
A Common Criteria-Based Team Project for
High Assurance Secure Systems

Cynthia E. Irvine

Department of Computer Science
Naval Postgraduate School, Monterey, California, USA

Abstract
Most courses in information security do not provide students with practical experience in

high assurance development. To complement a course in secure systems that focuses on
foundational principles of constructive security, a laboratory project that requires students to
work in teams while meeting Common Criteria Evaluation Assurance Level (EAL) 6
assurance requirements has been created. The objectives, structure, and experience with this
laboratory project are described.

Key Words: Information Assurance, Software and System Assurance, Common Criteria,
Laboratory Project

1. Introduction

Introductory computer security courses often review such a broad range of concepts and
mechanisms that students are unable to delve into the subtleties of secure system
development. Even when advanced courses in computer security are offered, lectures and
readings can eclipse laboratory work and projects. We have developed a course in secure
systems that covers the foundational principles of high assurance secure system development.
Although the course encompasses a very substantial amount of lecture and reading material
regarding secure system development, laboratory activity is considered to be an essential to
the learning process. To reinforce the ideas presented in the abstract and to give students a
small amount of concrete experience in secure system development, we have created a
unique Common Criteria-based laboratory project.

This paper is intended to describe the context of the advanced class in secure systems as
well as its current laboratory activities. To this end, the history of laboratory work in the
class will be reviewed and then the objectives of and observations regarding the current
project will be presented.

1.1 Context of the Course

The Computer Science Department at the Naval Postgraduate School offers a broadly-
based program in information and software assurance. The current set of classes offered in
system security and assurance are described in Table 1. Of this set, the first course, entitled
Introduction to Information Assurance: Computer Security, is both a prerequisite to all
subsequent offerings as well as a requirement for all students campus-wide in programs
related to the information sciences and information technology. The university is on the
quarter system and each quarter lasts eleven weeks, thus all courses are eleven weeks in
duration.

Table 1. Courses in Information and Software Assurance
Course Title Hours* Description

Introduction to
Information Assurance:

Computer Security
(core requirement)

4-2 This is a comprehensive overview of the terminology, concepts,
issues, policies, and technologies associated with the fields of
Information and Software Assurance. It is a prerequisite for all other
Computer Security Track courses.

Analysis of Government
Critical Infrastructure

Protection

3-1 A government-formulated CIP lifecycle is introduced, that includes:
Analysis & Assessment, Remediation, Indicators & Warnings,
Mitigation, Incident Response, and Reconstitution. Assessment of
the criticality and survivability of mission-critical infrastructures is
covered.

Information Assurance:
Secure Management of

Systems
(track requirement)

3-2 A security manager’s view of the diverse management concerns
associated with administering and operating an automated
information system facility with minimized risk is presented.
Students examine both the technical and non-technical security
issues associated with managing a computer facility.

Vulnerability
Assessment

3-2 The potential vulnerabilities in networked systems are taught by
studying methods to: obtain information about a remote network
and to possibly exploit or subvert systems on that network. Labs
provide practical experience with current network attack and
vulnerability assessment tools.

Network Security
(track requirement)

4-2 This course covers the concepts and technologies used to achieve
confidentiality, integrity, and authenticity for information processed
across networks.

Secure Systems
(track requirement)

3-2 The implementation of protection for individual and networked
secure computer systems is covered. The problems of subversion
and confinement in highly secure components are addressed by
coherent mechanisms and lifecycle assurance methodologies.

Database Security 3-1 Course topics include: policies for information integrity and
confidentiality of database (DB) systems, modeling of secure DB
systems, security in statistical and object-oriented DBs, multi-tier
architecture security issues, privacy, aggregation and inference, and
applications of secure DBs.

Security Policies,
Models, and Formal

Methods
(track requirement)

3-1 The methods used to specify, model and verify the access control
mechanisms of computational systems are presented. The
identification of the security policy and its interpretation in terms of
a technical policy is covered. Several security policy and access-
control models are explored.

