
Operating Systems Review, Vol 39, No 2,
pp. 79-93, April 2005

A Study of Initialization in Linux and OpenBSD

Catherine Dodge, Cynthia E. Irvine, Thuy D. Nguyen
cdodge@alum.wellesley.edu, {irvine, tdnguyen }@nps.edu

Naval Postgraduate School

Abstract
The code that initializes a system can be notoriously difficult to understand. In secure systems, initialization is

critical for establishing a starting state that is secure. This paper explores two architectures used for bringing an
operating system to its initial state, once the operating system gains control from the boot loader. Specifically, the
ways in which the OpenBSD and Linux operating systems handle initialization are dissected.

1 Introduction

Despite an extensive body of research regarding operating system development, there is little

information about operating system boot and initialization. This situation may have two causes. First,
initialization may be unimportant. Alternatively, how a system is initialized could be vitally important but
simply not well understood. This paper explores the architectures used for initialization in order to better
understand its impact within the operating system. The objective of this paper is to contribute to a larger
effort [1] to better understand how initialization does or does not affect system security1.

Two open source operating systems were chosen for study: OpenBSD and Linux. OpenBSD was
studied in detail, while Linux initialization was explored to provide contrast. Although the study of a high
assurance system, in the context of assurance as described in the Common Criteria [2], also would have
been useful, there are currently no open implementations.

For exploring OpenBSD and Linux, the focus of study was the overall design and sequencing of their
initialization routines. While the source code served as the primary focus of study, the intent was not to
pursue a complete source code audit seeking actual vulnerabilities. Rather the focus was on overall design
characteristics. In keeping with this methodology, comments in the code were for the most part taken at
face value.

In the sections that follow, an overview of the entire boot process on a typical Intel x86-based PC is
presented. Next we present an analysis of the initialization routines of OpenBSD and Linux, respectively.
The paper ends with conclusions and directions for future work.

2 Overview of the PC Boot Process

We begin with an overview of the boot process of an Intel x86-based personal computer to illustrate
how the initialization routine provided by the operating system fits into a larger picture. Generally, there
are three stages to the bootstrapping process. When a PC is powered on, the BIOS (Basic Input-Output
System) runs first, followed by a boot loader and finally the operating system initialization routine. The
logical execution sequence of these components is shown in Figure 1.

1 This work was sponsored in part by the Office of Naval Research. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the
Office of Naval Research.

 This material is based upon work supported by the National Science Foundation under Grant No. DUE-
0114018. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

Figure 1. Logical Execution Sequence from Boot to Runtime on an Intel-based Personal Computer

2.1 The BIOS
The BIOS is the first code executed by the processor upon boot. When power is initially applied to

the computer this triggers the RESET pin on the processor. This causes the processor to read from
memory location 0xFFFFFFF0 and begin executing the code located there. This address is mapped to the
Read-Only Memory (ROM) containing the BIOS. The BIOS must poll the hardware and set up an
environment capable of booting the operating system. BIOS functionality can be broken into three areas:
Power On Self Test (POST), Setup and Boot.

The main function of the POST is to test and initialize the various hardware components detected by
the BIOS. As part of the POST routine, hardware devices also register themselves with the BIOS as
associated with or “hooked” into certain interrupt values. For instance, by convention on the Intel
platform, all hard drives register with the 13h interrupt. This allows programs to invoke this software
interrupt to communicate with disk drives, utilizing device driver code within the BIOS. Note that while
older operating systems such as DOS rely heavily on the BIOS to provide an interface to the hardware,
newer operating systems are moving away from using BIOS routines to communicate with hardware.
Many modern operating systems supply their own 32-bit device drivers once fully running, but these
operating systems do make use of BIOS routines to initially load the operating system from disk.

Once POST operations are complete, the BIOS offers the user the option of entering “Setup” mode.
It is here that the user may change the configuration of the BIOS, including the boot sequence.

The last action of the BIOS is to execute the 19h interrupt, which loads the first sector of the first
boot device. Since this is the location of the boot loader, execution of the 19h interrupt transfers control to
the boot loader. The hard drive and other devices, such as CD-ROM drives, can register as bootable and
be put on a list of bootable devices, which is prioritized by the user during the “Setup” mode.

2.2 The Boot Loader
Once the BIOS loads the first sector of the boot device into RAM, the boot loader begins execution.

In the case of a hard drive, this first sector is referred to as the Master Boot Record (MBR). The MBR
contains the partition table describing the partitions defined on the hard drive. It also contains a program,
the boot loader, which will load the first sector of the partition marked as active into RAM and execute it.
The size of the MBR is limited to one sector on disk or 512 bytes, since it is located within the first sector
of the drive at cylinder 0, head 0, sector 1. This size limitation greatly limits its functionality. Typically
boot loaders have been highly integrated with the operating system that they support. This integration cuts
down on the operations a boot loader must perform, making a 512 byte boot loader feasible. When more
functionality is required, a multi-stage boot loader may be used.

