CIR Technical Report NPS-CS-05-003

The Center for Information Systems
Security Studies and Research

A Least Privilege Model

for Static Separation Kernels

Timothy E. Levin, Cynthia E Irvine, Thuy D. Nguyen

October 2004

A Least Privilege Model for Static Separation Kernels

Timothy E. Levin, Cynthia E Irvine, Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

Abstract

We extend the separation kernel abstraction to represent the enforcement of the
principle of least privilege. In addition to the inter-block flow control policy
prescribed by the traditional separation kernel paradigm, we describe an
orthogonal finer-grained flow control policy by extending the protection of
elements to subjects and resources, as well as blocks, within a partitioned
system. We show how least privilege applied to the actions of subjects and
resources provides enhanced protection for secure systems, and how only
“trusted subjects” may cause certain information flows between partitions. A
high assurance separation kernel based on least privilege can provide all of the
Jfunctionality and protection of the traditional separation kernel, combined with a
high level of confidence that the effects of subjects’ activities can be minimized to
their intended scope.

1 Introduction

The Sisyphean purgatory of penetrate and patch to which users of commodity systems are
currently subjected has lead to increasing recognition that platforms with assurance of penetration
resistance and non-bypassability are required for certain critical functions. This need for high
assurance calls for a layered system architecture where enforcement mechanisms of the most
critical policies themselves depend upon layers of no less assurance. In the past, the solution
offered was a general-purpose security kernel. For many high assurance systems currently being
planned or developed, a general-purpose kernel provides more functionality than necessary. This
has resulted in increased interest in the use of separation kernels to support real-time embedded
systems and as the basis for virtual machine monitors (VMM). Many of these separation kernels
are minimized to have both static policies and static allocation of resources, such as would be
suitable for certain fixed-configuration or embedded environments.

The relevance of the separation kernel concept is demonstrated by the many current systems and
projects that utilize them. A few U.S. systems where embedded separation kernels will be

deployed include: the F-35 Joint Strike Fighter, F-22, Joint Tactical Radio System, C-17
Globemaster I, and Unmanned Combat Air Vehicle [27]. The JSF requires the evaluation and
certification at EAL7 [27]. Separation kernels will also be used in communications security
modernization efforts, where a single processor board will be used to manage cryptography for
information at a variety of classification levels [6]. VMM implementations in development
include VMware [10], the Xen project [3], the Denali project[44], and Microsoft’s NGSCB
project [S][11][29][12].

Despite the resurgence of interest in the separation kernel approach, the principle of least
privilege [39] is often overlooked in the design of traditional separation kernels due to the belief
that a separation kernel should only be concerned with resource isolation. Consequences of this
omission include problems relating to all-or-nothing security and over-privileged programs. For
systems that must protect highly sensitive or highly valuable resources, e.g., the JSF, formal
verification of the ability of the system to enforce its security policy is required. Recent advances
in the assurance requirements for high assurance systems[31] have included verification of the
target system’s conformance to the principle of least privilege. To provide vendors and
integrators with tools to formally describe least privilege in separation kernels, a least privilege
separation model is offered.

1.1 A Least Privileged Separation Kernel

In the context of a research project to build a high assurance separation kernel, we have extended
the separation kernel abstraction so that the principle of least privilege can be examined at the
model level and enforced by systems that conform to that model.

The traditional separation kernel paradigm describes a security policy in which activities in
different blocks of a partitioned system are not visible to other blocks, except perhaps for certain
specified flows allowed between blocks. (Here, “block” is defined in the traditional mathematical
sense as a member of the non-intersecting set of elements that comprise the partition [34].) If
information flow is described only at the block level, then everything in a block can flow to
everything in another block. This would be contrary to the principle of least privilege required in
high assurance systems. The least privilege separation model presented here builds on the
traditional separation abstraction by extending the granularity of described elements to the
subjects [25] and resources within the partition. An orthogonal flow control policy can then be
expressed relative to subjects and resources. Thus, a high assurance separation kernel can provide
all of the functionality and protection of the traditional separation kernel, combined with a high
level of confidence that the effects of subjects’ activities may be minimized to their intended
scope.

In the sections that follow we will elaborate on the concept of separation kernels and the need for
least privilege in such systems. In particular, the granularity of inter-block flows will be
discussed and the requirement for the subject abstraction will be described. A formalization of the
least privilege separation model is presented and several aspects of secure system design and
verification are discussed with respect to the model. The last sections of the paper review related
work, and summarize our results.

2 Concepts

2.1 The Separation Kernel

The term separation kernel was introduced in the early 1980s and has since become a term of art
[37]. Rushby originally proposed, in the context of a distributed system, that a separation kernel

creates “within a single shared machine, an environment which supports the various components
of the system, and provides the communications channels between them, in such a way that
individual components of the system cannot distinguish this shared environment from a
physically distributed one.”

A separation kernel divides all resources under its control into blocks such that the actions of an
active entity (i.e., a subject) in one block are isolated from (viz., cannot be detected by or
communicated to) an active entity in another block, unless an explicit means for that
communication has been established (e.g., via configuration data). Separation kernels are
typically employed as the basic underlying component of many embedded applications, operating
systems, or virtual machine monitors. For a multilevel secure system, each block typically
represents a different classification level.

A separation kernel achieves isolation of subjects in different blocks by virtualization of shared
resources: each block encompasses a resource set that appears to be entirely its own. To achieve
this objective for resources that can only be utilized by one subject at a time, such as the CPU, the
ideal separation kernel must ensure that the temporal usage patterns from different blocks are not
apparent to each other. Other resources, such as memory, may be accessed by different blocks
simultaneously, while preserving idealized isolation, if the separation kernel ensures, for
example, that blocks are allocated different and non-interacting portions of the resource.
Furthermore, kernel utilization of its own internal resources must also preserve the desired
isolation properties.