Mobile and Wireless
Security

3 This course addresses the security functionality, protocol and
assurance issues associated with this emerging technology.

Computer Forensics 3-2 This course covers the fundamentals of computer forensics in the
context of government information operations. Students examine
how information is stored and how it may be deliberately hidden
and/or subverted.

Introduction to
Certification and

3-2 This course provides an introduction to the Certification and
Accreditation (C&A) process as applied to the procurement and

Course Title Hours* Description
Accreditation lifecycle management of government information systems.

Advanced Topics in
Computer Security

3-1 Advanced topics in software, communications, and information
security are covered. Information security policies are studied, along
with issues involving existing and emerging IA issues and
technologies.

* Hours should be read as follows: n lecture hours – m laboratory hours per week

All students must take a set of core computer science classes, which are augmented by

specialization, or “track”, requirements. The security track mandates the following core
courses: Introduction to Information Assurance: Computer Security; Information Assurance:
Secure Management of Systems; Network Security; Secure Systems; and Security Policies,
Models and Formal Methods. Each student can then select three electives to complete their
course of study. Certain scholarship programs supported by the Security Track require
additional courses, such as Database Security and Advanced Topics in Computer Security.

Our university requires that every Masters student write a thesis based upon research
conducted during the final year of his or her studies. Each thesis is supervised by one or
more members of the faculty and affords students an opportunity to participate in one of the
many ongoing research projects within the department. Often students will select electives
that enhance their ability to conduct the thesis research. Often students will enroll in courses
outside of the security track and even outside of the department.

Doctoral students are not required to take a specific set of track courses, but must pass a
set of three qualifying examinations: one on the formal foundations of computer science, and
two others chosen from among the specializations of the department. One of these is an
examination in information assurance. All doctoral students take, as a minimum, Network
Security; Secure Systems; and Security Policies, Models and Formal Methods.

From the preceding discussion, it clear that Secure Systems is a key course for both
Masters and Ph.D. students [14]. The course has been taught for over seven years at our
university and has evolved over that period. Its principled-based foundations remain constant,
however its laboratory activities have evolved.

1.2 Previous Secure Systems Laboratory Exercises

As seen in Table 1, each security track course has both lecture and laboratory hours.
Laboratory activities may involve short tutorial-style exercises, examination of case studies,
weekly projects, or longitudinal projects. These hands-on activities may be used to reinforce
concepts covered in class, but in some cases they are employed to convey ideas that cannot
be learned through lectures alone [11]. It is the premise of the laboratory exercises for Secure
Systems that there are concepts that cannot be internalized without actually doing them.

For many years the laboratory exercise taught in Secure Systems involved a Flaw
Hypothesis Methodology (FHM) [15] [19] study of an existing system. Systems examined
included Windows NT, Windows CE, Linux, and OpenBSD. None were chosen because
they offered superior security, but rather because they were in mainstream use. Students were
organized in teams where each student had both an analytical and an operational role. For the
analytical roles, each student would learn as much as possible about an assigned subsystem of
the operating system. The operational roles included responsibilities such as System
Administrator, Flaw Hypothesis Database Manager, Programmer, Project Leader, etc.

Students were assessed in three areas: collective results of the team, analytical role and
operational role. This was made possible through the project product: a Flaw Hypothesis
Methodology Report. Students were required to create a single coherent report, but each
student had to contribute sections describing the results of the subsystem analysis as well as
how the operational role was fulfilled.

Despite the fact that the students enjoyed the project, they found it to be rather
overwhelming. They were required to learn a lot about a very large operating system in a
very short time, and only then were they able to conduct their flaw hypothesis study.
Another cause of frustration occurred when proprietary operating systems were used. In
these cases, students felt as if they were poking at a black box. When open source systems
were used, the students felt compelled to study voluminous source code listings. Note that a
professional Flaw Hypothesis team undertaking an analysis as part of an operating system
evaluation would have the following: lots of experience in operating systems, experience in
the FHM, full system documentation, and plenty of time. The students had little experience
and little time.

