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I. Introduction 
The objective of this document (internal to ISI/NPS/Princeton) is to hash out details and 
design issues that may arise while integrating Secret Protected (SP) [rlee05] with the 
SCHW and the SecureCore architecture. This document describes the use of 
cryptographic hardware like SP and Trusted Platform Module (TPM) [tcgp05] within the 
context of the SecureCore project to provide cryptographic services. We start with 
describing the assumptions about the architecture, hardware, software and usage of the 
SecureCore device. We then describe the hardware requirements for virtualization of SP 
and  how the virtualized SP is integrated into and used in the SecureCore architecture.   

A. Overview of SecureCore Architecture 

The SecureCore architecture (Illustration 1) is designed around a Least Privilege 
Separation Kernel (LPSK) running on SecureCore Hardware (SCHW), which along with 
the Secure Core Security Services (SCSS) and the SecureCore Operating System (SCOS) 
provides a platform to perform commercial as well as highly trusted transactions via the 
trusted SC Process [irvi05]. The LPSK partitions all resources into distinct blocks. The 
LPSK and the SCSS together form the Trusted Management Layer (TML) underlying all 
active blocks.  

The SCHW provides a ring architecture (with at least 4 positive and 2 negative rings) to 
provide least privilege domains. It also supports hardware isolation between its blocks as 
well as individual tasks or processes. (“Threads” are execution streams within the context 
of a task.) The LPSK, of which the SCHW is an integral part, exploits hardware privilege 
levels as well as the hardware tasks to manage and enforce separation between the 
blocks.  Resources are allocated to blocks at the time of initialization or startup. The 
SCSS layer virtualizes the static resources exported by the LPSK and exports interfaces 
that hide the static nature of the LPSK from the OS that resides in that block. It provides 
cryptographic, networking, user I/O and storage services.  
The secureCore architecture is configured to support one [confidentiality-level/integrity-
level] pair per block.   Similar to all exported resources (e.g., subjects, objects, devices), 
keys too are assigned different security levels.  The multiplicity of blocks and levels of 
information that must be kept separate motivates the virtualization of SP services. With 
an appropriate configuration, the LPSK along with the SCSS layer enforces MLS policies 
like controlled read down, write up and supports asynchronous notifications and event 
counters. Arbitrary write up is not allowed but is supported for certain encapsulated 
objects, such as keychains, sequencers and event counters. [reed79] For example 
eventcounts can be used to signal a high level subject to read down.  The LPSK along 
with the SCHW, also provides a fine grained low level temporal access control and 
revocation mechanism using time-based events to grant, deny, or revoke access. Design 
principles [benz05], objectives and tradeoffs may dictate further partitioning of the SCSS 
in each block into trusted and untrusted layers. In the current form, the entire SCSS is 
assumed to be trusted. The SCOS provides a trusted environment to host the trusted 
services including the SC Process.  

Context switches between blocks is user and process driven. The user is active in one 
block at a time, and if there are no background processes in the other blocks, the user’s 
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block remains active until the user logs out or changes to another block.  If background 
processes are running in other blocks when the user is logged in, then all active blocks 
will be scheduled with fixed time slices to prevent covert timing channels that could be 
exploited by Trojan horse applications.   

When a user wants to change security/integrity levels or otherwise utilize services from a 
different block than the current one,  the user presses the secure attention key (an external 
non-spoofable physical input). The LPSK services this interrupt and passes control to the 
SC trusted path application (SCTP) in the SCOS block. SCTP interacts with the user to 
negotiate a new level of security and integrity, and activates a user session in the new 
block. 

For the purposes of attestation of the device (potentially including properties such as 
hardware and software configuration), SecureCore architecture utilizes an embedded 
TPM engine or its equivalent that is co-resident or integrated                             with the 
SCHW. The TPM typically contains cryptographic keys and hashes that it uses to 
digitally sign its outputs, protect itself and verify the integrity of the boot sequence. The 
TPM also provides secure storage containers with confidentiality and integrity protection.  