2.1.1 Application of the Separation Concept

The conceptual model of separation is commonly used to create Virtual Machine Monitors
(VMM), which provide efficient, isolated programming environments that replicate the real
machine environment. These mimicked environments are referred to as virtual machines.
[17][33]. However, a separation kernel differs from a VMM in that it is not required to exactly
replicate the underlying hardware base to to its application. Preventing illegal information flow
between isolated blocks is the primary common functionality between a separation kernel and a
VMM, and is the reason that the separation kernel provides an ideal foundation upon which to
build a secure VMM.

Goldberg defines a virtual machine (VM) as: "a hardware-software duplicate of a real existing
computer system in which a statistically dominant subset of the virtual processor's instructions
execute on the host processor in native mode" [17]. A VMM mediates between the virtual
machine(s) and the real resources of the computer system. Benefits of VMMs include the ability
of the VMM administrator to configure the execution environment of the VMs, support for the
concurrent use of several different operating systems, isolation of the VMs, and flexibility for
upgrades or modifications to the VM operating systems and applications. If both security and
performance are requirements, then, to succeed, the partitioning performed by the VMM must
ensure that the virtual machines are isolated from one another such that information flows
between them are constrained, while providing support for a variety of operating systems and
imposing minimal performance degradation.

Process isolation is another application of the resource separation concept. The separation
mechanism to isolate execution domains (e.g., process address spaces) such that one domain
cannot interfere with another domain has been implemented in both hardware (e.g., Intel IA-32
architecture [20]) and the security kernel [13]. Unlike a traditional security kernel that enforces a
multilevel access control policy and performs the most trusted functions for a secure operating
system, a separation kernel concerns itself only with the partitioning of resources and flow
control.

When applied to embedded military systems, the separation kernel’s resource partitioning is
commonly used to enforce both avionics-related policies and security policies. As these safety-
oriented avionics systems are used increasingly to process sensitive data, they will be scrutinized
with respect to high-level standardized functional security and assurance requirements. Such
criteria differ from the assessment standards for flight safety certification (e.g. RTCA/DO-178B
Level A [36]) in that they articulate security’s negative requirement that the absence of
unspecified functionality be demonstrated: safety requirements provide no assurance against
malicious software or malicious developers. Many of the security challenges for avionics systems
can be addressed through the application of high assurance separation kernels.

2.2 The Principle of Least Privilege

In 1975, Saltzer and Schroeder concluded that least privilege is one of the eight design principles
that can reduce design flaws [39]. They defined least privilege by stating “every program and
every user of the system should operate using the least set of privileges necessary to complete the
job. Primarily, this principle limits the damage that can result from an accident or error. It also
reduces the number of potential interactions among privileged programs to the minimum for
correct operation, so that unintentional, unwanted, or improper uses of privilege are less likely to
occur.” A decade later, the U.S. Department of Defense included a similar definition of least
privilege in the Trusted Computer System Evaluation Criteria (TCSEC) [43]. Layering,
modularity and information hiding are constructive techniques for least privilege that can be
applied to the internal architecture of the underlying trusted foundation (e.g., separation kernel) to
improve the system’s resistance to penetration. The kernel can also be configured to utilize
protection mechanisms such as access control and fine-grained execution domains to limit the
abilities of a subject so that it is constrained to perform only the tasks for which it is authorized.

An example of the enforcement of least privilege is in modern operating systems such as would
execute on a VMM. These operating systems require a minimum of two protection modes: one
for the OS itself and one for application processes executing under the control of the OS. The
operating system will view its relationship to applications as privileged. It will have access to
virtualized privileged instructions that will permit it to manage memory, set and reset protection
bits, control shared I/O resources, etc. Application processes are supposed to be less privileged.
Without a mechanism such as multiple protection modes to enforce least privilege, a typical
operating system executing within a VMM block would be at the mercy of its application
processes, just as the VMM or separation kernel would be at the mercy of the operating system
without similar hierarchical separation. By including a least privilege mechanism, presumably by
utilizing hardware support, it is possible to provide both the separation kernel and the operating
system with a simple, high assurance self-protection mechanism.

2.3 High Assurance and Least Privilege

The Trusted Computer System Evaluation Criteria (TCSEC) specifies the principle of least
privilege as a system architecture requirement for high assurance evaluation classes (B2 to Al)
[43]. While this requirement is noticeably absent in version 2.1 of the CC, even at the highest
evaluation assurance level (EAL7), efforts are underway to correct this omission[31]. Despite the
lack of an explicit reference to the principle of least privilege, the Common Criteria (CC)
provides the groundwork for it in several ways. It defines assurance as “grounds for confidence
that an entity meets its security objectives.” [4] The CC explains that the correctness and
effectiveness of the security functions are the primary factors for establishing the assurance that
security objectives are met. A high assurance separation kernel must be proven to correctly
implement the security functions defined in its specifications and effectively mitigate risks to a
level commensurate with the value of the assets it protects. To complement the formal proof, a

constructive analysis is used to demonstrate that the implementation maps to the specification.
Thus, a focus on resource separation and the structured allotment of privileges affords simplicity
to the separation kernel, and enables a high assurance analysis of the correctness of its
implementation.

In practice, a separation kernel providing strict isolation is of little value. Controlled relaxation of
strict separation allows applications to interact in useful ways, including participation in the
enforcement of application-level policies. In the latter case, applications hosted on a separation
kernel will need to be examined and evaluated to ensure that the overall system security policies
are enforced. A monolithic application that runs with the same set of privileges throughout all of
its modules and processes is hard to evaluate. In order to reason about the assurance properties of
the system, the applications should be decomposed into components requiring varying levels of
privilege. Such decomposition is more meaningful if the privilege boundaries are enforced by the
separation kernel, rather than relying on, for example, error-prone ad hoc agreements between
programmers or integrators. The principle of least privilege affords a greater degree of scrutiny
to the evaluation of both the kernel and the application, resulting in a higher level of assurance
that the overall system security objectives are met.

3 Inter-Block Flows

The first-order goal of a separation kernel is to provide absolute separation of the (effects of)
activities occurring in different blocks. In practice, however, separation kernels are often used to
share hardware among kindred activities that have reason to communicate in some controllable
fashion. If there were not some such commonality, the need to share hardware would be less
compelling. In other words, absolute separation of blocks is not so useful. Therefore, we include
in the separation kernel a policy and mechanism for the controlled sharing of information
between blocks.