The MINIX operating system was not selected as a target for the flaw hypothesis study,
because it is intended a system for the study of operating system construction by students.
Those chosen for the Flaw Hypothesis work were selected because they were mainstream
operational systems rather than study pieces. However, MINIX is a very appropriate target
for student enhancements.

Since the principle objective of Secure Systems is to teach the concepts of constructive
security [12], a laboratory project based upon the construction of a small security
enhancement to an existing operating system was designed. Students would use a high
assurance development methodology for the enhancement and, thus, would become familiar
with the checks and balances required to construct a system when one of the developmental
threats is subversion. Because students were studying MINIX in a prerequisite operating
systems course, it became the logical target for the high assurance security enhancements.

2. A New Secure Systems Laboratory project

To frame the project, the Reference Monitor Concept was used as the guiding principle
for secure systems design. The MINIX operating system was chosen to be the target
operating system for the project and Common Criteria [5] assurance requirements were used
as requirements for the development process. Each will be discussed in greater detail.

2.1 Reference Monitor Framework

This section is intended to provide a brief overview of the Reference Monitor Concept as
a motivating element for the course and accompanying laboratory activity.

The Reference Monitor Concept [2] is a powerful tool for defining and assessing system
security properties. It has three requirements:

First, the access mediation mechanism is always invoked so that every access is
mediated. If this were not the case, then it would be possible for an entity to bypass the
mechanism and violate the policy that must be enforced.

Second, the access mediation mechanism is tamperproof. In the model, it is impossible
for an attacker to penetrate the protection mechanism such that the required access checks are

not performed with a consequent failure to enforce the security policy allocated to the
mechanism.

Third it must be understandable. Understandability permits the mechanism to be
examined so that confidence is established in its ability to meet the first two requirements. In
general, understandability is enhanced through the minimization of unnecessary complexity
and through a careful design process.

To date, the Reference Monitor Concept is the only effective paradigm we know of for
describing the abstract requirements of secure system design and implementation. No viable
alternative has been introduced and it has proven effective under close scrutiny. In light of
the fact that many vendors do not elect to take a constructive approach to the design and
implementation of secure systems, it may be more important than ever to ensure that students
understand how the constructive security guided by the reference monitor can be applied
across a broad range of systems, while providing an analytical approach to systems that
draws from many disciplines: programming languages, software engineering, computer
engineering, operating systems, networks, etc. [10]

2.2 MINIX

It is very useful for students to examine and work with a real operating system in an
operating systems course. In the early days of UNIX, it was available and used by many
universities. To fill the void created when AT&T withdrew UNIX as an available, living
example of operating system source code, Tannenbaum wrote a pedagogical operating
system that presented a UNIX-compatible interface and made it available to the academic
community [18]. It is a small, modular operating system. Over the years, Tannebaum has
resisted pressures to add features to MINX and it remains a simple operating system intended
as an educational tool. In contrast, LINUX has evolved into a major operating system with a
vast feature set [3].

MINIX provides interface functions for process management, synchronization, file
management, directory and file system management, and time management. Its protection
functions allow the user to manage the protection attributes of files and directories,
presenting the UNIX-like semantics of read/write/execute protection bits. The source code
listing is under 28,000 lines and includes numerous in-line comments. Other than the
protection bits, MINIX offers little in the way of protection features. It does use protected
mode and has protection bits on files, but, for the most part, security has not been given high
importance. (Less than 20 pages is devoted to security in Tannenbaum and Woodhull [18])

At our university, MINIX is used in the operating systems class that is a prerequisite to
the secure systems class. This made it a natural choice for student-devised security
improvements.