 

 
Illustration 1: SecureCore system architecture, phase II 
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B. Overview of SP 

Objective: SP [rlee05] is a design for a processor subsystem that is applicable for 
incorporation into a broad range of processors.  SP aims to enable secure and convenient 
protection of the user's critical secrets in an on-line environment, with minimal changes 
to hardware. SP protects the user's secret keys from various hardware and software 
threats that could result in the compromise of the key's confidentiality. SP also provides 
portable access to user keys across all SP-enabled devices (Illustration 2) by avoiding the 
use of  permanent factory installed keys to protect critical user secrets. Additionally, a 
device-specific Device Master Key (DMK) is used to protect certain trusted software 
modules (TSMs) which implements all the control and data interfaces related to key 
chains. The DMK is loaded into the non-volatile “DMK register” before the system 
software is installed.  When a TSM is installed, its individual instructions are hashed 
using the DMK. The hashed values are stored inline with the code.  Since SP instructions 
are a part of the processor ISA, SP also aims to mitigate performance concerns associated 
with the traditional secure co-processor architectures.  The user enters the User Master 
Key (UMK) directly into the volatile UMK register through a secure I/O channel. 

Before we enumerate the details of how SP is used in SecureCore, we introduce the 
following definitions:  

• Semantic Integrity refers to the association of the key with a particular application 
or service in the context of SecureCore and SP.  A typical example would be the 
key associated with an email account. 

• Syntactic integrity refers to the soundness of the bits of the keys. 

In SecureCore, SP is used to protect confidentiality and syntactic integrity of keys. SP 
does not protect semantic integrity of the key or the key chain. SP depends on the 
applications, the individual TSMs, or their execution environments to ensure the right key 
is used, and to control access to TSM interfaces and encrypted keys, if those services are 
required. Thus, an attacker cannot, without being detected, modify the bits of any key 
without using the interfaces provided by the TSM. Further, in SecureCore, SP is used to 
provide cryptographic services to subjects in rings 0 and above. 
The model in this document for keychain construction and access is as follows (SP does 
not depend on this model).  The user keys are organized in a logical “key chain”. The 
UMK is the root key for cipher-block chain encryption of the keys. If a user wants to use 
one of the keys to perform a cryptographic operations, then the keys on the path to that 
key are first decrypted using the UMK and the subsequent keys along the path, and the 
selected key is used to perform the required operations. Thus, by protecting the UMK, the 
entire key chain is protected.  

An important consequence of this trust model is that the UMK becomes associated with 
the device until the user erases the UMK. For another user to use the device or for the 
same user to use the device with a key chain encrypted with a different UMK, the old 
UMK must be cleared, so that the association between the old UMK and the device is 
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broken and the user can enter a new UMK to establish association with the device.  
All instructions that involve user keys and related SP management functions must be 
executed in the Concealed Execution Mode (CEM) (Illustration 3), as part of a TSM.  
Before a TSM interface is invoked by a process, a CEM session is first started by 
executing the “begin_cem” instruction. At the end of the CEM session the “end_cem” 
instruction is executed to switch the processor back to normal mode.  The “begin_cem” 
and “end_cem” instructions manipulate an “in CEM” bit in the CEM Status register that 
indicates that the CEM is in use.  Once  CEM is started, the SP processor continuously 
performs on the fly checks for the instruction's integrity with respect to it's hash until the 
CEM sessions ends.  

Any data that needs to be moved off of the processor chip is also hashed and encrypted 
using the DMK as depicted in Illustration 2 and 3. If an interrupt occurs when the 
processor is in the CEM, the SP encrypts the contents of all general purpose registers, 
collectively hashes them and then stores the hash and the return address in internal SP 
registers inaccessible to software. Finally control is transferred to the kernel to service the 
interrupt. Doing so ensures  

• integrity of  the return address and the content of the general purpose registers 
• confidentiality of the content of the general purpose registers  

The two bits that indicate the status of the CEM act as a hardware lock that ensures that 
only one CEM session can be in active or interrupted mode at any given time i.e., each 
TSM is intended to be an interruptible critical section . When a task is restored on a 
context switch and CEM-interrupted is set, after the new context is loaded, SP checks the 
new PC address against the value in the CEM return address register; it checks the 
collective hash of all the new general purpose registers against the hash of registers that 
was stored in the internal hash register. The processor proceeds with the CEM mode if 
both the checks pass.  Since the TSM is designed to be as simple as possible, it relies on 
its environment (i.e., the SecureCore architecture, and in particular, the hierarchical 
privilege domains, as described below) to protect it from unauthorized use, if that is a 
concern, and relies on the OS and / or SCSS to manage queuing and dispatch of requests, 
if those services are required. 

