys too are assigned different security levels. The multiplicity of blocks and levels of
information that must be kept separate motivates the virtualization of SP services. With
an appropriate configuration, the LPSK along with the SCSS layer enforces MLS policies
like controlled read down, write up and supports asynchronous notifications and event
counters. Arbitrary write up is not allowed but is supported for certain encapsulated
objects, such as keychains, sequencers and event counters. [reed79] For example
eventcounts can be used to signal a high level subject to read down. The LPSK along
with the SCHW, also provides a fine grained low level temporal access control and
revocation mechanism using time-based events to grant, deny, or revoke access. Design
principles [benz05], objectives and tradeoffs may dictate further partitioning of the SCSS
in each block into trusted and untrusted layers. In the current form, the entire SCSS is
assumed to be trusted. The SCOS provides a trusted environment to host the trusted
services including the SC Process.

Context switches between blocks is user and process driven. The user is active in one
block at a time, and if there are no background processes in the other blocks, the user’s

Integration of User Specific Hardware for SecureCore
Cryptographic Services

2

block remains active until the user logs out or changes to another block. If background
processes are running in other blocks when the user is logged in, then all active blocks
will be scheduled with fixed time slices to prevent covert timing channels that could be
exploited by Trojan horse applications.

When a user wants to change security/integrity levels or otherwise utilize services from a
different block than the current one, the user presses the secure attention key (an external
non-spoofable physical input). The LPSK services this interrupt and passes control to the
SC trusted path application (SCTP) in the SCOS block. SCTP interacts with the user to
negotiate a new level of security and integrity, and activates a user session in the new
block.

For the purposes of attestation of the device (potentially including properties such as
hardware and software configuration), SecureCore architecture utilizes an embedded
TPM engine or its equivalent that is co-resident or integrated with the
SCHW. The TPM typically contains cryptographic keys and hashes that it uses to
digitally sign its outputs, protect itself and verify the integrity of the boot sequence. The
TPM also provides secure storage containers with confidentiality and integrity protection.

Illustration 1: SecureCore system architecture, phase II

 Integration of User Specific Hardware for SecureCore
 Cryptographic Services

 Trustworthy Commodity Computation and Communication 3

B. Overview of SP

Objective: SP [rlee05] is a design for a processor subsystem that is applicable for
incorporation into a broad range of processors. SP aims to enable secure and convenient
protection of the user's critical secrets in an on-line environment, with minimal changes
to hardware. SP protects the user's secret keys from various hardware and software
threats that could result in the compromise of the key's confidentiality. SP also provides
portable access to user keys across all SP-enabled devices (Illustration 2) by avoiding the
use of permanent factory installed keys to protect critical user secrets. Additionally, a
device-specific Device Master Key (DMK) is used to protect certain trusted software
modules (TSMs) which implements all the control and data interfaces related to key
chains. The DMK is loaded into the non-volatile “DMK register” before the system
software is installed. When a TSM is installed, its individual instructions are hashed
using the DMK. The hashed values are stored inline with the code. Since SP instructions
are a part of the processor ISA, SP also aims to mitigate performance concerns associated
with the traditional secure co-processor architectures. The user enters the User Master
Key (UMK) directly into the volatile UMK register through a secure I/O channel.

Before we enumerate the details of how SP is used in SecureCore, we introduce the
following definitions:

• Semantic Integrity refers to the association of the key with a particular application
or service in the context of SecureCore and SP. A typical example would be the
key associated with an email account.

• Syntactic integrity refers to the soundness of the bits of the keys.

In SecureCore, SP is used to protect confidentiality and syntactic integrity of keys. SP
does not protect semantic integrity of the key or the key chain. SP depends on the
applications, the individual TSMs, or their execution environments to ensure the right key
is used, and to control access to TSM interfaces and encrypted keys, if those services are
required. Thus, an attacker cannot, without being detected, modify the bits of any key
without using the interfaces provided by the TSM. Further, in SecureCore, SP is used to
provide cryptographic services to subjects in rings 0 and above.
The model in this document for keychain construction and access is as follows (SP does
not depend on this model). The user keys are organized in a logical “key chain”. The
UMK is the root key for cipher-block chain encryption of the keys. If a user wants to use
one of the keys to perform a cryptographic operations, then the keys on the path to that
key are first decrypted using the UMK and the subsequent keys along the path, and the
selected key is used to perform the required operations. Thus, by protecting the UMK, the
entire key chain is protected.