2.3 Common Criteria

The Common Criteria [5][6][7] is an international standard used as the basis for the
evaluation of the security properties of information technology products and systems. It
permits independent security assessments to be conducted on these products and systems so
that consumers can have assurance that security requirements have been met. This enables
consumers to select products and systems based upon unbiased evidence rather than vendor
claims.

Security requirements for a Target of Evaluation (TOE) can include confidentiality,
integrity and availability and are expressed in an implementation-independent Protection
Profile and in an system-dependent Security Target. The functional and assurance
requirements are derived from Parts 2 and 3 of the Common Criteria.

Because MINIX has not been constructed to meet a protection profile or security target
and since it would be impossible in an eleven-week class to somehow transform it into a high
assurance product, we focus instead upon the assurance of the security extension.

Assurance requirements are categorized into classes and families and are briefly depicted
in Table 2. The first column is the name of the assurance class, and the second column is the
assurance family within that class. (The interested reader is referred to Section 2.6, Part 3 of
the Common Criteria for an overview of the assurance classes and families.) The third and
fourth columns give the component and a brief description for Evaluation Assurance Level
(EAL) 6. The requirement levied EAL 6 is given along with an indicator of the applicability
of the requirement to the class project. Sometimes a requirement depends upon the security
enhancement being implemented. For example, in the case of guidance documents, students
are required to provide documentation only if the project results in new interfaces for the
users or administrators of the system. This is indicated by P (possibly), while other
requirements are indicated by Y (yes) or N (no).

Table 2. Common Criteria Assurance Classes and Families required for the laboratory project

Assurance Class Assurance Family
Abbreviated
Name and

Component
Component Title EAL6 Project

CM automation ACM_AUT.2 Complete CM automation 2 Y
CM capabilities ACM_CAP.5 Advanced support 5 Y

ACM:
Configuration
Management

CM scope ACM_SCP.3 Development tools CM
Coverage

3 Y

Delivery ADO_DEL.2 Detection of modification 2 N ADO: Delivery
and Operation Installation, generation,

and start-up
ADO_IGS.1 Installation, generation and

start-up procedures
1 N

Functional Specification ADV_FSP.3 Semiformal functional
specification

3 Y

High-level design ADV_HLD.4 Semiformal high-level
explanation

4 Y

Implementation
representation

ADV_IMP.3 Structured implementation of
the TSF

3 Y

TSF Internals ADV_INT.2 Reduction of complexity 2 Y
Low-level design ADV_LLD.2 Semiformal low-level design 2 Y
Representation
correspondence

ADV_RCR.2 Semiformal correspondence
demonstration

2 N

ADV:
Development

Security policy modeling ADV_SPM.3 Formal TOE security policy
model

3 N

Administrator guidance AGD_ADM.1 Administrator guidance 1 P AGD: Guidance
Documents User guidance AGD_USR.1 User guidance 1 P

Development Security ALC_DVS.2 Sufficiency of security
measures

2 Y

Flaw remediation ALC_FLR Not applicable (n/a) n/a N
Life cycle definition ALC_LCD.2 Standardized life-cycle model 2 Y

ALC: Life cycle
support

Tools and Techniques ALC_TAT.3 Compliance with
implementation Standards – all
parts

3 Y

Assurance Class Assurance Family
Abbreviated
Name and

Component
Component Title EAL6 Project

Coverage ATE_COV.3 Rigorous analysis of coverage 3 Y
Depth ATE_DPT.2 Testing: low-level design 2 Y
Functional Tests ATE_FUN.2 Ordered functional testing 2 Y

ATE: Tests

Independent Testing ATE_IND.2 Independent testing-sample 2 N
Covert channel Analysis AVA_CCA.2 Systematic covert channel

analysis
2 N

Misuse AVA_MSU.3 Analysis and testing for
insecure states

3 N

Strength of TOE security
functions

AVA_SOF.1 Strength of TOE security
function evaluation

1 N

AVA:
Vulnerability
Assessment

Vulnerability analysis AVA_VLA.4 Highly resistance 4 N

3. Laboratory Project Objectives

So that we would be able to assess the success of the project, a set of high-level
objectives was formulated.