A multi-stage boot loader provides more function and flexibility by working around the 512 byte
size limitation. Rather than consisting of a single program which loads the operating system directly,
multi-stage boot loaders divide their functionality into a number of smaller programs that each
successively load one another. This architecture allows a fairly primitive boot loader, located in the MBR,
to load and execute the next stage of the boot loader, a larger and more sophisticated boot loader.
Subsequent stages can be located elsewhere on the hard drive and thus are not subject to the single sector
size limit. This chaining of boot loaders allows the boot loader functionality to become arbitrarily
complex. LILO [3] and GRUB [4] are two well-known multi-stage boot loaders capable of booting a
number of operating systems including Linux, Windows and FreeBSD. Both first “bootstrap” themselves
into operation, then present the user with a number of OS boot options.

Boot loader developers have access to the OS source code for open source operating systems, which
allows them to understand and emulate how any of these operating systems boot. For proprietary
operating systems however, developers of programs like GRUB have an alternate solution: the third party
boot loader can be instructed to invoke the boot loader of the proprietary operating system, which then
loads the proprietary OS. This type of chain loading, where one boot loader loads and executes another
boot loader, leads to a clean and effective implementation. The pre-existing code for booting the OS is
reused, a hallmark of good software engineering practice.

While boot loaders can exist as standalone software, as GRUB demonstrates, they are most often
tailored to and integrated into a specific operating system. This has led to a situation where each operating
system requires a customized boot loader. One movement to define a clear-cut API between the boot
loader and operating system is the Multiboot Specification, developed and maintained by the Free
Software Foundation [5]. The Multiboot standard defines three main aspects of the interaction between
the boot loader and the operating system:

1. The format of the operating system image, as perceived by the boot loader,
2. The state of the system when the boot loader starts executing the operating system, and
3. The format of the information passed by the boot loader to the operating system
The Multiboot specification describes the header that must be included in the operating system

image, the values that must be in certain registers (not all registers are specified), and the format of the
information passed to the OS. Currently the only programs that fully support the specification are GRUB,
the Mach kernel [6] and the Fiasco [7] operating system, while others such as Linux are somewhat
Multiboot compliant.

The advantages of such a specification are several. It allows the developers of new operating systems
to make use of existing boot loaders without having to write one themselves. Having such a clearly
defined interface also adds a level of modularity and transparency to the boot process.

2.3 OS Initialization
Once the boot loader has loaded the OS image into memory, control is transferred to the OS. The

operating system will go through a series of steps to set up the operating environment necessary to
achieve a coherent initial run state. This “initialization” sequence executes once. Then the operating
system enters its main scheduling loop.

A number of initialization tasks are common across operating systems. In particular, data structures
needed for kernel operation must be defined before they can be used. Examples are the run queues used to
manage scheduling and the structures used to represent files, vnodes in the case of OpenBSD. Many of
the required initialization operations have interlocking dependencies. While some device drivers may
need to create kernel space processes as part of their initialization, support for forking new processes may
not yet be available. Thus the design of initialization code requires an acute awareness of interrelated
dependencies.

A large aspect of initialization for any operating system is the establishment of virtual memory
management. On an Intel-based system this typically involves setting up the Global Descriptor Table
(GDT), creating a Local Descriptor Table (LDT), switching the processor into protected memory mode,
setting up page directories and enabling paging.

Additional tasks include device driver initialization and the assignment of interrupts in the Interrupt
Descriptor Table (IDT). Another major initialization task is establishing support for various file system
types and mounting a root file system. The ultimate goal of many of these initialization tasks is the
establishment of support for multi-tasking, the central purpose of an operating system.

The notion of a process is the basic unit of measuring execution in the various versions of UNIX.
Throughout this paper the term process is used in this UNIX sense. Depending on the implementation,
each process may or may not have its own Task State Segment (TSS), defining it as a task in the Intel

vocabulary [8]. One of the conundrums of the initialization sequence is that the code that first executes in
the kernel must be able to turn itself into a process that can be swapped in and out of a running state. This
is how the appearance of multi-tasking is achieved. Every other process is created during runtime by
using kernel functions designed to support process creation, e.g. a fork() call. Yet the initial process must
explicitly do for itself all the tasks accomplished by a call to fork(). This initial process, numbered 0 on
UNIX systems, will be referred to as Process 0 in this discussion. Process 0 must be able to self-generate
its own process context. Once this context has been established, the system has the capability to suspend
and resume execution of Process 0 just as it would any other process. Once established, the role of
Process 0 differs by operating system. These behaviors are discussed more fully in subsequent sections.