An important consequence of this trust model is that the UMK becomes associated with
the device until the user erases the UMK. For another user to use the device or for the
same user to use the device with a key chain encrypted with a different UMK, the old
UMK must be cleared, so that the association between the old UMK and the device is

Integration of User Specific Hardware for SecureCore
Cryptographic Services

4

broken and the user can enter a new UMK to establish association with the device.
All instructions that involve user keys and related SP management functions must be
executed in the Concealed Execution Mode (CEM) (Illustration 3), as part of a TSM.
Before a TSM interface is invoked by a process, a CEM session is first started by
executing the “begin_cem” instruction. At the end of the CEM session the “end_cem”
instruction is executed to switch the processor back to normal mode. The “begin_cem”
and “end_cem” instructions manipulate an “in CEM” bit in the CEM Status register that
indicates that the CEM is in use. Once CEM is started, the SP processor continuously
performs on the fly checks for the instruction's integrity with respect to it's hash until the
CEM sessions ends.

Any data that needs to be moved off of the processor chip is also hashed and encrypted
using the DMK as depicted in Illustration 2 and 3. If an interrupt occurs when the
processor is in the CEM, the SP encrypts the contents of all general purpose registers,
collectively hashes them and then stores the hash and the return address in internal SP
registers inaccessible to software. Finally control is transferred to the kernel to service the
interrupt. Doing so ensures

• integrity of the return address and the content of the general purpose registers
• confidentiality of the content of the general purpose registers

The two bits that indicate the status of the CEM act as a hardware lock that ensures that
only one CEM session can be in active or interrupted mode at any given time i.e., each
TSM is intended to be an interruptible critical section . When a task is restored on a
context switch and CEM-interrupted is set, after the new context is loaded, SP checks the
new PC address against the value in the CEM return address register; it checks the
collective hash of all the new general purpose registers against the hash of registers that
was stored in the internal hash register. The processor proceeds with the CEM mode if
both the checks pass. Since the TSM is designed to be as simple as possible, it relies on
its environment (i.e., the SecureCore architecture, and in particular, the hierarchical
privilege domains, as described below) to protect it from unauthorized use, if that is a
concern, and relies on the OS and / or SCSS to manage queuing and dispatch of requests,
if those services are required.

Thus, the user only depends on the DMK of the device to protect the integrity of the TSM
and confidentiality and integrity of the intermediate states of computation.

 Integration of User Specific Hardware for SecureCore
 Cryptographic Services

 Trustworthy Commodity Computation and Communication 5

Though TPM and SP can perform many similar tasks, SP has performance advantages
over TPM due to its tight integration with the processor ISA. Further, SP does not depend
on factory installed secrets and also provides powerful mechanisms that can be used to
protect confidentiality and integrity of data and / or code at runtime. In the SecureCore
architecture, the mechanisms provided by SP and TPM are used to achieve objectives that
are fairly orthogonal to one another.

II. Assumptions in SecureCore Architecture
Since SecureCore is targeted towards small hand held mobile devices, we make some
typical assumptions about operational scenarios that are specific to mobile, embedded,

Illustration 3: Internal details of CEM

Illustration 2: Trust boundaries and access model of SP

Integration of User Specific Hardware for SecureCore
Cryptographic Services

6

networked environment.

A. Assumptions about usage scenarios

The SecureCore networked mobile device is designed to be used by a single user at a
time. This user may need to assume different roles, which translate into different security
profiles for the user. The user will require access to cryptographic services that include
secure storage of keys in addition to encryption, decryption, key generation, random
number generation etc. In phase one, the SP extension for the SCHW is assumed to be
capable of supporting one User Master Key (UMK) i.e., the SCHW has no mechanism to
store and handle more than one UMK at any given time. Therefore, if a different user
wants to use the device or if a different UMK is needed for a different role, the UMK
must be cleared and a new UMK entered. Support for multiple UMKs will be
investigated in SC phase two.

The user can assume roles that can only utilize the basic services provided by the device.
Further, all actions performed by the user are constrained by MAC policy. Typically, the
user does not assume roles that would be required for maintenance operations, including
software installations, TPM key changes, configuration changes etc. Such maintenance
operations including changes to hardware are performed at a secure facility and are not a
part of normal operation of the device.

