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Abstract   
 

A new model for representing temporal access control 
policies is introduced.  In this model, temporal 
authorizations are represented by time attributes 
associated with subjects and objects, in a “time interval 
access graph.”  The time interval access graph is used to 
define constraints on the temporal relations between 
subjects, objects, and the time of access.  Interval algebra 
is used to precisely define and analyze the time interval 
access graph, and to specify the evaluation of access 
requests.1  
 

. 
1. Introduction 
 

In many commercial and military environments, time 
may be a critical factor in authorizing access to 
information.  For example, the value of the data or the 
criticality of the need to access it may vary over time.  
Thus, future information systems will need to support 
system-wide security policies that incorporate time as a 
decision factor.  To this end, a Time Interval Access 
Control (TIAC) model has been developed. 

A significant contribution of the TIAC model is that it 
provides formal semantics to express temporal 
authorization policies, in which temporal attributes of 
subjects and objects are used to determine authorized 
accesses.  In one example, this model could be used to 
express a policy for a prepaid phone card, where the initial 
time of a request must occur before the expiration time of 
the card (the object), and the duration of the request must 
                                                
1 This material is based upon work supported by the National Science 
Foundation under Grant No. CNS-0430566 and CNS-0430598 with 
support from DARPA ATO. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors and 
do not necessarily reflect the views of the National Science Foundation 
or of DARPA ATO. 

 

fall within the amount of minutes the user (the subject) 
has left.  In another example, the TIAC model could 
specify an access control policy for the use of satellite 
imagery where the user has an authorized period of access 
and the imagery data (the object) may only be viewed 
during a given interval. 

Interval algebra [2] provides the necessary expressive 
power to precisely describe a desired temporal access 
control policy, and an efficient way to computationally 
reason about whether a given access request may be 
acceptable within the constraints of that policy. Policy 
enforcement mechanisms and the modeling of the 
effectiveness of those mechanisms with respect to the type 
of temporal authorizations describable in TIAC are 
outside of the scope of this paper (see [1]). 

A brief discussion of interval algebra is presented 
followed by our approach to modeling time and time 
intervals.  A detailed description of the TIAC model is 
presented where we establish the formal semantics used 
for representing temporal authorizations and access 
requests.  Section 5 discusses current and future research 
efforts related to TIAC, and finally, the conclusion is 
presented in Section 6.  
 
2. Background 
 

Interval algebra [2] defines the relations that can hold 
between two time intervals (see Table 1).  These relations 
are mutually exclusive, in that for any two intervals, only 
one relation can hold.  Interval algebra assumes that the 
beginning and ending points (signified with “−” and “+” 
respectively) of an interval do not coincide.  For each 
entry in Table 1, the first line shows the basic relation and 
the second line shows its inverse relation. 
A set of time intervals and their required or allowed 
interrelationships can be represented using a directed 
graph - also known as an interval algebra (IA) network - 
in which each vertex represents an individual time interval 
and each directed edge represents one or more 
relationships between the connected vertices.   For 



example, consider a set of time intervals {A, B, C},  
where A is before B, and B is during C, then the 
corresponding graph could be drawn as shown in Figure 1, 
which will be abbreviated as: A  (<) → B (d) → 
C. The notation (B, C) represents a directed edge 
connecting vertices B and C whereas (B→C) represents 
the relation between vertices B and C.  Thus, (B→C)  = d, 
during(B,C) and B (d) → C, are logically equivalent 
expressions. 

The axioms in Appendix B define the transitive 
relations that result from the conjunction of any two 
adjacent interval relations. Each entry in the left column 
indicates a relation from node A to node B (A→B), each 
entry in the top row indicates a relations from node B to 

node C (B→C), and the row-column intersections show 
the resulting relations that are possible between A and C.  
Thus, the temporal relation from A to C in Figure 1 must 
be one of {<, o, m, d, s}, as shown in Figure 2.  The 
derivation of transitive relations is generalized with the 
function RT, which produces the union of the relations 
derived from two sets of adjacent interval relations, R1 
and R2: 

 

RT (R1, R2) = 
1. R ← ∅ 
2. for each r1 in R1 
3.    for each r2 in R2 
4.  R ← R ∪ Tr (r1, r2) 