While Process 0 is responsible for the bulk of kernel data structure generation on UNIX systems, it is
Process 1 that is most familiar to users. Process 1, commonly referred to as the init process, is the first
process forked from Process 0. To avoid confusion, the term “init process” will be avoided in favor of the
term Process 1. It is Process 1 that handles user space initialization. The term “user space” refers to code
running in user mode, which on an x86 system means code running within privilege level 3. In contrast,
Process 0 runs entirely in kernel space, e.g. on an x86 system this means running within privilege level 0.
Depending on the operating system, Process 1 may perform a few tasks before doing its most important
job – executing the init binary that will handle user space tasks such as starting application daemons and
setting network configurations. This analysis will be limited to kernel space initialization, thus Process 1
actions within user space will not be considered. Once Process 1 has been forked from Process 0, often a
number of additional kernel space processes are created to handle additional kernel space tasks. Once all
of these are running, the kernel space operating system initialization is complete.

3 OpenBSD Initialization
Although similar to other versions of UNIX, the OpenBSD project has focused a great deal of effort

on security. This has largely taken the form of ongoing source code auditing [9]. In the following
discussion, initialization of the system will be traced from the boot loader through the kernel code
responsible for bringing up the system to the point where the scheduling loop is entered.

Figure 2. OpenBSD Logical Execution Sequence from Boot to Runtime

Release 3.4 of the OpenBSD operating system was used for the analysis presented here and the path
of all files referenced is rooted at the /src/sys/ directory within the OpenBSD source tree. Code that
requires a compile-time flag to be included in the executable has been omitted from this discussion. First
an outline of the boot process is necessary, which will be followed by a more detailed explanation of the
initialization tasks performed by the kernel. Figure 2 shows the logical execution sequence during the
OpenBSD boot process.

3.1 Boot Loader Initialization
OpenBSD employs a two-stage boot loading process, if one does not count the MBR as a separate

“stage.” The first stage is handled by a boot loader program called biosboot, while the secondary boot
loader is called simply boot. An MBR image is also included with the OpenBSD distribution. In the past,
the biosboot program was used as the MBR itself, but the biosboot man page no longer recommends this
due to strange interactions based on BIOS peculiarities. At boot time, control moves from the BIOS to the
MBR then to the initial boot loader, biosboot. This program is installed using a special tool called
installboot, which patches biosboot with information about the location of the second stage boot loader,
boot. Thus if the location of boot were changed, biosboot would no longer be able to find the secondary
boot loader and the boot process would fail. Once biosboot has successfully located and loaded the boot
program from disk into memory, it transfers control to this newly loaded program.

The boot program sets up an environment suitable for transferring control to the kernel image. It also
provides an interactive prompt for user input of additional boot parameters. The main tasks of the boot
program are:

1. Switching the CPU into protected mode
2. Probing for console devices and displaying subsequent messages to the discovered consoles
3. Detecting memory, both that reported by the BIOS and extended memory
4. Detecting if the BIOS supports Advanced Power Management (APM)
The program then reads from /etc/boot.conf any specified boot parameters that will be used to locate

and boot the kernel. Next the user is prompted for any interactively passed boot parameters. If none are
entered, then after the timeout period, the kernel at the default location /bsd will be loaded using the
parameters found in /etc/boot.conf. Once the kernel has been loaded, boot is finished and control of
system initialization is transferred to the kernel executable file, bsd.

3.2 Kernel Initialization
Kernel initialization, which is comprised of both initialization requiring assembly level control and

high level initialization will be discussed in this section.

3.2.1 Assembly Level Initialization
Upon a successful load of the kernel, execution begins at the start label found in the assembly code

file /arch/i386/i386/locore.S. Figure 3 shows the flow of control within the OpenBSD kernel during the
initialization phase. The code in locore.S loads the parameters passed to it by the boot program via the
stack. Thus, while there is interaction between the boot program and the kernel, it is handled in a manner
similar to a function call. Parameters to be passed are put on the stack by boot. It is assumed that the
kernel knows how to find these stack-located parameters.

Figure 3. Execution Path within bsd, the OpenBSD Kernel Executable, During Initialization

Next the code determines the exact type of x86-compatible processor the kernel is running on. This

information is needed in order to handle processors that do not implement some instructions in hardware
and thus require software emulation. A page table directory is subsequently constructed and paging is
enabled. After this is finished, init386() is called.

The function init386() is responsible for initializing many of the x86-specific structures, particularly
those related to memory management. This includes creating the GDT, LDT, GDT memory segments,
and LDT memory segments, as well as initializing the IDT. The function pmap_bootstrap() is then called,
which does a first pass of initializing the physical mapping (pmap) module of the memory management.
The function pmap_init() finishes initializing the pmap module later, after control enters the main()
routine2. Finished with these tasks, init386() returns control to the assembly file locore.S. At this point, a
call is made to main(), the machine-independent C language function defined in init_main.c.

3.2.2 High-level Initialization
The main() function calls all of the various subsystem-specific initialization routines needed to

prepare the operating system to run. The function is completely architecture independent, thus main()
calls only high-level initialization functions. It is only in the implementation of functions called by main()
that machine dependent features are encountered. The main() function is described below in a strictly
linear fashion, but to aid in understanding, the work done within main() can be roughly grouped into three
categories.