B. Assumptions about HW

We assume that the SCHW has sufficient functionality to support a type 1 VMM
[gold72]. Further, the SCHW also incorporates SP functionality as described in [rlee05].
We term this integrated VMM and SP hardware platform as “SCHW with SP
extensions”. For the purposes of attestation of the device (potentially including
properties such as hardware and software configuration), we assume the presence of a
TPM engine or its equivalent that is co-resident or integrated with the SCHW.

C. Assumptions about SW

Though OSs in the untrusted blocks can support multiple users and the SecureCore
device supports multiple blocks, only that device's single user will be logged into any OS
on any of the blocks.

The LPSK along with the SCSS is assumed to have the capability to prevent a remote
user from connecting to a guest operating system and executing commands Such a
restriction not only ensures that, only the actions of the user in possession of the device
can invoke commands directly or indirectly, but also ensures that the UMK entered by
the user in possession of the device is not utilized by remote users. When a user logs into
the device and enters the UMK, the single key effectively becomes associated with each
of the user blocks on the device.

III. Virtualization of SP interfaces with single UMK
support
Hardware support for virtualization is assumed to be similar to [inte05], [adva05]. The

 Integration of User Specific Hardware for SecureCore
 Cryptographic Services

 Trustworthy Commodity Computation and Communication 7

following table gives an overview of the allocation of rings in the SecureCore
architecture.

Ring Ring (-2) Ring (-1) Ring (0) Ring (1+)

SC Layer LPSK SCSS OS Applications

Domains all blocks with no
restrictions

all blocks with
restrictions on
operations

Single block with no
restrictions within
that block

Single block and
restricted to single
task / address space

The TML provides isolation and virtualization of hardware resources. Only LPSK and
SCSS have the access rights to request negative ring HW operations. The guest OSs have
access to data and control instructions at ring 0.
Instructions that are used to manage the block control structure (BCS) and scheduling of
blocks are assumed to be accessible only to software in ring -2. The BCS is assumed to
contain information about the state of each block. When the LPSK interrupts one block
and schedules another, it saves the complete state of the processor before restoring the
state of the next block. This is done such that states of one block do not affect the
operation of another block.
If a task in one block is using a resource and LPSK schedules the next block for
execution, tasks in the next block should not be affected – through either timing or
resource access variability -- by the fact that a task in the previous block was using that
resource. In particular, the TML must be able to virtualize the status of the CEM. A
simple approach would be to provide privileged instructions for TML to load and store
the CEM state (CEM return address, CEM hash and CEM status bits). The LPSK would
not need to be able to interpret the CEM state, so the state could be encrypted.

A. Hardware support for virtualization of SP
 To facilitate virtualization of the SP, the following functional requirements, over and above the currently
described functionality of SP, need to be met to enable virtualization of SP

SP : 1 SP extensions to SCHW must support tamper proof mechanisms that prevent
unauthorized access to SP instructions. Further, these mechanisms (e.g., hierarchical privilege
domains) must ensure that:
SP : 1.1 The LPSK (ring -2) may

SP : 1.1.1 Write and read data to and from all registers that represent the state of the
processor (in non-CEM, CEM and interrupted CEM.)

SP : 1.1.2 Execute instructions that manage the virtualization of the CEM
SP : 1.2 Rings 3, 2, 1, 0, -1 or -2) may

SP : 1.2.1 Manage registers that are relevant within a given block (in normal, CEM, and
interrupted CEM.)

SP : 2 Exceptions must be raised in the event of
SP : 2.1 access violations
SP : 2.2 Other mode of failures

SP : 3 All data operations must be preemptable to avoid covert timing channels.

Integration of User Specific Hardware for SecureCore
Cryptographic Services

8

Future extensions to the SP architecture, while maintaining the overall HW / SW architectural simplicity,
should support additional functions to eliminate the need for TPM-like support from off the chip.

SP : 4 Enable secure boot
SP : 4.1 Enable secure storage of keys not associated with the user
SP : 4.2 Generate high quality asymmetric and symmetric keys as well as high quality random

numbers
SP : 5 Support multiple UMKs

SP : 5.1 Ensure that only SCSS or LPSK (rings -1 or -2) may manage additional registers and
instructions for selecting the appropriate UMK.

Integrating the TPM functionality with SP will obviate the requirement to establish
secure communication channels between SP/TSM and the peripheral TPM.