Table 1. Basic temporal interval relationships
 

RELATION 
PREDICATE 

FORM 
SYMBOL RELATION ON 

ENDPOINTS PICTORIAL MEANING 

x before y 
y after x 

BEFORE(x,y) 
AFTER(y,x) 

< 
> (x+ < y−) 

 

x                          y 

x equals y 
y equals x 

EQUALS(x,y) 
EQUALS(y,x) 

= 
= 

(x− = y−) ∧ 
(x+ = y+) 

x 

 

y 

x meets y 
y met by x 

MEETS(x,y) 
MET_BY(y,x) 

m 
mi x+ = y− 

               

               x                               y 

x overlaps y 
y overlapped by 

x 

OVERLAPS(x,y) 
OVERLAPPED_BY(y,x) 

o 
oi 

(x− < y−) ∧ 
(x+ > y−) ∧ 
(x+ < y+) 

               x                     

 

                                 y 

x during y 
y includes x 

DURING(x,y) 
INCLUDES(y,x) 

d 
di 

(x− > y−) ∧ 
(x+ < y+) 

x 

 

y 

x starts y 
y started by x 

STARTS(x,y) 
STARTED_BY(y,x) 

s 
si 

(x− = y−) ∧ 
(x+ < y+) 

               x 

 

y 

x finishes y 
y finished by x 

FINISHES(x,y) 
FINISHED_BY(y,x) 

f 
fi 

(x− > y−) ∧ 
(x+ = y+) 

                                      x 

 

y 



5. return R 
 

3. TIAC model 
 

In this section, the TIAC model is described in detail.  
A discussion of time and intervals provides a foundation 
for the TIAC model.  This discussion is followed by the 
elements that make up the TIAC model.  These elements 
are: 1) Temporal Entities, 2) Temporal Authorizations, 3) 
Access Requests, and 4) Access Control. 

 
3.1.Time and Intervals 

 
In the TIAC model, time is represented by a set of 

points T = {t0, t1, t2… } on a scale (i.e., a timeline), where 
T is linearly ordered with respect to the < relation such 
that ti < tj iff i < j. The quantization of time provides the 
basis for reasoning about the relation between time 
intervals. 

We wish to derive precise definitions such that it is 
clear that: 1) the interval between two adjacent points, ta, 
ta+1, is exactly one time unit, or a unit interval, 2) the 
duration of an interval consisting of two consecutive unit 
intervals is exactly two time units, and (3) there is no 
semantic ambiguity about the point where two intervals 
meet.  

Let ζ(ta, tb) represent the set of the elements from T 
that lie between distinct points ta and tb, including ta but 
excluding tb.  |ζ| represents the number of elements of ζ.  ζ 
is not defined for tb ≤ ta.   

 

∀ ta, tb ∈ T (ta < tb    
 ζ(ta, tb) =  tc ∈ T | ta ≤ tc < tb) 
 

Let a unit interval be associated with each t ∈ ζ(ta, tb).  
The number of units intervals, or the temporal duration of 
ζ(ta, tb) is |ζ(ta, tb)|, to be designated as τ = [ta, tb).  

For example, if the interval τ3 = [1, 6) is divided into 
equal halves τ1 = [1, 3) and τ2 = [3, 6), it is clear that point 
3 belongs to τ2, but not τ1.   

The model does not depend on or limit the granularity 
of intervals.  In a system with multiple time sources, such 
as a network, mechanisms such as the network time 
protocol could be used to synchronize time.  However, the 
granularity of time intervals would be limited by the 
degree of accuracy provided by the synchronization 
mechanism. 
 
3.2.Temporal Entities 
 

The model includes the concept of subjects and objects 
similar to those discussed by Graham et al., Lampson, and 
Weissman [11, 14, 17].  Subjects and objects each have an 
associated time interval (attribute), which is used for 
making authorization decisions.   

In the following definitions, Sτ={s1, s2,…sn} is the set 
of temporal subjects, and Oτ={o1,o2,…on} is the set of 
temporal objects (i.e., the passive entities that hold data or 
information and are accessed by temporal subjects). 
 
Definition 1 (Temporal Object, Temporal Subject).  A 
temporal entity α is an object o ∈ Oτ , or a subject s ∈ Sτ , 
with which is associated a time interval τ = [t-, t+) where 
α.τ designates the time interval and α.id indicates the 
identity of the entity.  