Thus, the user only depends on the DMK of the device to protect the integrity of the TSM 
and confidentiality and integrity of the intermediate states of computation.  
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Though TPM and SP can perform many similar tasks, SP has performance advantages 
over TPM due to its tight integration with the processor ISA. Further, SP does not depend 
on factory installed secrets and also provides powerful mechanisms that can be used to 
protect confidentiality and integrity of data and / or code at runtime. In the SecureCore 
architecture, the mechanisms provided by SP and TPM are used to achieve objectives that 
are fairly orthogonal to one another. 

II. Assumptions in SecureCore Architecture  
Since SecureCore is targeted towards small hand held mobile devices, we make some 
typical assumptions about operational scenarios that are specific to mobile, embedded, 

 
Illustration 3: Internal details of CEM 

 
Illustration 2: Trust boundaries and access model of SP 
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networked environment.  

A. Assumptions about usage scenarios 

The SecureCore networked mobile device is designed to be used by a single user at a 
time.  This user may need to assume different roles, which translate into different security 
profiles for the user.  The user will require access to cryptographic services that include 
secure storage of keys in addition to encryption, decryption, key generation, random 
number generation etc. In phase one, the SP extension for the SCHW is assumed to be 
capable of supporting one User Master Key (UMK) i.e., the SCHW has no mechanism to 
store and handle more than one UMK at any given time. Therefore, if a different user 
wants to use the device or if a different UMK is needed for a different role, the UMK 
must be cleared and a new UMK entered.  Support for multiple UMKs will be 
investigated in SC phase two. 

The user can assume roles that can only utilize the basic services provided by the device. 
Further, all actions performed by the user are constrained by MAC policy. Typically, the 
user does not assume roles that would be required for maintenance operations, including 
software installations, TPM key changes, configuration changes etc. Such maintenance 
operations including changes to hardware are performed at a secure facility and are not a 
part of normal operation of the device. 

B. Assumptions about HW 

We assume that the SCHW has sufficient functionality to support a type 1 VMM 
[gold72]. Further, the SCHW also incorporates SP functionality as described in [rlee05]. 
We term this integrated VMM and SP hardware platform as “SCHW with SP 
extensions”.  For the purposes of attestation of the device (potentially including 
properties such as hardware and software configuration), we assume the presence of a 
TPM engine or its equivalent that is co-resident or integrated with the SCHW.   

C. Assumptions about SW 

Though OSs in the untrusted blocks can support multiple users and the SecureCore 
device supports multiple blocks, only that device's single user will be logged into any OS 
on any of the blocks. 

The LPSK along with the SCSS is assumed to have the capability to prevent a remote 
user from connecting to a guest operating system and executing commands Such a 
restriction not only ensures that, only the actions of the user in possession of the device 
can invoke commands directly or indirectly, but also ensures that the UMK entered by 
the user in possession of the device is not utilized by remote users. When a user logs into 
the device and enters the UMK, the single key effectively becomes associated with each 
of the user blocks on the device.   

III. Virtualization of SP interfaces with single UMK 
support 
Hardware support for virtualization is assumed to be similar to [inte05], [adva05]. The 
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following table gives an overview of the allocation of rings in the SecureCore 
architecture. 

 

Ring Ring (-2) Ring (-1) Ring (0) Ring (1+) 

SC Layer LPSK SCSS OS Applications 

Domains all blocks with no 
restrictions 

all blocks with 
restrictions on 
operations 

Single block with no 
restrictions within 
that block 

Single block and 
restricted to single 
task / address space 

 

The TML provides isolation and virtualization of hardware resources. Only LPSK and 
SCSS have the access rights to request negative ring HW operations. The guest OSs have 
access to data and control instructions at ring 0.   
Instructions that are used to manage the block control structure (BCS) and scheduling of 
blocks are assumed to be accessible only to software in ring -2. The BCS is assumed to 
contain information about the state of each block. When the LPSK interrupts one block 
and schedules another, it saves the complete state of the processor before restoring the 
state of the next block. This is done such that states of one block do not affect the 
operation of another block.  
If a task in one block is using a resource and LPSK schedules the next block for 
execution, tasks in the next block should not be affected – through either timing or 
resource access variability -- by the fact that a task in the previous block was using that 
resource. In particular, the TML must be able to virtualize the status of the CEM.  A 
simple approach would be to provide privileged instructions for TML to load and store 
the CEM state (CEM return address, CEM hash and CEM status bits).  The LPSK would 
not need to be able to interpret the CEM state, so the state could be encrypted.  