3.2.2.1 Initialization of Various Subsystems
Initialization of the current process pointer is the first step. The kernel process that currently has

control is defined to be Process 0. The second step is to initialize the console so that any debugging
messages can immediately be written to the screen. Next kernel data structures used for

2 The pmap module provides translation of high-level memory management functions to the appropriate

machine dependent functions. Thus the pmap module implements, for example, architecture-specific values for the
three permission levelsread, write and executedefined by the machine-independent memory protection. Once
this basic level of memory support has been established, but before the memory management unit (MMU) has been
fully initialized, it is possible for memory to be dynamically allocated via the pmap_bootstrap_alloc() call. Memory
allocated in this way will not be managed by the MMU but instead can be considered a hard-wired mapping. Once
pmap_init() is called and the MMU has been fully initialized, memory can be allocated normally using MMU
support.

autoconfiguration, virtual memory, disk management and TTY management are initialized. The following
function called, cpu_startup(), handles most of the architecture-specific initialization.

Within cpu_startup() the buffer used for writing error messages is first initialized, using memory
reserved when pmap_bootstrap() ran. Next the CPU is identified, which is needed at this point in order to
be able to handle processor-specific bugs, such as the “f00f” bug found in older Intel processors [10]. The
allocsys() function that follows is responsible for allocating memory for kernel data structures. Memory is
allocated for the entire kernel, to kernel_map, and subsequently assigned to specific submaps that were
initially defined when uvm_init() was called earlier from within main() to initialize the structures for
virtual memory support. Submaps are subsections of kernel memory that are defined in order to isolate the
memory usage of various subsystems from one another. Submap usage also subdivides the locking of
kernel memory into smaller pieces. Once memory is assigned to the various maps, cpu_startup() returns
control to main().

The next step in main() is to call the function mbinit() which initializes a pool of mbuf data
structures. The mbuf, or memory buffer structure, is the foundation of the memory management used to
handle networking. The function soinit() is subsequently called, which reserves memory space for use by
sockets by creating a resource pool named socket_pool. The next few high level functions initialize the
data structures and resource pools to support timeouts, sysctls, process management and file descriptors.
The call to pipe_init() similarly sets up a resource pool to support pipe structures.

3.2.2.2 Establishment of Process 0 Context
To correctly establish Process 0, data must be inserted into various lists. While many resources and

structures needed to support Process 0 were set up in locore.S, at that time structures such as the process
queues did not exist. Thus it is only now that, for example, an entry for Process 0 can be added to the
process ID hash table. Other items that are defined to create the context for Process 0 include the p_stat
(set to SRUN) and p_nice (set to 20) values. Finally Process 0 is given the name of “swapper.”

Much of the additional context to be defined for Process 0 involves setting variables within the proc
structure for Process 0. All of the variables named in this paragraph are defined within the proc structure
and initialized for Process 0 in the following order:

1. A timeout, named p_sleep_to, is established that will timeout when this process returns
from calls to any of the sleep() family of functions which provide for voluntary context
switching.

2. A second alarm timeout, named p_realit_to, is created which allows processes to base
actions on a “real” timer that decrements in real time.

3. The credentials structure, the pcred structure p_cred, is initialized. This is used to store
the real and effective user id and group id values used to determine permissions.

4. The resource pool used for allocating all signal structures is initialized by calling siginit().
5. A new signal structure is created and the signals to be ignored are established by setting

the p_sigignore value, a sigset_t structure.
6. A file descriptor table is built by calling fdinit() and assigning the returned file descriptor

table to the p_fd element of the proc structure.
7. Limits on nine different resources, such as number of open files, that can be controlled on

a per process basis are established within the p_limit, a plimit structure.
The next section of code within main() defines the address space map for Process 0. First

uvmspace_init() is called which initializes the vmspace structure vmspace0. The address space for Process
0 is then defined to be this vmspace0 structure. Last, two additional values within the proc structure are
assigned, p_addr and p_stats. At this point enough of the supporting data structures are in place to be able
to assign this process to root, i.e. the number of processes listed as running under user root is incremented
to one.

3.2.2.3 Additional Subsystem Configuration
The run queues, 32 in total, used by the scheduler are zeroed via a call to rqinit(). At this point we

reach a call to a fairly complex function, cpu_configure(). Some of the most important tasks handled by
cpu_configure() include:

1. Adjusting the GDT to an appropriate size via gdt_init()
2. Autoconfiguration of all devices via a call to config_rootfound()
3. Initialization of the TSS and LDT for Process 0 by calling i386_proc0_tss_ldt_init()
After cpu_configure() returns to main(), the next function call, uvm_init_limits(), establishes limits

for Process 0 on virtual memory usage. This function is only called once in the kernel code, as every other
process will inherit these limits from Process 0. Support for the virtual file system is then established via a
call to vfsinit(). This function sets up the vnode management structures and prepares the system able to
handle any type of file system. The vnode structure is the basis of file management in OpenBSD.

The next call in main() is to initclocks() to establish the real time and statistical clocks. Next in
main() attaches all the pseudo devices by first ensuring that the random device is attached, then it calls the
attach function for each pseudo device.