Useful temporal policy constraints may refer to a 
reference time such as the current time of day that is 
distinct from the attribute associated with a given subject 
or object, e.g., the current time must be within the 
subject’s valid time.  To reflect the notion that every 
activity will take at least one time unit (the minimal 
measurable duration), and to be consistent with the 
constructs of interval algebra, reference times will be 
expressed as intervals, e.g.,  based on the current time. tnow 
is a variable of the model that indicates the “current” time, 

 
Figure 1. Initial graph representation of A 

before B and B during C 

 
Figure 2. Derived graph showing possible 

relations between A and C 



an element of T, and now.τ is the unit interval based on 
tnow,:  

now.τ  = [tnow, tnow+ 1) 

3.3. Time Interval Access Graph ϕ 
 

The TIAC model introduces the time interval access 
graph, ϕ, which defines access constraints on the temporal 
relations between a subject, an object, and a reference 
time interval (τref), such as now.τ . 
 

Definition 2 (Time Interval Access Graph ϕ).  The time 
interval access graph ϕ is a consistent instantiation of a 

three-vertex IA network G = (V, E, R, γ) where: 
 

V = {s:τ, o:τ, τref}   
E = {(s:τ, o:τ), (τref, s:τ), (τref, o:τ)} 
R = {<, >, d, di, o, oi, m, mi, s, si, f, fi, =} ∪ ∅ 
γ: E→℘(R) = a function that specifies the disjunctive 
set of the allowed relations between the vertices 
connected by a given edge. 
 

For example, ϕ could be instantiated as follows: 
 

s:τ = [5, 20), o:τ = [10, 15), and τref = [11, 12) 
γ(s:τ, o:τ) = {includes}, γ(τref, s:τ) = {starts ∨ 

during}, and γ(τref, o:τ) = {during} 
 

The association of an empty set ∅ with an edge e 
means that there are no restrictions on the relationship 
between the adjoining vertices.   Arbitrary relations in an 
IA network may be inconsistent, meaning a contradiction 
of relations exists.   

Definition 3  (Inconsistent IA Network). An IA 
network is inconsistent if there exists two adjacent edges 
(u, v) ∈ E and (v, w) ∈ E where γ(u, w) ⊃ RT((u → v), (v 
→ w)). 

A consistent representation of a three-node access 
graph can be efficiently determined [1, 2], as shown in the 
Appendix, by iteratively deriving transitive relations of 
the adjacent edges to achieve transitive closure of the 
graph. 
 
3.4.1. Temporal Authorizations. Computer security 
policies often distinguish between different “modes” in 
which a subject may access an object (e.g., observe, 
modify, execute, append). A temporal authorization Aτ, is 
a mapping of a subject-object pair to a set of mode-φ 
pairs, which completely defines the temporal 
authorization policy for the subject and object. For 
simplicity of presentation, it is assumed herein that there 
is only one mode-φ pair per subject-object pair. Ωτ is the 
set of temporal authorizations for a given system. 
 

Definition 4 (Temporal Authorization). A temporal 
authorization Aτ  is defined as a 4-tuple (s, o, m,φ) where: 
 

s   is a subject identifier 
o  is an object identifier 
m ⊆ M is the allowed mode(s) of access (e.g., 

read, write, read-write, execute) 
φ   is the access graph for s and o 
 

A temporal authorization states that a subject s is 
allowed m access to object o as restricted by the access 
graphφ. The association of an empty interval (*) with a 
vertex in Aτ.φ indicates that there is no restriction as to the 
value of that interval – otherwise, the authorization 
requires that exact interval (see Section 3.4.2, below). 
Clearly, authorizations for policy-based equivalence 
classes of subjects or objects could be similarly specified. 

 
3.4 Access Requests 
 

A temporal subject, to gain access to a temporal object, 
initiates an access request for a given mode of access to 
occur at a particular time.  In the most general form, 
temporal requests would specify an arbitrary time in the 
past, present and future. For simplicity in this discussion, 
requests will be characterized relative to now.τ .  There 
are two types of access requests: general access requests 
and duration access requests, which differ in the 
interpretation of the length of requested access.  