The control of information flow between blocks can be expressed abstractly in an access matrix,
as shown in the example of Table 1. This allows arbitrary sharing to be defined, establishing the
inter-block flow policy to be enforced on the separation kernel applications.

Block A Block B Block C
Block A RWX w -
Block B - RWX w
Block C - - RWX
Table 1. Example Block-to-Block Flow Matrix

Notice that an inter-block flow policy in which the flow relationships partially order the blocks,
such as in Table 1, may be suitable for the enforcement by the separation kernel of a multilevel
confidentiality or integrity policy if meaningful sensitivity labels are immutable attributes of the
blocks.! In this example, information flows (represented by =>) form the following ordering:
Block A = Block B = Block C. An assignment of labels to these blocks in conjunction with
the rules defined in Table 1 results in a recognizable multilevel security policy:

" Because a static separation kernel does not change the policy or resource allocation during execution, and
assuming that the policy is not changed while the separation kernel is shut down, the policy may be
considered to be global and persistent, viz. non-discretionary.

Block A := Unclassified
Block B := Secret
Block C := Top Secret

The block-to-block flow policy allows all of the information in a “source” block (e.g., Block A,
above) to flow to every element of a “target” block (e.g., Block B, above). Extending the Table 1
scenario, if block B is also allowed to write to block A, for example to implement a downgrade
function with respect to the assigned labels, then all of the code or program(s) in block B would
need to be examined to ensure that their activities correspond to the intended downgrading
semantics. If this assurance of correct behavior cannot be provided, such a circular flow (A = B
= A) would create, in effect, one large policy equivalence class consisting of all of the
information in blocks A and B.

To limit the effects of block-to-block flows, we next introduce the notion of controlling how
much information is to be allowed to flow between and within blocks.

4 Least Privilege Flow Control

The implementation of a separation kernel results in the creation of active entities (subjects) that
execute under the control of the separation kernel and the virtualization of system resources
exported at the kernel interface (see Figure 1). Historically, many security models have utilized
the abstraction of an object.[25] Objects have been classified in various ways (such as data object,
storage object and named object) and there have been various approaches for defining devices
and other system resources in terms of objects. We decided to avoid this nomenclature issue by
simply modeling "resources." Similarly, as the definition of “resources” includes the abstractions
that are exported by the separation kernel, "subjects" are defined to be a type of resource.

Resources are defined as the totality of all hardware, firmware and software and data that are
executed, utilized, created, protected or exported by the separation kernel. Exported resources
are those resources (including subjects) to which an explicit reference is possible via the
separation kernel interface. That interface may include programming, administrative, and other
interfaces. In contrast, internal resources are those resources for which no explicit reference is
possible via the separation kernel interface.

Certain implementations of separation kernels elect to describe the system only in terms of blocks
and have not chosen to describe the active system entities that cause information flow. Since the
concept of subjects is a term of art [25], and for good reason, we will use it to describe the active
entities in the separation kernel. We have found the use of the subject abstraction to be
indispensable for reasoning about security in secure systems. Without the subject abstraction, it
may be difficult to understand, for example, which block in a partitioned system is the cause of a
flow between blocks (e.g., the flow could have been caused by the receiving block as a reader or
by the sending block as a writer), which application programs within a block need to be trusted
(e.g., evaluated with respect to the security policy), and how to minimally configure the programs
and resources of such a system to achieve the principle of least privilege. Just as when writing
prose, if actions are described passively (i.e., not attributable to the subject of a sentence) the
cause of the action can be ambiguous. In addition, use of subjects permits construction of a
resource-to-block allocation that provides a minimal configuration for least privilege (see Section
4.3).

Modeling of subjects within a partition also allows the representation and examination of more
complex architectures such as multiple rings of execution, as well as multithreaded and multi-
process approaches.

The following figure shows an example separation kernel system with three blocks, three

Block A Block B Block C

.,

Exported Resources

Resource | |Resource \
Resource 6 7 Resource
R 4 5 Resource 10
Eee e Resource 2
8

Separation Kernel Security Functions

Internal
Resources

subjects, a set of other resources, and some designated flows.

Figure 1. Example Separation Kernel Configuration

4.1 Subject-to-Block Flow Control

Thus far, blocks have been presented as an abstract representation of the separation policy. In the
implementation of that policy, the separation kernel will allocate subjects and other exported
resources to blocks. Table 2 illustrates such an allocation, i.e., a “tagging” of each subject and
resource with its partition (per Figure 1). Of the resources described in this table, the first three
are subjects and the remaining exported resources are passive. Each block must have at least one
resource allocated to it since an empty block is useless and invalid. It is worth noting that an
active entity need not be allocated to a block, and some blocks might contain only a subject,
however the latter might be considered to be rather hypothetical and unlikely in concrete
implementations. Every resource is allocated to one and only one block. Consequently, we can
state that the blocks of the separation kernel constitute a partition (in the mathematical sense)
where: R is the nonempty set of resources r and B is a nonempty set of subsets of R such that
each element of R belongs to exactly one of the elements of B. From elementary set theory, it is
known that a partition, B, can be used to create an equivalence relation on R. Thus we may induce
that the allocation of resources to partitions creates equivalence classes.

Resource ID Block
1 A

2 A
3 B
4 A

Ol ||| W
AW ||| >

10 C

Table 2. Resource to Block Allocation

Having provided a means of distinguishing different subjects within a block, we can formulate a
flow policy in which different subjects of a block are allowed to have different flows, to various
blocks. This allows the flow policy from Figure 1 to be expressed in terms of subjects and blocks
as illustrated in the access matrix of Table 3.

Subjects Block A Block B Block C
1 RWX - -
2 RWX W -
3 - RWX W
Table 3. Subject-to-Block Flow Rules

The application domain attributes used to determine the allocation of resources to blocks, together
with the flow rules, define a specific policy. Examples include non-discretionary policies that
restrict information flow based upon confidentiality or integrity requirements. Non-security
attributes could also be used as the basis for the partitioning. For example, if CPU time is
described as a set of time units, the scheduling policy could be used to define blocks, with some
blocks allocated more time units than others.