3.1 Understand concepts of high assurance development

The assurance requirements of the Common Criteria provide the basis for the
development methodology used by the students. Although students may have taken courses
in software methodology and software engineering, they have never applied and augmented
these processes to thwart a malicious insider intent on system subversion [1]. Using a
subversion opportunity analysis [16] as guidance, students can better understand how each
element in the high assurance security engineering process is both necessary and sufficient
for the development of an evaluatable product.

As part of the class a number of papers pertinent to high assurance development are
studied. Several are particularly relevant to the project. For example, Dijkstra’s paper on the
THE Operating System [8] describes the analysis required to ensure that a system is
hierarchically layered and tested for correctness. The use of modularity and data hiding as
described by Parnas [17] must be applied to the design and implementation of the
enhancement. While developing their security enhancement, students obtain a better
appreciation the concepts presented in these and other papers.

3.2 Teamwork and Leadership

Too often, university students are tasked with individual projects. In the development of
real software and systems, individual genius is rarely the paradigm. Instead teams are
organized to develop the product or system. Clearly, if the team consists of bright
individuals, the results may be highly innovative and well constructed, but a product
developed by a loner is a rarity. Unfortunately, the lack of team building projects in computer
science combined with the rather introverted nature of most computer science students results
in serious acculturation problems following graduation. Therefore, an objective of the project
is to force the students to work together as a team. The project is large enough that it
impossible for a single student, who is also enrolled in several other classes, to succeed
single-handed.

Members of the team have various responsibilities. One of the more important roles is
that of team leader. Because our university has students with leadership skills, team leaders
emerge naturally. A good team leader can provide a role model to the less experienced
students who can observe how a leader helps the members achieve their goals through project
management and social skills. The team leaders are not experienced in software project
management, so they learn how to harness the talents of their diverse team members to bring
the effort to a successful conclusion.

3.3 Ancillary Objectives

A tangential objective of the project is that students obtain a more detailed appreciation
of the structure of an operating system. Their previous experience with MINIX combined
with their work on the security enhancement significantly increases their comfort level with
respect to operating systems.

Another objective of the project is to reinforce the students understanding of the
Common Criteria. As graduates of a security program, they may be called upon to compare
systems that lack Common Criteria Evaluations with systems that have been evaluated. The
experience of the Secure Systems project allows them to appreciate the requirements of the
Evaluation Assurance Levels and the contexts in which security benefits gained at the higher
assurance levels are applicable.

4. Exercise Organization

Careful organization is required to ensure that the projects are feasible within the
academic quarter.

4.1 Schedule

Secure Systems is an eleven-week course, so an aggressive schedule is necessary to
ensure that the students have sufficient time to complete their tasks. During the first week of
class, teams are organized and students are familiarized with the types of documentation
required for their secure development methodologies. This means that, although student
teams might not have identified the specific security enhancement they want to implement for
MINIX, they are able to start work on the development documents and procedures. By the
third week of class, teams have identified their proposed security enhancements.

Completed projects are ready for presentation in class and peer evaluation by the end of
the eighth week. Peer evaluations are completed at the end of the ninth week, thus providing
each team with two weeks to implement final improvements to the project.

4.2 Expected Products

Each team is required to select an enhancement to MINIX and then create a high
assurance development framework in order to implement that enhancement. A project report
created by the team is the product. Each student is expected to play several roles on the team.
For example, a student might serve as the team’s system administrator and might also be the
author of the software development standards. Both aspects of the student’s contribution must
appear in the report.