Definition 5 (General Access Request). A general 
access request Rgτ  is a 4-tuple (s, o, m,τref) where: 

 

 s ∈  Sτ  is a temporal subject 
 o ∈  Oτ is a temporal object 

 m ⊂  M is a mode(s) of access 
 τref is the time of access: now.τ 
 

This form of request can be evaluated with respect to 
the unit interval τref, as is shown below, or as an open-
ended request. The former corresponds well to a memory 
request in a system (such as at the hardware level of 
abstraction) where the subject’s access rights are verified 
on every use of the object.  For example, in Rgτ(s1, o1, 
{r,w}, [5,6)), subject s1 requests read-write access to 
object o1 for the unit interval starting at time 5. 
Alternatively, Rgτ  could be interpreted as a request for 
access starting at τref and continuing for the maximum 
duration allowed by the access graph [1]. 

 
Definition 6 (Duration Access Request). A duration 

access request Rdτ  is a 5-tuple (s, o, m, τref,δ) where: 
 s ∈  Sτ is a temporal subject 
 o ∈  Oτ is a temporal object 
 m ⊆ M is the mode(s) of access 



 τref is the time of access: now.τ 
δ is the requested duration of access: δ 

>= 1 
 

In a duration request, the subject requests access to 
object o for the interval [tnow, tnow + δ).  For example, in 
Rdτ(s1, o1, {r}, [1,2), 5), subject s1 requests read access to 
object o1 for the interval [1, 6).  This form of request 
would be useful to model a system interface where a 
continuing interval of access would be granted. 
 
3.4.2. Evaluation of Access Requests. An access request 
is evaluated as follows: the set Ωτ of temporal 
authorizations is searched for a matching subject-object 
pair.  If no match is found, access is denied.  If a match is 
found, the requested mode is compared to the allowed 
mode, and then the access graph is interpreted relative to 
the requested interval, to grant or deny access. This 
process is specified for general and duration requests in 
the boolean functions Eval_g and Eval_d, which state that 
the corresponding φ is true when evaluated using s.τ, o.τ,  
and the time reference. 
 

Eval_g (Rgτ(s, o, m, now.τ))    
∃  (s’, o’, m’, φ) ∈ Ωτ : 

s.id = s’ & 
o.id = o’ & 
m ⊂ m’ & 
 (s.τ →  o.τ) ⊆  φ.γ (s:τ ,  o:τ) & 
 (now.τ →  o.τ) ⊆  φ.γ (τref,  o:τ) & 
 (now.τ →  s.τ) ⊆  φ.γ (τref,  s:τ)  

  

Eval_d (Rdτ(s, o, m, now.τ, δ))    
∃  (s’, o’, m’, φ) ∈ Ωτ ( 

s.id = s’ & 
o.id = o’ & 
m ⊆ m’ & 
(s.τ →  o.τ) ⊆  φ.γ (s:τ ,  o:τ) & 
 (now.τ →  o.τ) ⊆  φ.γ tnow, tnow + δ)),  o:τ) & 
 (now.τ →  s.τ) ⊆  φ.γ ([tnow, tnow + δ)), s:τ)  
 

The relations illustrated in Table 1 are used to compute 
whether an access graph φ is satisfied.  For example, 
consider the following: 

 

Let: 
s.τ = [1, 20) 
o.τ = [5, 40) 
now.τ = [6, 7) 
Rgτ(s, o, {r}, [6, 7))     
(s’, o’, {r, w}, φ) ∈ Ωτ 
φ = OVERLAPS(s:τ, o:τ) ∧ DURING(τref, s:τ)  

∧ DURING(τref , o:τ)  
  

Authorization is allowed since the following conditions 
are met: 

 

1) s.id = s’, o.id = o’  
2) m ⊆ m’ = {r} ⊆ {r, w} 
3a)  OVERLAPS(s.τ, o.τ)  

= (s.τ- < o.τ-) ∧ (s.τ+ > o.τ-) ∧ (s.τ+ < o.τ+) 
= (1 < 5) ∧ (20 > 5) ∧ (20 < 40)  
= true 

3b)  DURING(now.τ, s.τ)  
= (now.τ- > s.τ-) ∧ (now.τ.t+ < s.τ+) 
= (6 > 1) ∧ (7 < 20)   
= true 

3c) DURING(now.τ, o.τ)  
= (now.τ.t- > o.τ-) ∧ (now.τ.t+ < o.τ+) 
= (6  > 5) ∧ (7 < 40) 
= true 

 
4. Related Work 
 

Various authorization models using temporal 
constraints or temporal attributes have been proposed in 
the past.  Bertino et al. proposed a Temporal 
Authorization Model (TAM) [6,7] that associated 
temporal constraints with access authorizations. TAM 
models temporal dependencies among authorizations, 
allowing for the application of rules to derive 
authorizations from other authorizations.   