Initialization of the various networking protocols supported by the system is handled by the
following section of main() code. The initialization routines are bracketed by calls that raise the interrupt
priority level to that of IPL_VM, and then return the priority level to its prior value. This effectively
blocks the receipt of network traffic until the proper subsystems are initialized. The intervening three
function calls set up a timer needed for minding the network interface, define various communication
domains for use by the system, and associate the domains with the various interfaces on the system.

The next function call, init_exec(), defines the maximum executable header size that will be possible
for the system. These are based on formats such as ELF (Executable and Linkable Format), COFF
(Common Object File Format) and a.out. At this point, the timers used for scheduling are enabled within
scheduler_start(). The following function called from main(), dostartuphooks(), executes all functions
found in the startuphook_list queue. The routine startuphook_establish() can be used to add a function to
this queue which will then be run at startup. This feature can be useful for certain device drivers.

The next steps configure the root and swap devices, by running checksum algorithms over them and
assigning major and minor device numbers. Once configured, the root device is mounted via a call to
vfs_mountroot(). The vnode structure allocated for the root directory is then retrieved and the current
directory of this process is set to this vnode value. Upon completion of this file system management,
Process 0 completes initialization of the virtual memory subsystem by calling uvm_swap_init(). This
function initializes the swap system structures, thus it had to be called after file system initialization since
it relies on the ability to work with vnodes from the recently mounted file system.

Some needed accounting takes place at this point. The start time of Process 0 is updated to the
current time and the length of time that Process 0 has been running, the p_rtime value within the proc
structure, is reset to zero.

3.2.2.4 Creation of Additional Processes
The creation of other processes may begin. It is essential that Process 0 be properly established

before attempts to create other processes are made. When a new process is created, the fork call copies
much of the information needed by the new process from the process structure of its parent process.
Incorrectly setting the parameters of Process 0 would result in the propagation of erroneous context
information to all child processes.

Two kinds of child processes are created by Process 0: the Process 1 and kernel processes. To create
Process 1, which will run the init program, a call to fork1() is made. To create the other six kernel
processes needed, a call to kthread_create() is used. This latter function is basically a specialized version
of fork1(), as delving into the implementation reveals that a call to fork1() is made within
kthread_create(). Similarly, the fork system call is implemented via a call to fork1(). As a kernel function,

fork1() can be called directly only by kernel code; it is called indirectly from user space using the fork
system call. The reason for creating Process 1 differently becomes clear when one delves into the
implementation of kthread_create(). Since it will become a user space process, Process 1 should share
neither memory nor signal structures with Process 0. Therefore it cannot be created by a call to
kthread_create() which shares each of those structures by default. Instead a custom call to fork1() is
required to properly initialize Process 1. The processes created using the kthread_create() call include:

1. A “pagedaemon” process to handle page swapping for the virtual memory subsystem,
2. A “reaper” process to free the resources still allocated to dead processes,
3. A “cleaner” process to clear out dirty buffers found in the BQ_DIRTY buffer queue,
4. An “update” process for synchronizing the file systems,
5. An “aiodoned” process for handling completed asynchronous I/O operations,

A final few additional kernel threads are created by the call to kthread_run_deferred_queue(). This
function creates additional kernel threads as specified in the deferred request queue. During initialization,
when full support for forking processes was not yet in place, driver or file system code that needs to
create a kernel thread can add a request to this queue via a call to kthread_create_deferred(). When
kthread_run_deferred_queue() is called, that function processes the deferred queue, creating each of the
requested kernel threads. The hierarchy of processes created on a typical OpenBSD system is shown in
Figure 4.

Figure 4. Process Hierarchy within OpenBSD

With all kernel threads running, only a few finishing touches are needed. The random number
generator is seeded and the generation of process identification numbers is set up such that each
successive process will be given a larger pseudo-random number than its predecessor. At this point,
Process 0 finally enters its main loop by calling uvm_scheduler(). This function has Process 0 continually
check for processes that are in a runnable state but not resident in memory and swaps them in. Control
never returns to the main() function from this call and one could say the operating system is truly running.

It is important to note that Process 1 will go on to complete its initialization tasks after being forked
from main() by Process 0 via a call to fork1(). Control for Process 1 moves first to the function
start_init(), after being forked. This function checks to make sure a console device has already been
properly initialized. Then it tries to execute each of the programs found on the initpaths list in turn. This
list contains the potential candidates for an init program. Typically, a valid init program can be found at
/sbin/init. If this fails, two other possibilities are contained in the initpaths list. When a valid binary is

found, this binary is executed by Process 1 as the init program. It will handle the remaining initialization
required within user space. With all necessary processes now running, initialization is complete.

4 Linux Initialization

Linux 2.4.26 will be used in our overview of Linux kernel initialization. All references to source
code file paths are relative to the Linux root source directory, typically named linux-[version number].
Much of this discussion relies on a text by Bovet and Cesati [11]. Figure 5, provides an overview of the
execution sequence during the boot process of the Linux kernel.