The report should contain descriptions of the configuration management plan, life cycle
management plan, coding standards, minutes of meetings, design documentation, code,
configuration control board decisions, test plans, test results, and considerable other pertinent
documentation. Students are expected to make a presentation of their work in class
approximately three weeks before the end of the course. At that time, their work is turned
over to one of the other teams, who assume the role of evaluators.

The evaluators are expected to produce a short report on the project, copies of which are
made available both to the developers of the security enhancement and to the instructor. The
“evaluation report” is due two weeks before the end of the course, thus allowing each team an
opportunity to make changes to their project prior to submitting it to the instructor. The
evaluation report is constructed by comparing the Common Criteria requirements with the
project report.

4.3 Team Composition, Assets and Motivators

Students taking the secure systems course are quite diverse. Most classes have several
scholarship students, a number of young students who entered the Masters program
immediately upon receiving their undergraduate degrees in computer science, and more
mature students. The majority of the more mature students, who are generally between eight
and ten years past receiving their undergraduate degrees, have some leadership experience.
Among the more experienced students, there are usually several foreign students.

To ensure that teams do not become enclaves of one type of student, for example only
scholarship students or only students for whom English is their second language, constraints
are made on team formation. On the first day of class a roster is handed around that includes
a few questions to be answered by each student. For example, students are asked how many
years it has been since their undergraduate degree and if English is the language with which
they are most comfortable.

The answers to these questions become the basis for team formation constraints, which
are announced at the start of the next class. In the most recent offering of the course, each
team was required to have no more than one of the very youngest students, at least one
scholarship student, and at least one experienced, mature student. This balance ensured that
teams had the combination of the high energy of youth and the wisdom of experience, where
the latter would ensure that the team would not wait until the day before a milestone to start
work on the current phase of the project.

The project requires the use of a variety of systems. Students are encouraged not to use
the same platform for their target system and for their configuration management system.
Most of the students in the course have their own computers. In addition, our university
provides general computing support, with many applications for project management and
document production.

A few years ago, our department acquired approximately twenty laptops that faculty can
reserve for the use of students taking a specific class. To ensure that the students have target
systems for the enhanced versions of MINIX, a minimum of one laptop per team is reserved.

As a motivator for excellence in the project, each class is informed that the team with the
best overall project will be given a half a letter grade bonus. Since this course involves a
number of difficult exams and other challenging assignments, the students earnestly pursue
this motivator.

4.4 Student Assessment

In a team project it is important to know the roles assigned to each team member and to
devise a way so that each student can be judged for his or her individual contributions to the
team effort. Fortunately high assurance development calls for the creation of a number of
documents as well as a number of roles. The team had to come to a consensus regarding the
roles to be assumed by each student and the documents each student was responsible for
writing. When the final project report is turned in, students must describe their contributions
in two major areas: documents created and team responsibilities.

Grading consisted of the following elements, described in Table 3.

Table 3. Project Assessment
Project

Component
Percent of

Grade
Comments

Overall Project 30 The quality of the overall team effort was graded.
Documents

Created
30 To create a methodology for high assurance development, each team

had to develop a number of documents. Each student wrote one or
more of these documents for the team.

Team
Responsibilities

30 These responsibilities related to the role(s) assumed by the student and
how well they were performed. The description of the activities
associated in the role documented in the final report were used in the
evaluation.

Team Feedback 10 Feedback from team members constituted the final portion of the
assessment.

For the instructor, grading the projects has been arduous. Of course, the students have an

opportunity to demonstrate the functionality their security enhancement, but since this is not
the point of the exercise, the instructor faces a considerable amount of paperwork. Each
project report has been over 100 pages long.

5. Discussion

Despite the challenge associated with creating a high assurance development
environment in a rather short time, feedback from students has been positive. The rather
short time frame makes the project very difficult, so the project might be easier at universities
on a semester rather than a quarter schedule.

5.1 Results

Our objective was to instill in the students an appreciation of the processes necessary to
provide assurance that subversion of their deliberately small enhancement to MINIX did not
occur. Students have been able to create effective and successful development frameworks.
Minimization of the scope of the security enhancements is essential for the success of the
projects.