The notion of associating temporal constraints with 
authorizations was extended in another access control 
model proposed by Bertino, et al. that supported 
discontinuous temporal constraints on authorizations [5].   

Role-Based Access Control (RBAC) has also been 
extended to support temporal constraints to the activation 
and deactivation of roles [8] as well as user-role and role-
permission assignments [13].   

The Temporal Data Authorization Model (TDAM) 
proposed by Alturi and Gal [3, 11] is more closely related 
to TIAC, in that their access control constraints are based 
on temporal attributes associated with the data as well the 
time of the data access request.   

An algorithm for analyzing an arbitrary IA network 
was developed by Allen[2].  A limitation to this algorithm 
is that it may not detect all inconsistencies in networks 
with more than three nodes. Vilain and Kautz [16, 17], 
showed that finding a consistent labeling for an arbitrary 
IA network is NP-complete.  Golumbic and Shamir [12] 
also show that determining consistency in an IA network 
for a specific set of problems is NP-complete.  Allen 
pointed out that Freuder’s [10] techniques to ensure total 
consistency for larger IA networks has a complexity that 
is exponential with respect to the number of nodes.  
However, for an IA network consisting of three nodes, the 
algorithm guarantees total consistency: it is both useful 



and practical for TIAC and other models that deal with 
constraints on three time intervals. 

Chetcuti-Sperandio and Massacci [9] presented a 
framework utilizing interval algebra for reasoning about 
the consistency of temporal relationships of authorization 
and delegation certificates. Authorization certificates 
contain statements about actions that the associated 
subject may perform on certain objects during a given 
time interval. Delegation certificates provide a means for 
one subject to pass their authorizations to another subject, 
during a given interval. Their approach differs from that 
presented here in several ways.  As discussed below, their 
model cannot describe temporal attributes of an object, 
such as a “validity period.” While the revocation of 
authorization certificates is not discussed[9],  subject-
based certificate revocation is often difficult, whereas a 
repository of authorizations (i.e., the Ωτ structure) lends 
itself to various effective and innovative revocation 
approaches [1].  Also, while their presentation describes 
how a consistent authorization structure may be ensured, 
it does not present a model for the evaluation of requests, 
as does the TIAC model. 

None of the authorization models mentioned above 
support policies based on temporal attributes associated 
with both subjects (e.g., a process representing the user) 
and objects (e.g., data).  As introduced by Graham et al., 
Lampson, and Weissman [13, 15, 18] authorizations for 
subjects to access to objects such as files, I/O devices, 
shared memory, etc. have been modeled in the form of a 
table or access matrix. Graham et al. [13], described how 
the access matrix was derived from the 3-tuple of subjects, 
objects, and a set of allowed modes of access.  The TIAC 
model extends this approach by adding time as a decision 
variable in the form of a new concept called the access 
graph φ.   φ restricts the accesses allowed by the subject, 
object, mode 3-tuple, just as in the Bell and LaPadula 
model[4] the relationship of subject sensitivity labels to 
object sensitivity labels further restricts the discretionary 
modes of access allowed.   
 
5. Future Research 
 

Several areas related to TIAC are still being 
investigated. We are considering the formal semantics for 
creating and deleting temporal authorizations, as well as 
the policy implications of modifiable temporal attributes 
associated with subjects and objects.  We are investigating 
an extension to the semantics of a general request to allow 
an authorized access to continue for the maximum 
duration allowed by the access graph, and then, how 
access can be automatically revoked after that duration 
has expired.   

In general, a set of mode-ϕ pairs can be associated with 
each subject-object pair in order to express a different 

policy for each mode of access, but that extension to the 
TIAC model is left for future work.  Similarly, the model 
might be extended to provide multiple authorization 
statements applicable to a given subject/object/mode 
triple, for example to accommodate system-wide over-
riding restrictions as well as allowing different policies 
during different time periods or environmental situations 
(e.g., emergencies). 