Figure 5. Linux Logical Execution Sequence from Boot to Runtime

4.1 Assembly Level Kernel Initialization
After the chosen boot loader has run, it loads the Linux kernel image, typically named vmlinuz-

[version number] for a compressed kernel image and vmlinux-[version number] for an uncompressed
image. A compressed kernel image will have the Linux boot loader, found in /arch/i386/boot/bootsect.S,
located at the very beginning of the image. An uncompressed kernel image is simply an ELF executable
[12]. The discussion below traces the execution flow for a compressed kernel image.

After the boot loader provided runs, execution begins at the start label in the assembly code file
/arch/i386/boot/setup.S. Some of the operations performed by this code include:

1. Reinitializes all hardware, since Linux does not rely on the BIOS to do this properly.
2. Ensures interrupts are disabled
3. Sets up a provisional GDT and a provisional IDT
4. Reprograms the Programmable Interrupt Controller (PIC)
5. Re-maps the 16 IRQ lines from 0 thru 15, the BIOS assigned values, to 32 thru 47.
6. Switches from real mode to protected mode memory addressing.
The last line executed in this file is a jump to an assembly function called startup_32(), which

performs additional initialization. There are actually two startup_32() assembly functions in the Linux
kernel, located at /arch/i386/boot/compressed/head.S and /arch/i386/kernel/head.S. The reason that these
duplicate names do not cause any naming conflicts is because each function is reached by jumping to a
physical address, rather than via a call to a label. The existence of both versions is an artifact of when
there was a single head.S file, before compression was implemented for the kernel image. At the end of
the initial assembly code in /arch/i386/boot/setup.S a jump to offset 0x100000 in segment
__KERNEL_CS is called. This is where the version of startup_32() found in
/arch/i386/boot/compressed/head.S is located. But as part of the decompression routine, the entry point of
the decompressed kernel, startup_32() in /arch/i386/kernel/head.S, is relocated to that same address,
0x100000. Thus at the end of startup_32() found in /arch/i386/compressed/head.S a jump to 0x100000 is
called to reach the startup_32() found in /arch/i386/boot/head.S. Thus while it appears from the code that
these two jumps to the same physical location 0x100000 would be repetitive, they in fact are not.

The first instance of startup_32(), found in /arch/i386/boot/compressed/head.S, performs the
following:

1. Initializes the segmentation registers
2. Sets up a provisional stack
3. Decompresses the kernel image and locates it at address 0x10000
4. Jumps to the startup_32() function in the decompressed kernel, in /arch/i386/boot/head.S.
The second startup_32(), located in /arch/i386/kernel/head.S, continues the initialization sequence.

Figure 6 details the flow of execution from this second startup_32() function onward through
initialization, highlighting important tasks. This latter function’s main job is to set up an environment
within which the first process can execute. This includes:

1. Initializes the segmentation registers with their final values.
2. Sets up the Kernel Mode stack for Process 0.
3. Initializes the provisional kernel Page Tables
4. Stores the address of the Page Global Directory in the cr3 register, and enables paging by setting
the PG bit in the cr0 register.
5. Fills the bss segment of the kernel with zeros.
6. Invokes setup_idt() to fill the IDT with null interrupt handlers.
7. The first page frame is loaded with the system parameters learned from the BIOS and the
parameters passed to the operating system from the boot loader.
8. Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables.

Figure 6. Execution Path within vmlinux-[version], the uncompressed Linux ELF Executable, During Initialization

4.2 High-level Kernel Initialization
After completing these tasks, control jumps to the start_kernel() function. This function’s role is the

final initialization of all kernel components and structures. Since it touches on nearly all structures, it is
instructive to discuss the important functions that start_kernel(), defined in /init/main.c, performs.

• The processor specific initialization details are performed via setup_arch(), such as
initialization of page tables and descriptors using paging_init().

• The final initialization of the IDT is performed by invoking trap_init() and init_IRQ().
• Data structures needed by the kernel for scheduling are created by sched_init().
• Two of the four softirq types used for deferrable kernel functions are registered in the softirq

array by invoking softirq_init().
• The time and date used by the system are initialized in time_init().

• The console device is initialized here before PCI handling is enabled. This ensures error
messages will be reported to the console as soon as possible.

• The slab allocator is initialized by kmem_cache_init() and kmem_cache_sizes_init().
Interrupts are enabled via a call to sti(), a wrapper for the assembly level instruction sti that sets the

IF flag in the EFLAGS register. With this bit set, “the processor begins responding to external, maskable
interrupts after the next instruction is executed.” [13]. This is done after trap_init() and init_IRQ() have
been called to fill the IDT. While any person familiar with assembly would recognize that interrupts have
been enabled, much of the enabling and disabling of interrupts found in the rest of the kernel becomes
quite complex.