B. Integrated SecureCore Architecture

In this initial phase of design we intend to support only one process per block, one CEM
session per block and use a single TSM per block. Though one can envision architectures
which allow multiple CEM sessions per block and multiple TSMs in a block, distributed
across different rings, this is beyond the scope of this document. Furthermore, SP/TSM is
used to provide cryptographic services to subjects in and above ring 0 in each block – use
of CEM to protect the kernel itself will be described elsewhere.

Individual key-management: We define a straw man TSM that provides crypto-service
interfaces. For example, for encryption of data, an application submits the data, a
keychain and a key indicator. A key manager or key management library assists the
application in selecting the appropriate key. A TSM transition function invokes
begin_cem. The TSM decrypts the sequence of keys from the root to the requested key
and then uses it to perform the requested cryptographic operation. Alternatively,
keychain management could occur outside of the TSM, in which case the TSM interface
would accept the encrypted key directly.

The ring policy requires that the TSM must be at least as privileged as the most
privileged subject using it. If the TSM is used to encrypt and decrypt objects in ring 0,
which is allocated to the OS, the TSM is placed in ring 0. In this case, access to the TSM
from lesser-privileged rings is controlled by the OS – the applications call interfaces
exported by the OS, which in turn uses the application’s parameters to invoke the
interfaces of TSM. The OS additionally performs TSM-related request queuing and
dispatch, to provide an orderly execution environment for the applications. In general, the
ring level of a TSM is dependent on the customer-site security policy for execution of
that particular TSM.

 Integration of User Specific Hardware for SecureCore
 Cryptographic Services

 Trustworthy Commodity Computation and Communication 9

To protect against covert channels, the SC architecture must ensure that no block can
lock shared resources, such as the CEM, from access by other blocks. SP instructions are
added for the LPSK to virtualize the state of SP across kernel blocks, including
instructions for saving and restoring the state of the SP mechanism.

The OS is unable to read or write to the SP internal hash/return address/state registers as
the instructions required to perform such operations are privileged and can only be
invoked from ring -2. If an interrupt for a context switch between blocks occurs during a
CEM session, the LPSK saves the entire state of the processor, including SP state/return
address/internal hash registers, and restores the state of the next block.
The LPSK, SCSS and SCOS are carefully designed so that on a block-level context
switch, residual data from the previous block is not available to the user, OS or
applications, if that availability would violate the MLS security policy.

Covert storage channels are eliminated by wiping clean any state of data present in the

Illustration 4: SP integration with SecureCore MLS architecture

Integration of User Specific Hardware for SecureCore
Cryptographic Services

10

caches in the processor before the state of the next block is restored. Timing channels are
avoided, since the CEM will not be locked when the next block executes, and the time for
block context switching is made consistent, regardless of CEM activity.
3.2.1 Key Chain Management and Enforcement of MLS policies
Key chains are resources that can be shared by applications within a block as well as
between blocks. Unlike the assumption about key chain location and access in [rlee05],
the keys and key chains are stored in LPSK-managed resources according to their
confidentiality and integrity levels, as shown in Illustration 4, and the MLS policy
governs the access rights of different blocks to the key chains. This approach is free of
covert storage channels and is the same as used in some secure multi level file systems
[irvi95]. Thus applications in each block will only be able to perform read and write
operations on key chains if the MLS policies permit.

Since access to keys and key chains is controlled by the LPSK, the key chain managers
are not MLS aware and consequently need not be trusted with enforcing the MLS policy
[irvi95]. Further, only the key chain managers in the high integrity blocks, which hosts
high integrity applications need to be high integrity .

IV. SecureCore Usage Scenarios
SecureCore can be configured to allow read down and controlled write up of exported
resources with respect to confidentiality, and read up and controlled write down with
respect to integrity. With these capabilities, read down and write up of encrypted data by
the user can be permitted as a part of normal operation. In this section, several scenarios
illustrate how this is managed in SC.
In these examples, we assume that the existence of a kernel k_append operation for
performing a “blind write” to a higher level. The application A has handles A.k, A.m for
each key K or memory segment M in its address space, which provide the only access to
those resources for A. For keys, the handle can be as simple as the numerical index into
the keychain, or can reflect the semantics of the application, such as a mail-signing key
and a mail-encryption key. The confidentiality level of the handle is the user’s session
level, and we will assume here that: (1) the keys used for encryption are labeled the same
as the data they encrypt, and (2) users are not allowed to use keys that are labeled at a
higher confidentiality level than their session level.