A. Hardware support for virtualization of SP 
 To facilitate virtualization of the SP, the following functional requirements, over and above the currently 
described functionality of SP, need to be met to enable virtualization of SP 

SP : 1  SP extensions to SCHW must support tamper proof mechanisms that prevent 
unauthorized access to SP instructions.  Further, these mechanisms (e.g., hierarchical privilege 
domains) must ensure that: 
SP : 1.1  The LPSK (ring -2) may  

SP : 1.1.1  Write and read data to and from all registers that represent the state of the 
processor (in non-CEM, CEM and interrupted CEM.) 

SP : 1.1.2  Execute instructions that manage the virtualization of the CEM  
SP : 1.2  Rings 3, 2, 1, 0, -1 or -2) may  

SP : 1.2.1  Manage registers that are relevant within a given block (in normal, CEM, and 
interrupted CEM.) 

SP : 2  Exceptions must be raised in the event of  
SP : 2.1  access violations 
SP : 2.2  Other mode of failures 

SP : 3  All data operations must be preemptable to avoid covert timing channels. 
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Future extensions to the SP architecture, while maintaining the overall HW / SW architectural simplicity, 
should support additional functions to eliminate the need for TPM-like support from off the chip.  

SP : 4  Enable secure boot 
SP : 4.1  Enable secure storage of keys not associated with the user 
SP : 4.2  Generate high quality asymmetric and symmetric keys as well as high quality random 

numbers 
SP : 5  Support multiple UMKs 

SP : 5.1  Ensure that only SCSS or LPSK (rings -1 or -2) may manage additional registers and 
instructions for selecting the appropriate UMK. 

Integrating the TPM functionality with SP will obviate the requirement to establish 
secure communication channels between SP/TSM and the peripheral TPM. 

B. Integrated SecureCore Architecture 

In this initial phase of design we intend to support only one process per block, one CEM 
session per block and use a single TSM per block. Though one can envision architectures 
which allow multiple CEM sessions per block and multiple TSMs in a block, distributed 
across different rings, this is beyond the scope of this document. Furthermore, SP/TSM is 
used to provide cryptographic services to subjects in and above ring 0 in each block – use 
of CEM to protect the kernel itself will be described elsewhere. 

Individual key-management: We define a straw man TSM that provides crypto-service 
interfaces. For example, for encryption of data, an application submits the data, a 
keychain and a key indicator.  A key manager or key management library assists the 
application in selecting the appropriate key.  A TSM transition function invokes 
begin_cem.  The TSM decrypts the sequence of keys from the root to the requested key 
and then uses it to perform the requested cryptographic operation.  Alternatively, 
keychain management could occur outside of the TSM, in which case the TSM interface 
would accept the encrypted key directly. 

The ring policy requires that the TSM must be at least as privileged as the most 
privileged subject using it. If the TSM is used to encrypt and decrypt objects in ring 0, 
which is allocated to the OS, the TSM is placed in ring 0. In this case, access to the TSM 
from lesser-privileged rings is controlled by the OS – the applications call interfaces 
exported by the OS, which in turn uses the application’s parameters to invoke the 
interfaces of TSM. The OS additionally performs TSM-related request queuing and 
dispatch, to provide an orderly execution environment for the applications. In general, the 
ring level of a TSM is dependent on the customer-site security policy for execution of 
that particular TSM. 
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To protect against covert channels, the SC architecture must ensure that no block can 
lock shared resources, such as the CEM, from access by other blocks.  SP instructions are 
added for the LPSK to virtualize the state of SP across kernel blocks, including 
instructions for saving and restoring the state of the SP mechanism.  

The OS is unable to read or write to the SP internal hash/return address/state registers as 
the instructions required to perform such operations are privileged and can only be 
invoked from ring -2. If an interrupt for a context switch between blocks occurs during a 
CEM session, the LPSK saves the entire state of the processor, including SP state/return 
address/internal hash registers, and restores the state of the next block.  
The LPSK, SCSS and SCOS are carefully designed so that on a block-level context 
switch, residual data from the previous block is not available to the user, OS or 
applications, if that availability would violate the MLS security policy.  