We also plan to generalize this model to allow an 
access requests other than current time, which would 
allow the model to check for previous, current, and future 
authorizations.   Our research is also exploring the range 
of useful temporal access control policies that can be 
expressed using the TIAC model, as well as the 
composition of the TIAC with other policy models, such 
as those for multilevel security.  Finally, we are currently 
developing a prototype implementation based on the 
TIAC model to verify its effectiveness and efficiency in a 
simple processing environment. 
 
6. Conclusion 
 

In this paper, we have presented the TIAC model as a 
novel way to specify temporal authorization policies 
based on time attributes associated with subjects and 
objects, and time of access. Access constraints are 
represented as a special form of a three-node interval 
algebra network, called a Time Interval Access Graph.  
The model also presents two forms of access request, and 
a specification for the evaluation of access requests with 
respect to the Access Graph. 
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Appendix A 

 
This example shows how an IA network is derived 

from a set of simple temporal policy statements, and is 
then transformed into a consistent instantiation, an access 
graph φ. 

Assume that an informal temporal access policy is as 
follows: a temporal subject (s) can access a temporal 
object (o) only if the subject was created before the object 
and both the subject and object are valid at the time of 
access.  By convention, the property valid means that 
now.τ falls within the time interval associated with the 

temporal entity.  No generality is lost due to the use of 
now.τ as the time of access, since all intervals are at least 
a unit interval in length.  Also by convention, creation 
time is associated with the beginning of the subject’s or 
object’s interval (α.t-). 

Now consider that s.τ, o.τ, and now.τ are nodes in an 
IA network.  The sentence “subject was created before the 
object” implies that s.t- is before o.t-; this is interpreted as 
a disjunction of all of the interval relations where s.t- < 
o.t-, and forms an interval algebra (IA) relation as 
follows:  

γ(s.τ→o.τ):  MEETS(s.τ, o.τ) ∨ BEFORE(s.τ, o.τ) ∨ 
OVERLAPS(s.τ, o.τ) ∨ FINISHED_BY(s.τ, 
o.τ) ∨ INCLUDES(s.τ, o.τ) 

The sentence “both the subject and object are valid at 
the time of access” implies that at the time of access, 
now.τ falls within both s.τ and o.τ.  This is represented as 
two IA relations as follows: 

γ (now.τ→o.τ):   DURING(now.τ, o.τ) ∨ STARTS(now.τ, 
o.τ) ∨ FINISHES(now.τ, o.τ) 

γ (now.τ→s.τ):    DURING(now.τ, s.τ) ∨ STARTS(now.τ, 
s.τ) ∨ FINISHES(now.τ, s.τ) 

However, without computing the transitive closure, an 
IA network with these relations would contain relations 
that could never be true (MEETS(s.τ, o.τ) ∨ BEFORE(s.τ, 
o.τ)) if the other relations were true (γ (now.τ→o.τ) and γ 
(now.τ→o.τ)).   Leaving untrue relations in the graph 
could lead to inconsistency, for example, if other parts of 
γ (s→o) were eventually removed, and would also 
adversely affect the efficiency of request processing.   
Another reason for performing the transitive closure is to 
detect policy incompleteness.  The transitive closure 
results in these relations: 

γ (s.τ→o.τ): OVERLAPS(s.τ, o.τ) ∨ FINISHED_BY(s.τ, 
o.τ) ∨ INCLUDES(s.τ, o.τ) 

γ (now.τ→o.τ):DURING(now.τ, o.τ) ∨ STARTS(now.τ, 
o.τ) ∨ FINISHES(now.τ, o.τ) 

γ (now.τ→s.τ):DURING(now.τ, s.τ) ∨ FINISHES(now.τ, 
s.τ) 

This forms a consistent instantiation of the IA network, 
resulting in the desired access graph φ.  Details of the 
transitive closure computation for this example are 
provided in the next section. 
 
Derivation of the Access Graph φ. In this section, the IA 
relations in Example 1 are composed together into a 
simple IA network.  As each IA relation is added to the IA 
network, the algorithm for computing the transitive 
closure is applied to ensure that the IA network is 
consistent and complete.  In the details shown below, the 
intervals for the three nodes are: s.τ (subject), o.τ (object), 
and, now.τ (time of access).  The time interval 



relationship between each node represents the directional 
edge that connects each node.  