Within a block, it may be necessary to perform certain transformations on information that
change its security attributes. For example, encryption may be viewed as a transformation of
information from sensitive to unsensitive; a guard [2] performs information review and
downgrading functions; and a quality assurance manager transforms prototype code into
production code by regarding it in terms of reliability. For each of these transformation and
transactional examples there may be several subjects within a block performing various aspects of
the task at hand. The principle of least privilege requires that each of these subjects be given only
the privileges required to do its particular task and no more. The separation kernel can support
this objective by assigning access rights appropriately to the subjects within the block.

4.2 Subject-to-Resource Flow Control

Just as we provided subjects within a partition with different flow rules, we can also define
separate rules for accessing different resources within a block. Table 4 illustrates how allocations
to support the principle of least privilege are possible when the separation kernel supports per-
subject and per-resource flow-control granularity: no subject is given more access than what is
required to allow the desired flows.

Resource ID
Subject 1 2 3 4 5 6 7 8 9 10
1 - RW - RW - - - - - -
2 RW - - - R W - - - -
3 - - - - - RW - - W -

Table 4. Subject-to-Resource Flow Matrix

Together, Tables 2 and 4 show abstract structures required to allow only the flows illustrated in
Figure 1. It is clear from that the corresponding Block-to-Block flow matrix in Table 1, by itself,
would allow many more flows than those illustrated in Figure 1.

An example of a useful application scenario for least privilege separation is that of a down-
grader, shown in Figure 2. Block D would be unclassified, Blocks A, B and C would be
classified, and Block C would hold the downgrader program. An untrusted initiator (Ulnit)
process in A would write selected classified information to a classified holder buffer in Block A.
An untrusted copier process would move the contents of the holder to the dirty search workspace
in Block B. An untrusted dirty-word search process (UDWS) in B would provide advisory
confirmation that the information was “suitable” for downgrading and copy the information into
the clean results buffer (note that this process’s actions would be considered “advisory” with
respect to the multilevel policy, rather than “trusted,” since it has no capability to actually violate
the policy, nor to guarantee that the information is actually suitable for downgrading). Then the
trusted downgrader (TDG) program in C would read the information from the results buffer and
write it to an unclassified receiver buffer in D where it may be accessed by an untrusted end-point
process (UEnd). As constrained by least privilege provided by the subject-to-resource flow
matrix, the downgrader process in Block C would not be able to read from any resource other
than the clean results and not be able to write to any resource in D other than the receiver. This
would limit damage in the event of errors, for example in the downgrader, initiator or search
processes, and contributes to a substantive argument that only the downgrader program need be
trusted with respect to the application-level multilevel policy (viz., depended on to write down
only when appropriate), and thus requiring of security verification with respect to that policy.

Block A Block B Block C |Block D

Classified Classified Classified | Unclass

Dirty
Holder B Clean Receiver
workspace Results

Separation Kernel Security Functions

Figure 2. Trusted Downgrader. Dark areas with white text are trusted.
4.3 Alternative to Enforcement Of Least Privilege at Subject/Resource Level

An alternate conceptual approach to achieving the principle of least privilege for a system that
enforces a Block-to-Block policy without a Subject-to-Resource matrix is through the use of a
minimal configuration. A minimal configuration of a system is where, for all pairs of blocks, X
and Y, all of the subjects of block X require for their functionality, and are given, the same access
to all of the resources of block Y. Note that X and Y may be the same or different blocks, and the
access given may be empty for a given pair of blocks. By definition, then, the Block-to-Block
matrix for a system in a minimal configuration does not provide any more access than what is
required. However, it is clear that minimal configurations are far less expressive than the more
general configuration utilizing the Subject-to-Resource matrix, and would not be suitable for
many types of secure systems, such as those that support execute-only memory.

5 Least Privilege Separation Model

This section provides a formal presentation and discussion of the least privilege separation model
that supports two orthogonal flow policies: 1) block-to-block flow control and 2) least privilege
flow control between subjects and resources.

The system elements of a least privilege separation model are: a set of resources R, a set of
operations O, a set of modes of flow F, a partitioning of resources into a set of blocks B, an
operation-to-effects function MM, a block-to-block flow function BB, and a subject-to-resource
flow function SR:

system = (R, O, F, B, MM, BB, SR)
Given the set of resources R and the partition of those resources B, we derive the function RB:

RB : R—=B
such that RB(r) = b if and only if resource r € R is an element of block b € B. Since B is
a partition of R each element of R is in exactly one element of B.

We also provide a rule for interpreting the elements to define a secure system (see below). The
model, representing a system with static resource assignments and static security policy, does not
include any changes to the system elements: all functions are constant.

The set of resources, R, represents the totality of all hardware, firmware, software and data that
are executed, utilized, created, protected or exported by the separation kernel. Resources are
virtualized by the separation kernel such that each block’s resources appear to be entirely its own.
For example, memory may be virtualized into address spaces and/or objects that are assigned to
blocks. The CPU may be virtualized into scheduling units that are assigned to individual blocks
(e.g.,cpu_unit(1l..n)). For example:

RB(cpu unit.l) = Db
Resources are divided into internal resources R;, which are reserved for the kernel’s own use and
exported resources R, , which are accessible through a defined interface to the kernel:

R, C R

R.,C R

R,NR =
Subjects are abstractions created and controlled by the separation kernel that represent the active
entities of the system (e.g., program, process, agent). Each subject ry € R, is a resource from R,
thus:

R, C R,
Each mode of flow £ is selected from the set F. The mode indicates the direction of information
flow between two entities, such as between a subject and a resource. F includes read and
write, where semantically, write is a one directional flow from the subject to the resource
that does not include the inverse flow (read). The modeling of an execute mode will depend
on the system implementation, for example whether the hardware allows an execute_only mode
of access, and whether the resulting flow (if any) is different from read with respect to the
policy.