5.2 Problems

Problems are inevitable in any project-oriented undertaking. Below, several of the major
difficulties encountered in the exercise are discussed.

5.3 Students Drop Course

Because each team member has specific responsibilities with respect to the project,
serious problems can occur if a student drops the course. Due to the number of roles
involved, a minimum acceptable team size of four is necessary. To avoid these problems,
students are polled at the beginning of the class to determine if there is anyone in the class
who does not want to be there. Then the teams can be organized in anticipation of a student
drop.

On a few occasions, unforeseen circumstances resulted in withdrawal of a student from
the class. If this draws the team size down to four, no large-scale reorganization was
required; however, if the membership of the team goes below four, drastic steps are taken:
each remaining team member is reassigned to another team, where small teams were chosen
preferentially.

5.4 Non-contributing Team Members

Occasionally a team will have a member who is a laggard. Discussions with the
instructor regarding team progress allow both the team leader and the instructor to seek ways
to solve the problem. Team feedback forms allow team members to indicate team members
who are not contributing adequately, but in a team effort this does not help get the job done.
In such cases, the instructor and the project leader can come to an agreement that, if the
laggard team member does not make the required contribution, the rest of the team would not
be penalized. Fortunately, such dire circumstances have not occurred, but they clearly need
to be considered when developing team projects.

5.5 Project Scope

One team proposed construction of an encrypting file system for MINIX. Although a
major security improvement to the existing MINIX system, it was clearly too large: the
students would not have been able to complete the project by the end of the class. The
instructor must be alert to over ambitious programming projects because at the outset of the
project, students are unaware of the amount of effort required to construct a high assurance
development environment. Had the objective of the course been extensive practice in system-
level design and implementation, then a large project might have been appropriate. In this
case the process was deemed more important than what was to be built.

5.6 Comparison with Other Work

Du [9] has developed a version of MINIX called SMINIX intended for use in teaching
security mechanisms in operating systems. MINIX was enhanced by the faculty to include
the following security features: authentication, access control lists, label-based access control,
capabilities, sandboxing, a Secure file system, and privilege mechanisms. Once SMINIX
was constructed, the interfaces to the new security features were left in place, but the
mechanisms were turned into stubs. In a sequence of laboratory activities of increasing
difficulty, students must implement the mechanism while remaining faithful to the module
interface.

Although this approach teaches students details of the security mechanisms, they do not
learn about the development processes required to achieve assurance. In addition, teamwork
is not emphasized; the projects can be completed individual students.

Nachos [4] is a popular framework for providing experience in operating system
development, however, it does not emphasize security and its use does not necessarily result
in practical experience in either assurance or security mechanisms.

Our project is intended to teach the process of high assurance software and system
development in the context of an international standard for secure system evaluation, rather
than the particulars of specific security mechanisms. Both SMINIX and Nachos could be
adapted to our teaching objectives. Combined with its emphasis on teamwork, these factors
differentiate our laboratory project from the usual system enhancement activities used in
many operating system classes.

5.7 Future Work

Our research group is currently in the process of developing a high assurance example of
trusted computing [13]. The project consists of four related activities: creation of a
framework for the rapid development of high assurance systems, development of a reference-
implementation trusted computing component; evaluation of the component for high
assurance; and open dissemination of the results related to the first three activities.

As this project progresses, we intend to use the reference-implementation trusted
computing component as the basis for the Secure Systems laboratory work instead of MINIX.
Then, instead of making improvements to a patently insecure, low assurance system, the
students will be charged with the development of an enhancement to an existing high
assurance system. The scope of the programming effort is expected to increase along with a
change in the balance between the creation of procedures and standards, and design and
implementation evidence.

In summary, this project has been useful in that it gives students practical insight into the
complexity of the high assurance development process and allows them to work as a team to
develop a rudimentary, but workable, high assurance development framework.