Step 1: Convert γ(s.τ→o.τ) to its network 
representation 

γ(s.τ→o.τ):  
MEETS(s.τ, o.τ) ∨ BEFORE(s.τ, o.τ)  
∨ OVERLAPS(s.τ, o.τ) ∨ FINISHED_BY(s.τ, o.τ) ∨ 
INCLUDES(s.τ, o.τ) 

 s.τ  (m < o fi di) → o.τ IAn-1 
Step 2: Convert γ (now.τ→o.τ) to the network 

representation of γ (o.τ→now.τ) 
γ (now.τ→o.τ):  DURING(now.τ, o.τ) ∨  

STARTS(now.τ, o.τ) ∨  
FINISHES(now.τ, o.τ) 

 o.τ  (di si fi) → now.τ IAn-2  
Note: In this and subsequent conversions, the inverse 

may be used to adjust the direction of the relationship 
from one interval to another. 

Step 3: Add IAn-2 to IAn-1 to form a new network 
shown in Figure 3. 
 

 
s.τ  (m < o fi di) → o.τ  (di si fi) → now.τ 

 

Figure A-1. Network representation after adding 
IAn-2 to IAn-1 

 
Step 4: Compute the transitive closure of the IA 

network in Figure 3 to compute any consequences 
(inferred relation) between s.τ and now.τ.  Use the 
transitivity table (Appendix B) on each pair of basic 
relations T(r1, r2) then take the union of all the results.  As 
we refer to Appendix B, r1 is a relation between s.τ and 
o.τ and r2 is a relation between o.τ and now.τ. 
 T (m, di) = (<) 
 T (m, si) = (m) 
 T (m, fi) = (<) 

T(<, di) = (<) 
 T (<, si) = (<) 
 T (<, fi) = (<) 
 T (o, di) = (< o m di fi) 
 T (o, si) = (di fi o) 
 T (o, fi) = (< o m) 
 T (fi, di) = (di) 
 T (fi, si) = (di) 
 T (fi, fi) = (fi) 
 T (di, di) = (di) 
 T (di, si) = (di) 
 T (di, fi) = (di) 

The union of the results is (< o m di fi).  The network 
is updated to reflect the new inferred interval relation 
between s.τ and now.τ as shown in Figure 4. 

 
 

    s.τ  (m < o fi di) → o.τ  − (di si fi) → now.τ 

                                                             ↑ 
     (< o m di fi) 

 

Figure A-2.  IA network after computing 
transitive closure  

 
Step 5:  Convert γ(now.τ→s.τ) to its network 

representation and add it to the network in Figure 4 
γ (now.τ→s.τ): DURING(now.τ, s.τ) ∨  

STARTS(now.τ, s.τ) ∨  
FINISHES(now.τ, s.τ) 

s.τ  (di si fi)  → now.τ      IAn-3 
Two relations for s.τ  ()  → now.τ now exist in the 

network, their intersection is computed to derive the new 
inferred relation between s.τ and now.τ. 

(s.τ  (di si fi)  → now.τ) ∩   
(s.τ  (< o m di fi)  → now.τ)  
=  s.τ  (di fi)  → now.τ 

The IA network is updated with this new inferred relation 
as shown in Figure 5. 
 

 
s.τ  (m < o fi di) → o.τ   (di si fi) → now.τ 
                                                                      ↑ 
 (di fi) 

 

Figure A-3.  IA network representation after 
adding IAn-3 

 
Step 6:  Since the interval relation between s.τ and 

now.τ has changed, the algorithm for determining 
transitive closure of the network is re-applied to the 
remaining interval relations. 

Step 6a:  Starting with the pair of relations s.τ  (di fi) 
→ now.τ and now.τ  (d s f) → o.τ (inverted) we have: 
 T(di, d) =  (o oi d s f di si fi =) 
 T (di s) = (di fi o) 
 T (di f) = (di si oi) 
 T (fi d) = (o d s) 
 T (fi s) = (o) 
 T (fi f) = (f fi =) 

The union of the results is (o oi di si fi d s f =).  A new 
relation between s.τ and o.τ is inferred: 

s.τ  (o oi di si fi d s f =) → o.τ 
Since two relations for s.τ  () → o.τ now exist in the 

network, their intersection is computed to derive the new 
inferred relation between s.τ and o.τ. 