OS operations are prefaced with “os_,” SCSS operations with “scss_” and kernel
operations with “k_”.

Scenario 1: A user at a low confidentiality level wants to write encrypted data to a higher
level.

Application A level: SECRET
Data D level: SECRET
Buffer tmp level: SECRET
Key K level: SECRET
Memory Segment M level : TOP SECRET (TS)
Application operations: tmp := os_encrypt(A.d, A.k);

 Integration of User Specific Hardware for SecureCore
 Cryptographic Services

 Trustworthy Commodity Computation and Communication 11

k_append(A.m, tmp);

Scenario 2: A user at a high security level wants to read encrypted data that is at a lower
security level.

Application A level: TS
Encrpted Data Dk level: SECRET
Buffer tmp level: TS
Key K level: SECRET
Application operations: tmp := os_decrypt(A.dk, A.k);
os_read(tmp);

Scenario 3: A privileged user wants to downgrade data and encrypt it with a lower level
key.

Application A level: TS
Data D level: TS
Buffer tmp level: TS
Key K level: SECRET
Memory Segment M level : TOP SECRET (TS)
Application operations: scss_downgrade(A.d, SECRET);
os_encrypt(A.d, A.k);

Scenario 4: A user at a low confidentiality level wants to append low level keys from her
keychain to a high level keychain.

Application A level: SECRET
Key K level: SECRET
Keychain C level : TOP SECRET (TS)
Application operations: scss_kchain_append(A.c, A.k)

Note that Scenario 4 does not address integrity of the keys and keychain. For
example, a low integrity SECRET key could corrupt the TS keychain, and a low
integrity application could flood SCSS with requests, leading to denial of service
for other processes needing to use SCSS, or exhaustion of the TS keychain space.
SC can be configured to avoid these problems through the use of integrity labels,
which would prevent writing low integrity data to a high integrity object. See
scenario 6.

Scenario 5: A user wants to create and append a keys to her keychain.
 Application A level: SECRET

Key K level: SECRET (initially empty)
Buffer tmp level: SECRET

 Keychain C level: SECRET
Application A operation: app_get_key(tmp), A.k =

OS_kchain_add(C, tmp)

Integration of User Specific Hardware for SecureCore
Cryptographic Services

12

Scenario 6: A a high integrity user at a low confidentiality level wants to append low
confidentiality, high integrity keys to a high confidentiality, high integrity keychain.

Application A level: SECRET/HIGH_INTEG
Key K level: SECRET/HIGH_INTEG
Keychain C level : TS/HIGH_INTEG
Application operations: scss_kchain_append(A.c, A.k);

References
[adva05] Advanced Micro Devices, AMD "Pacifica" Virtualization Technology, 2005.

[benz05] Benzel, T. V., Irvine, C. E., Levin, T. E., Bhaskara, G., Nguyen, T. D., and Clark, P. C.,
"Design Principles for Security", NPS-CS-05-010, Naval Postgraduate School, September 2005.

[golsd72] R. Goldberg, “Architectural Principles for Virtual”, Computer Systems . Ph.D. thesis,
Harvard University, Cambridge, MA, 1972.

[inte05] Intel Corp, “Intel® Virtualization Technology Specification for the IA-32 Intel®
Architecture”, 2005.

[irvi05] Cynthia Irvine, Terry Benzel, et. al. , National Science Foundation Poster - CyberTrust
meeting, Sept 26, 2005 (PDF)

[irvi95] Irvine, Cynthia E., "A Multilevel File System for High Assurance," Proceedings 1995
IEEE Symposium on Security and Privacy, Oakland, CA, pp. 78-87, May 1995.

[reed79] Reed, D.P., and R. K. Kanodia, “Synchronization with Event counts and Sequencers”,
Communications of the ACM, 22(2):115-- 123, Februrary 1979.

[rlee05] Ruby B. Lee, Peter C. S. Kwan, John Patrick McGregor, Jeffrey Dwoskin, and
Zhenghong Wang, “Architecture for Protecting Critical Secrets in Microprocessors”, Proceedings
of the 32nd International Symposium on Computer Architecture (ISCA 2005), pp. 2-13, June
2005.

[smit05] Sean Smith, “Trusted Computing Platforms - Design and Applications”, ISBN: 0-387-
23916-2, Springer 2005.

[tcgp05] Trusted Computing Group, TPM Main, Part 1, “Design Principles, Specification Version
1.2, Revision 85”, 13 February 2005.