Acknowledgments

This work has been possible through the participation of the many students who enrolled
in Secure Systems. The comments of an anonymous referee were helpful in the creation of
the final version of this paper.

References

[1] Anderson, Emory A., Irvine, Cynthia E., and Schell, Roger R., “Subversion as a threat
in information warfare,” Journal of Information Warfare, Vol. 3, No. 2, pp 52-65.

[2] Anderson, J. P., Computer Security Technology Planning Study. Technical Report
ESD-TR-73-51, Air Force Electronic Systems Division, Hanscom AFB, Bedford, MA,
1972. (Also available as Vol. I, DITCAD-758206. Vol. II DTCAD-772806).

[3] Bovet, D. P., and Cesati, M., Understanding the LINUX Kernel, O’Reilly, Sebastopol,
CA, 2001.

[4] Christopher, C., Procter, S., and Anderson, T., “The Nachos instructional operating
system,” Proc. 1993 Winter USENIX Conference, January 1993, pp. 479-488.

[5] Common Criteria for Information Technology Security Evaluation, Version 2.2,
CCIMB-2004-01-00[1,2,3], January 2004.

[6] Common Evaluation Methodology for Information Technology Security, Part 1:
Introduction and general model, CEM-97/017, Version 1.0, August 1999.

[7] Common Evaluation Methodology for Information Technology Security, Part 2:
Evaluation Methodology, CEM-99/045, Version 0.6. January 1997.

[8] Dijkstra, E., The Structure of "THE"-Multiprogramming System, Communication of
the ACM, Vol. 11, No. 5, May 1968, pp. 345-346.

[9] Du, W., “Developing an instructional operating system for computer security
education,” in 7th Colloquium for Information Systems Security Education,
Washington, DC, June 2003.

[10] Irvine, Cynthia E., “The reference monitor concept as a unifying principle in computer
security education,” Proceedings of the First World Conference on Information
Systems Security Education, Stockholm, Sweden, pp.27-37, June 1999.

[11] Irvine, Cynthia E., “Amplifying security education in the laboratory,” Proceedings of
the First World Conference on Information Systems Security Education, Stockholm,
Sweden, pp. 139-146, June 1999.

[12] Irvine, Cynthia E., “Teaching constructive security,” IEEE Security and Privacy, Vol.
1, No. 6, pp 59-61, 2003.

[13] Irvine, Cynthia E., Levin, Timothy E., Nguyen, Thuy D., and Dinolt, George W., “The
Trusted Computing Exemplar Project,” Proceedings of the 2004 IEEE Systems Man
and Cybernetics Information Assurance Workshop, West Point, NY, June 2004, pp.
109-115.

[14] Irvine, Cynthia E. and Levin, Timothy E., “A doctoral program with specialization in
information security: A High Assurance Constructive Security Approach,” Information
Security Management, Education and Privacy, ed. Deswarte, Cuppens, Jajodia, and
Wang, Kluwer Academic Publishers, Norwell, MA, pp. 173-180, 2004.

[15] Linde, “Operating system penetration”, in National Computer Conference, pages 361-
368, 1975.

[16] Myers, P., “Subversion: the neglected aspect of computer security,” Masters Thesis,
Naval Postgraduate School, 1980.

[17] Parnas, D. L., “On the criteria to be used in decomposing systems into modules,”
Communications of the ACM, Vol. 15, No. 12, December 1972 pp. 1053 – 1058.

[18] Tannenbaum, A., and Woodhull, A.S., Operating Systems: Design and Implementation,
2nd Edition, Prentice Hall, Upper Saddle River, NJ, 1997.

[19] Weissman, “Penetration testing,” in Handbook of Computer Security Certification of
Trusted Systems, Technical report, Naval Research Laboratory, January 1995. NRL
Technical Memorandum 5540:082A.