The set of all possible flow effects E is constructed from Ry x R x F. A flow effect, e, defines
a flow between a subject and a resource (direct flows between non-active resources are not
allowed):

e = (rg, r,)
Each operation, o € O, available to subjects is associated by function MM with a set of flow
effects, which may be the empty set, from the power set, § , of E:

MM: O — £ (E)

The function MM represents all the flows between pairs of resources that will be actualized by
system operations.

The function SR defines the set of allowed flow relations between subjects and external
resources, the least privilege flow policy:

SR: R, x R, —) (F)

The function BB defines the set of allowed flow relations between blocks, called a
BB_flowset, which is the system block-to-block flow policy:

BB: B x B — £ (F)

The functions BB and SR can be represented as matrices with subsets of F as the elements of the
matrix, and are so illustrated elsewhere in this document.

From the set of relationships defined by BB, we can determine in which direction the information
may flow between blocks. The shorthand FLOWS (BB, a, b) means that information may flow
from block a to block b, implying that either BB(a, b) = write,orBB(b, a) = read
must be true, or there exists a block ¢ such that FLOWS (BB, a,c) and FLOWS (BB, c,b).
FLOWS (BB, a, a) is implicit for all a € B.

If information is allowed to flow circularly in a set of blocks, e.g. in both directions between two
blocks, then a logical equivalence class of information results, since all information can be shared
between the blocks. While the subject-to-resource flow controls can be used to prevent inter-
block flows otherwise allowed by the block-to-block flow rules, it is generally intractable to
determine which information in a block will be (e.g., transitively) allowed to flow into another
block once the flow is allowed by a block-to-block flow rule and a subject-to-resource flow rule.
Thus, to provide a meaningful partitioning of resources, we would like the inter-block flows
defined by BB to be partially ordered (PO):
PO(B,BB) <
Vi,j, k € B(

FLOWS(BB,i,i) (true by definition)

&

FLOWS (BB,i,j) & FLOWS(BB,j,i) -> i = 7

&

FLOWS (BB,i,j) & FLOWS(BB,j, k)

-> FLOWS(BB,i,k) (true by definition))

In some cases, flows between blocks in contradiction of the partial ordering are useful when
constructing an application (e.g., to support a guard or downgrader application), and may be
considered secure if it can be assured that only the desired information can flow as intended.
Therefore, if such an inter-block flow were allowed by BB, we would require that any subject
(e.g., application) allowed by SR to utilize the flow must have a level of assurance that is
adequate to protect the information in both the source and the destination blocks. We refer to
such a subject as a trusted subject. Trusted subjects are a subset of the set of all subjects:

R, C R,
Given a partial ordering relation for B, Bbase, a trusted partial ordering for the system is

defined as follows, where Bcontra is a subset of BB that potentially contains flows in
contradiction to those identified in Bbase:

TPO(system, Bbase) <
d Bcontra: BB_flowset (

BB = Bbase U Bcontra

&

PO(B,Bbase)

&

Vr, r€ R; £fE€ F(
(f € Bcontra(RB(r;), RB(r))
&
f € SR(r,,r)
&
~PO(B, (Bbase U ((RB(rs;), RB(r)) = f)))
)

= r, € R,

A system is secure with respect to the least privilege separation model if and only if all of the
flows implemented by system operations meet the block-to-block and least privilege flow policies
and the system provides a trusted partial ordering with respect to an identified partial ordering
of B:

SECURE (system, Bbase) <
Ve €E, o€ 0O (

e € MM(0)
= e.f € BB(RB(e.r,), RB(e.r)) (1)
&
e.r ER, | e.f € SR(e.r,, e.r) (2)

)
&

TPO(system, Bbase)
5.1 Discussion of the Model

The intention is that SR represents a subset of the flows of BB, to provide an additional “least
privilege” restriction to BB, but validity of the security predicate does not depend on this subset
relationship. The formulation of SR to reflect the least amount of privilege required for a subject
to perform its functions is assumed to occur during installation of the system’s applications, by
personnel familiar with each specific application. Since the applications will be fixed in a given
static embedded system, this appears to be a reasonable expectation. In more dynamic systems,
more algorithmic approaches [42] to determining and/or assigning “least” privileges might be in
order.

Note that flow effects are specified in terms of the flows between all possible subjects Ry and
resources R. Since R includes both internal and exported resources, all possible system flows are
represented, and therefore the desired block separation property is represented, as well as the
control of flow between blocks and the ability to enforce least privilege. If BB is empty, then the
system is configured with a strict separation policy, viz., allowing no flows between blocks. If E
were taken to represent only exported resources, then this model would need to assume the
separation property regarding internal resources, either implicitly, axiomatically, or through the
inclusion of additional properties [38][26].

One approach to formal system verification with this model would be to let E represent only
exported resources, map the formal system specification to the model, and let a comprehensive
covert channel analysis of the system and specifications provide the evidence for separation of
internal resources. An alternative would be to let E represent both internal and exported
resources, and provide a formal system specification that is at the same level of detail and
abstraction as the system implementation — enabling the representation of all internal and external
flows. The latter alternative, to be practical for a system of useful size, would seem to require
either the ability to automatically generate a detailed specification from an abstract model, or
automatically generate the code from the detailed specification, so that the system would not need
to be implemented redundantly in separate logics (viz., specification and code). However,
providing such detail in the specification might defeat one of its primary purposes, which is to
provide an understandable representation of the design.

The characterization shown here of the relationships of the significant internal elements of a static
separation system results in a simple, yet complete model of the desired security policy. Since the
system in execution will not allow changes to “flows” granted or implemented, constant functions
are adequate for representing the security elements of the system. Some might ask whether this
model is “too simple” to be interesting, to which we would reply that the ability to clearly
represent the security policy of a significant class of processing engines appears to be useful. As a

precursor to further development, we have represented this model in the Ina Jo specification
language [40], and proven that information flows resulting from representative system calls are
bound by the security predicate (Ina Jo was chosen for its built-in support for inter-level mapping,
which will be utilized when proving that the formal system specification conforms to the formal
model).