Linux provides a large number of macros that serve as wrappers for the cli (interrupt disable) and sti
(interrupt enable) instructions. What makes this even more complex is that these macros are then used
inside of other macros, many layers deep, such that to track down the fact that a macro disables interrupts
can require tracking through four levels of macro definitions. With interrupts enabled, execution resumes
in start_kernel(), where a call is made to calibrate_delay(). It calculates an estimate of how many times
per second a short loop can be executed by the CPU. Mainly used by device drivers, it provides a way for
a driver to estimate how long it should busy-wait when waiting on information. The final few functions
take care of the following tasks:

• The page frames are readied for use by the mem_init() function, which resets the reserved
flag and calls free_page() on each page.

• The function pgtable_cache_init() initializes the x86 Physical Address Extension (PAE)
caches on Intel processors with this feature

• The maximum number of processes allowed on the system is set to a default value in
fork_init()

• Slab caches to support signals, the file system and memory are created by proc_caches_init()
• The slab caches as well as other kernel structures, such as inodes, needed to support the

virtual file system are created by invoking vfs_caches_init()
• The buffer cache hash table for the file system is allocated in buffer_init()
• The page cache hash table is initialized in page_cache_init()
• The function check_bugs() identifies the CPU type and makes any necessary adjustments to

compensate for known bugs in the respective chip
• If the kernel has been built for a uniprocessor system with an IO APIC, smp_init() initializes

the APIC hardware. For a multi-processor system, this function is responsible for setting the
system up to use all processors.

The final function called from within start_kernel() by Process 0 is rest_init(). This function invokes
kernel_thread() to create the kernel thread that will become Process 1. A “kernel thread” in Linux is
essentially a process that remains in kernel space, with access to kernel data structures. While execution
for Process 0 remains inside the function rest_init(), the kernel thread just created, Process 1, proceeds to
first execute the init() function found in the /init/main.c file (only later will it execute the init binary
which runs in user space). Discussion of Process 0 will resume later in this section. The following
paragraphs trace the execution of Process 1.

The init() function that Process 1 enters performs a number of important final initialization tasks.
First lock_kernel()ensures that none of the other kernel threads interfere with the device initialization that
follows. The next function called is do_basic_setup(), which essentially handles all device initialization.
A few details are in order. Within do_basic_setup(), the function start_context_thread() is called, which
creates a new kernel thread. This new kernel thread, keventd, is responsible for running the tasks that
accumulate in the tq_context task queue, which provides for deferred scheduling of functions that make

use of blocking operations3. Figure 7 shows the process hierarchy of all kernel threads as well as a
handful of well-known user space processes such as sshd and mingetty4.

Figure 7. Process Hierarchy within Linux

Once do_basic_setup() returns, do_initcalls() is invoked to perform most of the low-level

initialization of network and other types of devices, is invoked. This function calls a number of
initialization functions specific to various devices and subsystems, as well as driver initialization routines.
Any function wrapped with the macro __initcall or module_init will be invoked by do_initcalls at this
point. The __initcall and module_init macros instruct the gcc complier to place the respective function in
an ELF section named .text.init when linking, while the entry address of the function is stored in the
.initcall.init section. Thus do_initcalls() involves a relatively simple loop that moves through the list of
function addresses in .initcall.init and calls each of them. This unique structuring of the code allows a
clean seven-line implementation of do_initcall().

Linux makes extensive use of the ability of gcc to place portions of code into specific sections when
linking object files, as provided by the __attribute__ directive [14]. of the 27 sections defined in the
Linux kernel contrasts sharply with the nine that are found in the OpenBSD kernel image. Using the
__attribute__ construction not only allows for the clean implementation of functions like do_initcall(),
but also allows the operating system to use memory more efficiently. Since all functions marked with the
__init macro are put into the .text.init section when compiled and linked, free_initmem() can free the
memory pages taken up by that section after initialization is complete.

After all drivers have been initialized, do_initcalls() returns at which point its parent function
do_basic_setup() to also return, placing control back inside of the init() function. The mount points of
ramdisks and other devices, such as consoles, are determined next by invoking prepare_namespace(). At

3 This thread previously was used to run the tasks that accumulated on the tq_scheduler queue, but that queue

was deleted in an early version of the 2.4 kernel. See comments on schedule_task() in kernel/context.c for details.
4 The fact that some groups of processes connect to Process 1 at the same point does not indicate any special

relationship.

this point the system has completed the tasks essential to a working runtime environment. Now focus
shifts to the completion of user space initialization tasks.

The function free_initmem() is called to release from kernel memory sections defined as necessary
only at initialization: .text.init, .data.init, .setup.init and .initcall.init. As no more operations will be
performed that are sensitive to timing and race conditions, this thread no longer needs to ensure it has
exclusive access to kernel data structures. Therefore Process 1 is next able to release the kernel lock it
obtained upon entry to the init() function, by calling unlock_kernel(). Also, to ensure it does not
inadvertently continue to have access to kernel data, the thread releases files currently being shared.