Covert storage channels are eliminated by wiping clean any state of data present in the 

 
 

Illustration 4: SP integration with SecureCore MLS architecture 
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caches in the processor before the state of the next block is restored. Timing channels are 
avoided, since the CEM will not be locked when the next block executes, and the time for 
block context switching is made consistent, regardless of CEM activity.  
3.2.1 Key Chain Management and Enforcement of MLS policies 
Key chains are resources that can be shared by applications within a block as well as 
between blocks. Unlike the assumption about key chain location and access in [rlee05], 
the keys and key chains are stored in LPSK-managed resources according to their 
confidentiality and integrity levels, as shown in  Illustration 4, and the MLS policy 
governs the access rights of different blocks to the key chains.  This approach is free of 
covert storage channels and is the same as used in some secure multi level file systems 
[irvi95]. Thus applications in each block will only be able to perform read and write 
operations on key chains if the MLS policies permit.   

Since access to keys and key chains is controlled by the LPSK, the key chain managers 
are not MLS  aware and consequently need not be trusted with enforcing the MLS policy 
[irvi95]. Further, only the key chain managers in the high integrity blocks, which hosts 
high integrity applications need to be high integrity .  

IV. SecureCore Usage Scenarios 
SecureCore can be configured to allow read down and controlled write up of exported 
resources with respect to confidentiality, and read up and controlled write down with 
respect to integrity. With these capabilities, read down and write up of encrypted data by 
the user can be permitted as a part of normal operation.  In this section, several scenarios 
illustrate how this is managed in SC.   
In these examples, we assume that the existence of a kernel k_append operation for 
performing a “blind write” to a higher level. The application A has handles A.k, A.m for 
each key K or memory segment M in its address space, which provide the only access to 
those resources for A.  For keys, the handle can be as simple as the numerical index into 
the keychain, or can reflect the semantics of the application, such as a mail-signing key 
and a mail-encryption key.  The confidentiality level of the handle is the user’s session 
level, and we will assume here that: (1) the keys used for encryption are labeled the same 
as the data they encrypt, and (2) users are not allowed to use keys that are labeled at a 
higher confidentiality level than their session level.  

OS operations are prefaced with “os_,” SCSS operations with “scss_”  and kernel 
operations with “k_”. 

Scenario 1: A user at a low confidentiality level wants to write encrypted data to a higher 
level.  

Application A level:  SECRET 
Data D level: SECRET  
Buffer tmp level: SECRET 
Key K level: SECRET  
Memory Segment M level : TOP SECRET  (TS) 
Application operations:  tmp := os_encrypt(A.d, A.k); 
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k_append(A.m, tmp); 
 

Scenario 2: A user at a high security level wants to read encrypted data that is at a lower 
security level. 

Application A level:  TS 
Encrpted Data Dk level: SECRET  
Buffer tmp level: TS 
Key K level: SECRET 
Application operations:  tmp := os_decrypt(A.dk,  A.k); 
os_read(tmp); 

Scenario 3: A privileged user wants to downgrade data and encrypt it with a lower level 
key. 

Application A level:  TS 
Data D level: TS  
Buffer tmp level: TS 
Key K level: SECRET 
Memory Segment M level : TOP SECRET  (TS) 
Application operations: scss_downgrade(A.d, SECRET); 
os_encrypt(A.d, A.k); 
 

Scenario 4: A user at a low confidentiality level wants to append low level keys from her 
keychain to a high level keychain.   

Application A level:  SECRET 
Key K level: SECRET  
Keychain C level : TOP SECRET  (TS) 
Application operations: scss_kchain_append(A.c, A.k) 

Note that Scenario 4 does not address integrity of the keys and keychain.  For 
example, a low integrity SECRET key could corrupt the TS keychain, and a low 
integrity application could flood SCSS with requests, leading to denial of service 
for other processes needing to use SCSS, or exhaustion of the TS keychain space.  
SC can be configured to avoid these problems through the use of integrity labels, 
which would prevent writing low integrity data to a high integrity object.  See 
scenario 6. 

Scenario 5: A user wants to create and append a  keys to her keychain.   
 Application A level:  SECRET 

Key K level: SECRET  (initially empty) 
Buffer tmp level: SECRET 

 Keychain C level: SECRET  
Application A operation: app_get_key(tmp), A.k = 

OS_kchain_add(C, tmp) 
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Scenario 6: A a high integrity user at a low confidentiality level wants to append low 
confidentiality, high integrity keys to a high confidentiality, high integrity keychain.  

Application A level:  SECRET/HIGH_INTEG 
Key K level: SECRET/HIGH_INTEG 
Keychain C level : TS/HIGH_INTEG 
Application operations: scss_kchain_append(A.c, A.k); 
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