(s.τ  (o oi di si fi d s f =) → o.τ) ∩  
(s.τ  (m < o fi di) → o.τ)  
= s.τ  (o di fi) → o.τ  

The IA network is updated with this new inferred 
relation as shown in Figure 6.  

 
 
 

 
s.τ  (o fi di) → o.τ   (di si fi) → now.τ 

                                                             ↑ 
 (di fi)  

 

Figure A-4.  A network with new inferred relation 
between s.τ and o.τ 

Step 6b:  The process is continued with next pair of 
interval relations o.τ  (oi d f) → s.τ (inverted) and s.τ 
 (di fi) → now.τ. 
 T (oi di) = (> oi mi di si) 
 T (oi fi) = (oi di si) 
 T (d di) = nothing 
 T (d fi) = (< o m d s) 
 T (f di) = (> oi mi di si) 
 T (f fi) = (f fi =) 

The union of the results above is (< > o oi m mi d di s 
si f fi =) and a new relation between o.τ and now.τ is 
inferred: 

o.τ  (< > o oi m mi d di s si f fi =) → now.τ 
Since two relations for o.τ  () → now.τ now exist in 

the network, their intersection is computed to derive the 
new inferred relation between o.τ and now.τ. 

(o.τ  (< > o oi m mi d di s si f fi =) → now.τ) ∩  (o.τ  
 (di si fi) → now.τ)   
 = (o.τ  (di si fi) → now.τ) 
Since the relation between o.τ and now.τ remains the 

same (o.τ   (di si fi) → now.τ), the network in Figure 6 
does not need to be updated.  The final network in Figure 
7 is identical to the network in Figure 6.   

 

 
 
 
 
 

 
s.τ  (o fi di) → o.τ   (di si fi) → now.τ 

                                                               ↑ 
 (di fi)  

Figure A-5.  Final network configuration with 
consistent labeling of relations 

 
The final network represents the access graph φ (in 

network form) that is consistent and complete in its 
representation of the temporal authorization policy.  
Figure 8 shows the predicate form of the access graph 
derived from the final network in Figure 7. 

 
φ(s.τ, o.τ, now.τ) = 
(OVERLAPS(s.τ, o.τ) ∨ FINISHES(o.τ, s.τ)  
 ∨  DURING(o.τ, s.τ)) 
∧ (DURING(now.τ, s.τ) ∨ FINISHES(now.τ, s.τ)) 
∧ (DURING(now.τ, o.τ) ∨ STARTS(now.τ, o.τ) ∨ 
FINISHES(now.τ, o.τ)) 

Figure A-6.  Predicate form of final access graph 
derived from Figure 7 

 
 
 
 
 
 
 
 

 
 



 

Appendix B. Interval algebra transitivity table, showing relations A→C 
 

B→C 

 

A→B 

< > d di o oi m mi s si f fi 

< < 
no 

info 
< o m 

d s < < < o m 
d s < < o m 

d s < < < o m 
d s < 

> 
no 

info 
> > oi 

mi d f > > oi 
mi d f > > oi 

mi d f > > oi 
mi d f > > > 

d < > d 
no 

info 
< o m 

d s 
> oi 

mi d f < > d > oi 
mi d f d < o m 

d s 

di < o m 
di fi 

> oi 
di mi 

si 

o oi d 
s f di 
si fi = 

di o di fi oi di 
si o di fi oi di 

si di fi o di di si 
oi di 

o < 
> oi 
di mi 

si 
o d s < o m 

di fi < o m 
o oi d 
s f di 
si fi = 

< oi di 
si o di fi o d s o < o m 

oi < o m 
di fi > oi d f 

> oi 
mi di 

si 

o oi d 
s f di 
si fi = 

> oi 
mi o di fi > oi d f oi > 

mi oi oi di 
si 

m < 
> oi 
mi di 

si 
o d s < < o d s  < f fi = m m d s o < 

mi < o m 
di fi > oi d f > oi d f > s si = > d f oi > mi mi 

s < > d < o m 
di fi < o m oi d f < mi s s si = d < m o 

si < o m 
di fi > oi d f di o di fi oi o di fi mi s si = si oi di 

f < > d 
> oi 
mi di 

si 
o d s > oi 

mi m > d > oi 
mi f f fi = 

fi < 
> oi 
mi di 

si 
o d s di o oi di 

si m si oi 
di o di f fi = fi 