Last, Process 1 in kernel mode opens the default console as standard input (file descriptor 0). The
function dup() is then called twice on file descriptor 0 to allow the usage of the same console for standard
output (file descriptor 1) and standard error (file descriptor 2). Finally run_init_process() is called, which
invokes execve() on the argument it is passed. If this fails, it tries to execute, in order, /sbin/init, /etc/init
and /bin/init. As a last resort the kernel attempts to execute the /bin/sh shell as the Process 1 binary, in an
attempt to provide an interface for fixing the malfunctioning system.

To complete this discussion, the rest of Process 0 execution will be traced. After forking Process 1
while inside the function call rest_init(), Process 0 releases locked kernel resources, via a call to
unlock_kernel(). It then sets a flag to indicate that the current process, i.e., itself Process 0, should be
rescheduled. A call is then made to the function cpu_idle(). Once inside this function, control will not
return. The function consists of a low-priority idle loop where Process 0 sits waiting for other processes to
request rescheduling. When such a request is made, it is Process 0 that will call the scheduler.

With Process 0 in an idle loop and Process 1 executing the init binary, Linux kernel-level
initialization is complete.

5 Conclusions

The initialization of both OpenBSD and Linux can be divided into two main phases, excluding the
BIOS: the boot loader phase and the kernel initialization phase. While both operating systems must
employ assembly language code to handle tasks like probing memory or setting up operating system
controlled registers, a major difference between the two is where this assembly language code resides.
OpenBSD is distributed with an integrated boot loader that moves the processor into protected memory
mode. Utilizing a boot loader that handles these assembly level details allows the kernel entry point to
begin with a much more robust environment, including memory protection. Therefore the amount of
assembly code needed within the OpenBSD kernel has been minimized. On the other hand, the Linux
kernel does not include any multi-stage boot loader code. It typically relies on the existence of third-party
boot loader programs, and does not assume that the processor is put into protected memory mode. Instead
the Linux kernel moves the processor into protected mode itself, requiring the kernel to include the
assembly language code to establish protected memory mode. This means that, overall, the Linux kernel
must execute a larger amount of assembly code than OpenBSD before reaching its high-level
initialization function, start_kernel().

The start_kernel() function in Linux largely resembles the main() routine of OpenBSD. Both are
called after the CPU has been put into protected mode. Code that requires direct access to registers or flat
memory addresses has already been executed. Both start_kernel() and main() are processor-independent
and all code within these two functions is written strictly in C. Any machine-dependent functions are
hidden within the functions called by these two high-level routines. Each subsystem within both operating
systems defines an initialization function that is executed by the high-level initialization routine. In both
OpenBSD and Linux these initialization functions are defined as part of the subsystems themselves, not
as part of a separate initialization module.

While implementation details are slightly different, the overall architecture used to bring both
operating systems up to a running state is essentially the same. Processor-specific items, e.g. moving the
processor into protected mode on an Intel x86 CPU, are first handled by assembly code. Once these low-
level details are sufficiently handled control moves to a high-level machine-independent initialization
function. This function completes initialization, including the creation of any additional processes needed
by the system.

References

[1] Dodge, C., Recommendations for Secure Initialization Routines in Operating Systems. Masters

thesis, Naval Postgraduate School, 2004.
[2] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and

general model. Version 2.2, Revision 256.
http://www.commoncriteriaportal.org/public/files/ccpart1v2.2.pdf. January 2004.

[3] LILO (The Linux Loader), http://freshmeat.net/projects/lilo/. Accessed May 2004.
[4] GRUB (Grand Unified Boot Loader), http://www.gnu.org/software/grub/. Accessed June 2004.
[5] Okuji, Y.K, Ford, B., Boleyn, E.S., Ishiguro, K., The Multiboot Specification, Free Software

Foundation, 2002. Available from
http://www.gnu.org/software/grub/manual/multiboot/multiboot.pdf. Accessed May 2004.

[6] Mach operating system project, http://www-
2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html. Accessed November 2004.

[7] Fiasco microkernel, http://os.inf.tu-dresden.de/fiasco/. Accessed October 2004.
[8] Intel Corporation, IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System

Programming Guide, http://www.intel.com/design/pentium4/manuals/index_new.htm. Accessed
May 2004.

[9] OpenBSD Security, http://www.openbsd.org/security.html. Accessed June 2004.
[10] Intel Corporation, Nov. 20 1997. “Invalid Instruction Erratum Overview” Available from

http://support.intel.com/support/processors/pentium/ppiie/. Accessed September 2004.
[11] Bovet, D. P. and Cesati, M., Understanding the Linux Kernel, 2nd edition, O'Reilly & Associates,

2002.
[12] Tool Interface Standard (TIS) Committee, Executable and Linking Format (ELF) Specification,

Version 1.2, http://www.x86.org/ftp/manuals/tools/elf.pdf. Accessed August 2004.
[13] Intel Corporation, IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction

Set Reference, http://www.intel.com/design/pentium4/manuals/index_new.htm. Accessed May
2004.

[14] Free Software Foundation, GCC 3.4.1 Manual, http://gcc.gnu.org/onlinedocs/gcc-3.4.1/gcc/.
Accessed July 2004.