It could be argued that some of the traditional separation kernel models could allow a granular
definition of blocks, thereby providing “least privilege;” for example if each subject and resource
were assigned to their own block. However, such a definition would eliminate the ability of those
“one-dimensional” models (recall that our model presents two orthogonal sub-policies) to portray
a higher-level policy regarding flows between equivalence classes of subjects and resources, such
as is useful in dealing with multilevel security at the application level.

In an ideal system, no covert timing or storage channels will be present. In an implementation,
covert channels between blocks would be visible as a violation to (1) for a particular e, where
e.r is an internal resource. One sort of timing channel might show up as the modification to the
length of an internal structure by one subject, which is indirectly visible to a subject in another
block. Since the channel is via an internal resource, it can only be accessed indirectly and not
directly via a kernel “handle” or name of some sort. The observing subject would measure the
difference in the length of the structure through observing the difference in its own execution
time for an operation that accessed that structure. Similarly, exhaustion of the same internal
resource might result in an error message, and corresponding storage channel.

A modular foundational component such as a separation kernel may be intended to support
systems that provide and enforce more general and flexible policies. To minimize the expense of
building and evaluating the larger systems, it would be ideal to be able to use the formal model
and other verification evidence of the separation kernel, without re-verification of the kernel
itself. One can then anticipate the need to formally compose the separation kernel model with the
general-purpose model of the larger system. Additional research is needed to investigate
approaches for the composition of the principle of least privilege separation model with other
formal models.

5.2 Implementation Considerations

Inter-process communications can be implemented in a system as direct subject-to-subject
operations, or indirectly via different sorts of communication and synchronization resources (e.g.,
synchronization objects [35]). The Subject-to-Resource matrix will allow either of these types of
communications to be modeled.

The class of separation kernels we are concerned with utilizes memory-mapped 1/O, such that
input and output between programs and devices occurs via memory segments that are in the
address space of the program. Therefore, whether devices are in the kernel, or are themselves
active entities (subjects) in the user domain, they need not be represented explicitly in the model.

6 Related Work

6.1 Separation Kernel Formal Models

Rushby [38] provided the seminal effort on the formal modeling of separation kernels. This work
modeled the separation between blocks (referred to as “regimes”) of a partitioned system, such
that the active entity(s) of a block cannot perceive, by observing their own input and output,
whether or not there are any other blocks present on the system. The Rushby model does not
represent the control of flows between blocks. In contrast, the work presented here models the

security of a system in terms of the separation and control of allowed inter-block flows, as well as
the control of flows to achieve least privilege.

Hartman [19] extended the Rushby model to represent the control of communication between
blocks (where each “process” of the model represented its own block). The model was developed
for a separation kernel to run on the SCOMP processor, which featured four hardware-privilege
levels of execution within each process [16]. Communication between blocks is modeled as
occurring via memory buffers. Although the SCOMP hardware provided four privilege levels,
control of flows within a block (e.g., applied to threads or subjects assigned to different privilege
levels of a SCOMP process) is not represented, nor is flow control with respect to resources other
than memory buffers, so the “least privilege” control we describe is not representable using this
model.

The MASK formal model, briefly described by Martin [26], characterizes the separation of blocks
(referred to as “cells”), as well as the control of message-based communication between blocks,
but does not represent the ability to provide least privilege with respect to resources or activities
within a block (cell).

Alves-Foss [1] provides a formal model for multilevel security enforcement by message-passing
applications, such as multilevel secure network interface units, that are to be built on a separation
kernel. This model assumes the effective separation between blocks, and provides a framework
specifying the secure behavior of applications, which utilize allowed flows between blocks. It
does not describe the granularity of control required to represent the principle of least privilege.

Schellhorn, et al [41] describe a formal model that includes non-interference between blocks
(called “applications™), as well as a mandatory access control (MAC) policy regarding both
confidentiality and integrity for references to resources within a block. There is one subject per
block, which is associated with a set of private resources (“files”). A “channel” mechanism is
defined to allow inter-block communication at the granularity of blocks, but to no greater
granularity, so the principle of least privilege is not applicable to inter-block accesses. The MAC
mechanism allows least privilege to be enforced on a subject’s access to resources within its own
block, but least privilege restrictions are not expressible for active entities at a finer granularity
than the entire application/subject/block.

Recently, Greve, et al [18] provided a model for a separation kernel accompanied by a description
of several derived properties and the abstract specification for a secure guard application based on
the model. This model represents flow control at the granularity of memory segments within a
block (referred to as a “partition”), which has the potential to represent the principle of least
privilege with respect to resources within a block. This model differs from ours, however, in that
it does not include logic for expressing a higher-level policy regarding flows between blocks.

6.2 Protection Profiles for Separation Kernels

The Common Criteria security evaluation paradigm includes a document called a protection
profile that specifies the security functionality and assurance for an entire class of IT products, as
well as a document called a security target, which provides a similar specification for a specific
IT product. The protection profile is evaluated for consistency with the Common Criteria
requirements for protection profiles; the security target is evaluated for consistency with the
Common Criteria requirements for security targets, as well as for consistency with an identified
protection profile (if any); and finally the product is evaluated against the security target. [4]

A protection profile for high assurance “partitioning kernels” was initiated under the auspices of
The Open Group by a team directed by the Lockheed Martin Aeronautics Company and the Air
Force Research Laboratory. A draft of this protection profile was produced in March of 2002 [31]

for the National Security Agency. This protection profile does not address the principle of least
privilege.

To complement this effort we are part of a group writing a high robustness protection
profile for separation kernels under the Common Criteria [31]. The proposed inclusion of a
least privilege requirement in this protection profile is being reviewed by the group.

6.3 Trusted Computing Exemplar Project

Separation kernel technology is being applied in our Trusted Computing Exemplar project[21].
This ongoing effort is intended to produce a high assurance least privilege separation kernel[31].

The primary security function of our Separation Kernel is to enforce subject and block separation,
while providing primitive operating system services sufficient to support simple applications.
The embedded focus of the kernel drives several high-level design characteristics. It will have a
static runtime resource configuration and its security policy regarding access to resources will be
based on static process/resource access bindings, which are subject to offline configuration (e.g.,
via an access matrix, such as are shown in Figures 1, 2 and 4). The kernel will create and support
a fixed number of application-level processes established by the system configuration.
Application processes will be scheduled in static fashion with each process being given a
predetermined amount of time, set by the configuration. The static nature of resource allotment
will provide predictable processing behavior, as well as limit the covert channels based on shared
resource utilization [25][23][30]. Simple process synchronization primitives will also be
provided, that can be implemented to be demonstrably free of covert channels [35].

6.4 Separation Kernels for Virtual Machine Monitors

By providing virtualization of all resources, including the hardware, a VMM
[17][33][22]provides a rigorous form of separation and can be considered a subset of the general
class of separation kernels. There are a number of VMM efforts and products where notions from
separation kernel technology are potentially applicable. Both Connectix [8] and VMware [10]
virtualize popular PC processors. VMware is a component of the NetTop prototype [28] being
developed by the government. The ultimate objective of the NetTop effort is to provide virtual
machines at different classification levels on a single commodity PC. The Xen project is
constructing a highly efficient, open source virtual machine monitor [3]. A specialized system
with an embedded virtual machine is the planned for the Software Defined Radio [14]. It will take
advantage of the Advanced INFOSEC Machine VLSI chip to support radio-based security
including, key management, multi-algorithm management, multiple channel communications,
isolation of plain text from cipher text, and separation of internal sensitive processing from
external unclassified processing. The target applications for this technology are the U.S.
Government Digital Modular Radio and the Joint Tactical Radio System [24][7].

Both the Terra architecture [15] and Microsoft’s NGSCB (previously called Palladium)
[S][11][29][12] present a specialized virtual machine monitor that will partition the system into
exactly two domains, trusted and untrusted, where different operating systems will be executed.
In both cases, commodity software can be executed in the open or untrusted virtual machines.
The trusted/closed VMs are isolated so that neither the platform owner nor malicious software is
able to observe or modify their contents. For these VMMs, the principle of least privilege is
essential so that the operating systems executing in the VMs can be protected from the
applications and the VMM itself can be protected from both.

7 Conclusion

The separation kernel abstraction and the principle of least privilege are significant tools for the
protection of critical system resources. Separation kernels are increasingly being used as a
foundation in systems to provide such protection. It is important that a model suitable for high
assurance is available for the evaluation of these systems. In this paper, we presented the least
privilege separation model, which is the fusion of the separation abstraction and the least
privilege principle.

In addition to the inter-block flow control policy prescribed by the traditional separation kernel
paradigm, our proposed approach supports an orthogonal finer-grained flow control policy by
extending the granularity of protected elements to subjects and resources, as well as blocks, in a
partitioned system. We showed how least privilege applied to the actions of external subjects
provides enhanced protection for secure systems, and also discussed how subject abstraction is a
critical tool for information flow and security analysis.

We examined the relationship of allowed inter-block flows to resulting policies enforced on
separation kernel applications. An interesting observation is that if the flows between blocks are
partially ordered, then the separation kernel can be seen to enforce a multilevel-secure mandatory
access control policy (assuming that the partial ordering is maintained in a global and persistent
manner). We have introduced the notion of a trusted partial ordering to describe flows between
blocks that are contrary to the multilevel policy. Another observation is that circular flows
between blocks do not result in a partial ordering, unless all of the blocks involved in the
circularity are collapsed into a single equivalence class (meta-block).

In summary, application of the principle of least privilege, resource separation and controlled
sharing are synergistic security properties in a separation kernel. Each subject is only given a
minimum set of logically separated resources necessary to perform its assigned task, and the
sharing of resources between subjects is rigorously controlled by the kernel. A separation kernel
that correctly implements these properties can meet the objective to minimize and confine
damage with a high level of assurance.

Acknowledgements

We would like to thank George Dinolt for his helpful input.

References

[1] Alves-Foss, J., The architecture of Secure Systems, in Proc. Hawai’i International
Conference on System Sciences: Emerging Technologies Track, January, 1998.

[2] Anderson, J.P., On the Feasibility of Connecting RECON to an External Network, Tech.
Report, James P. Anderson Co., March 1981.

[3] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I,
Warfield, A., Xen and the Art of Virtualization, In Proceedings of the 20th ACM
Symposium on Operating System Principles, Bolton Landing, NY, October 2003, pp. 164-
177.

[4] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and
General Model, CCIMB-99-031, Version 2.1, August 1999.

[5] Carroll, A., Juarez, M., Polk, J., and Leininger. T., Microsoft Palladium: A business
overview. http://www.microsoft.com/PressPass/features/2002/jul02/0724palladiumwp.asp,
August 2002.

[6] Chincheck, S. J., Programmable Embeddable INFOSEC Product,
http://www.nrl.navy.mil/content.php?P=03REVIE159

[7] Command, Control, Communications, Computers and Intelligence, Joint-Service/Navy-
Wide Systems, http://www.chinfo.navy.mil/navpalib/policy/vision/vis02/vpp02-ch3u.html.

[8] Connectix, Product Overview — Datasheet, 2003,
http://www.connectix.com/support/vpcw_online.html.

[9] Denning, D., A Lattice Model of Secure Information Flow, Communications A.C.M.,
19(5):236-243, 1976.

[10] Devine, S., Bugnion, E., and Rosenblum, M., Virtualization System Including a Virtual
Machine Monitor for a Computer with a Segmented Architecture. US Patent, 6397242,
October 1998.

[11] England, Paul and Peinado, Marcus, Authenticated operation of open computing devices. In
Proceeedings 7th Australasian Conference on Information Security and Privacy, Springer-
Verlag, Lecture Notes on Computer Science 2384, pages 346-361, August 2002.

[12] England, P., Lampson, B. , Manferdelli, J., Peinado, M. and Willman, B., A Trusted Open
Platform, IEEE Computer, Vol. 36, No. 7, pp. 55-62, 2003.

[13] Gasser, M., Building a Secure Computer System, Van Nostrand Reinhold, New York, N.Y.,
1987.

[14] General Dynamics Decision Systems, AIM — Advanced INFOSEC System: System
Overview, 2003. Also AIM data sheet aim08162002.pdf.

[15] Garfinkel, T., Pfaff, B, Chow, J., Rosenblum, M., Boneh, D., Terra: a Virtual Machine-based
Platform for Trusted Computing , In Proceedings of the Nineteenth ACM symposium on
Operating Systems Principles, Bolton Landing, NY, October 2003, pp. 193 — 206.

[16] Gligor, V., Analysis of the Hardware Verification of the Honeywell SCOMP, In Proceedings
of the 1985 IEEE Symposium on Security and Privacy, Oakland, CA, April, 1985, pp 32-43.

[17] Goldberg, R., Architectural Principles for Virtual Computer Systems, Ph.D. thesis, Harvard
University, Cambridge, MA, 1972.

[18] Greve, D., Wilding, M., Vanfleet, W.M., A Separation Kernel Formal Security Policy,
Fourth International Workshop on the ACL2 Theorem Prover and Its Applications, July 13-
14, 2003, Boulder, Colorado.

[19] Hartman, B. A., A Gypsy-Based Kernel, In Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May, 1984, pp. 219-225.

[20] Intel Architecture Software Developer’s Manual, Vol. 3: System Programming Guide, Intel
Corporation, Santa Clara, CA, 1997.

[21] Irvine, Cynthia E., Levin, Timothy E., Nguyen, Thuy D., and Dinolt, George W., The
Trusted Computing Exemplar Project, Proceedings of the 2004 IEEE Systems, Man and
Cybernetics Information Assurance Workshop, West Point, NY, June 2004, pp. 109-115.

[22] Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E., A VMM Security Kernel
for the VAX Architecture, In Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, May, 1990, pp. 2-19.

[23] Kemmerer, R.A., A Practical Approach to Identifying Storage and Timing
Channels, In Proceedings of the 1982 IEEE Symposium on Security and Privacy, Oakland,
CA, April 1982, pp. 66-73.

[24] Joint Tactical Radio System, JTRS+brochure.pdf, JTRS Joint Program Office, Arlington,
VA 22209
http://jtrs.army.mil/sections/referencedocuments/fset_referencedocuments.html?referencedo
c_brochure.

[25] Lampson, B., Protection, In Proceedings 5th Princeton Conference on Information Sciences,
Princeton, NJ, 1971. Reprinted in Operating Systems Reviews, 8(1): 18-24, 1974.

[26] Martin, W., White, P., Taylor, F.S., and Goldberg, A., Formal Construction of the
Mathematically Analyzed Separation Kernel, In Proceedings of the 15th International
Conference on Automated Software Engineering, IEEE Computer Society Press, Grenoble,
France, September 2000.

[27] Marsh, C., Real-Time Operating Systems and Hardware Support, Avionics Magazine, June
2002
www.aviationtoday.com/reports/avionics/previous/0503/0503real_time.htm.

[28] Meushaw, R., and Simard, D., NetTop:Commercial Technology in High Assurance
Applications, Tech Trend Notes, 9(4), 2000.

[29] Microsoft, Microsoft Next-Generation Secure Computing Base: An Overview,
http://www.microsoft.com/resources/ngscb/ngscb_overview.mspx, April 2003.

[30] J.K. Millen, Covert Channel Capacity, Proceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, pp. 60-66, April 1987.

[31] National Security Agency, U.S. Government Protection Profile for Separation Kernels in
Environments Requiring High Robustness, 1 July 2004,
http://niap.nist.gov/pp/draft_pps/pp_draft_skpp_hr_v0.621.html

[32] Object Management Group, Preliminary Draft: Partitioning Kernel Protection Profile,
prepared by Rockwell Collins and Boeing, Version 0.3, 23 October 2002, Google cached
HTML version of http://www.omg.org/docs/security/02-11-07.doc.

[33] Popek, G., and Goldberg, R., Formal Requirements for Virtualizable 3rd Generation
Architectures, Communications of the A.C.M., 17(7):412-421, 1974.

[34] Preparata, F. P., and Yeh, R.T., Introduction to Discrete Structures for Computer Science
and Engineering, Addison Wesley, Reading, MA, 1973.

[35] Reed, D.P., and Kanodia, R.K., Synchronization with Eventcounts and Sequencers,
Communications of the A.C.M., 22(2):115-123, 1979.

[36] RTCA, Software Considerations in Airborne Systems and Equipment Certification,
Document No. RTCA/DO-178B, prepared by Special Committee 167 of RTCA, RTCA,
Inc., Washington, DC., December 1992.

[37] John Rushby. Design And Verification Of Secure Systems, ACM Operating Systems
Review, 15(5), 1981.

[38] John Rushby, Proof of separability: A verification technique for a class of security kernels,
In Proc. International Symposium on Programming, Lecture Notes in Computer Science,
137:352-367, April 1982.

[39] Saltzer, J. H., and Schroeder, M. D., The Protection of Information in Operating Systems,
Proceedings of the IEEE, 63(9):1278-1308, 1975.

[40] Scheid, J., and Holtsberg, S., Ina Jo Specification language Reference Manual, Paramax
Systems Corporation, TM-6021/001/06, June 1992.

[41] Schellhorn, G., Reif, W., Schairer, W., Karger, P., Austel, V., and Toll, D., Verification of a
Formal Security Model for Multiapplicative Smart Cards, In Proceedings of the 6th
European Symposium on Research in Computer Security (ESORICS 2000), Volume 1895 of
Lecture Notes in Computer Science (LNCS), pages 17--36. Springer-Verlag Berlin
Heidelberg, 2000

[42] Schneider, F. B., Least Privilege and More, IEEE Security and Privacy, IEEE Computer
Society, 1(5):55-59, 2003.

[43] Department of Defense Trusted Computer System Evaluation Criteria, DoD 5200.28-STD,
December 1985.

[44] Andrew Whitaker, et al., Scale and Performance in the Denali Isolation Kernel, In
Proceeding of the Fifth Symposium on Operating Systems Design and Implementation
(OSDI 2002), December 2002.

