
An Editor for Adaptive XML-Based Policy Management of IPsec

Raj Mohan Timothy E. Levin Cynthia E. Irvine
Indian Army Naval Postgraduate School Naval Postgraduate School

rajmohan_iyer@hotmail.com levin@nps.navy.mil irvine@nps.navy.mil

Abstract

The IPsec protocol provides a mechanism to enforce a
range of security services for both confidentiality and
integrity, enabling secure transmission of information
across networks. Dynamic parameterization of IPsec, via
the KeyNote trust management system, further enables
security mechanisms to adjust the level of security service
“on-the-fly” to respond to changing network and
operational conditions. However KeyNote requires that
an IPsec policy be defined in the KeyNote specification
syntax. Defining such a dynamic security policy in the
KeyNote Policy Specification language is complicated
and can lead to incorrect specification of the desired
policy, thus degrading the security of the network. We
present an alternative XML representation of this
language and a graphical user interface to create and
manage a consistent and correct security policy. The
interface has the simplicity of a simple menu-driven
editor that not only provides KeyNote with a policy in
the specified syntax but also integrates techniques to
support administrative policy verification.

1. Introduction

1.1. Objective

Network Protocols such as IPsec and trust
management systems like KeyNote provide mechanisms
to secure computer-to-computer communications. These
tools enable the user to use various encryption and
authentication mechanisms to ensure confidentiality,
integrity and non-repudiation of communications.
Dynamic parameterization [1] of IPsec further enables
security mechanisms to adjust the level of security service
“on-the-fly” to respond to changing network and
operational conditions. The trust management system,
KeyNote, specifies a language for describing actions,
which are operations with security consequences that are
to be controlled by the system [3][4][5]. The language
also provides the syntax for specifying the application
policies, which govern the actions that the principals are
authorized to perform. To translate a dynamic

organizational security policy into the KeyNote
specification language is, however, a daunting task due to
the complexities of the language and the policy. An
incorrect specification of the security policy might result
in a compromise of network security. It is in this context
that the need for an alternative policy specification
mechanism is identified. This mechanism should enable
the user to clearly and correctly specify the policy and
also support user verification that the specified policy is
free of inconsistencies and contradictions. The purpose of
this work is to analyze, design and implement a policy
editor interface that guides a user to specify various
attributes of the IPsec security policy. The policy is
stored in an intermediate XML format. The program will
automatically generate the equivalent policy in the
KeyNote specification language. A presentation
mechanism will be described for providing the user with
an intuitive view of the policy that can be helpful in
preventing inconsistencies and contradictions in the
specified policy.

1.2. Background

The increased dependence on computers for
communication has enhanced the importance of network
security. The use of an inherently insecure Internet as the
medium for communicating sensitive material requires
that the end users have capabilities to ensure that the data
transmitted is secure. Furthermore, network
administrators should have means to translate the desired
organizational security policy into an automated security
policy and have mechanisms to implement this policy
over their network.

IPsec [10] extends the IP Protocol to enable security
for TCP/IP communications. IPsec provides both secrecy
and integrity services. A wide variety of choices are
available when establishing protected communications
across the network. The appropriate choice and
combination of secrecy and integrity mechanisms will
depend upon the many-faceted “trust relationships”
between the communicating entities and the security
environment. Those relationships are constrained by the
policy of each entity. Negotiation of policy and
mechanisms takes place in the context of the Internet Key
Exchange (IKE) framework and the Internet Security
Association and Key Management Protocol (ISAKMP)

[11]. However, IKE and ISAKMPD do not provide a
general mechanism for managing and incorporating
security policy. In order to ensure that IPsec consistently
meets the local security policy needs of the user, a trust
management system may be used to encode policy and
support communications security negotiation and
management [15].

A trust management system unifies the elements of
security policy, credentials, access control, and
authorization. The IPsec implementation in OpenBSD
utilizes a trust management system to manage security
according to policy [2]. Applications can use the
KeyNote trust management system to verify, through the
compliance checker, whether a requested policy addition
or change is authorized [6].

The Quality of Security Service (QoSS) model
provides a means to manage security services based on the
requirements set by the user’s requests, the system’s
security policy, the availability of system resources and
the network environment [8]

Dynamic parameterization of IPsec [1] via
enhancements to KeyNote provides more granularity in
IPsec and provides flexibility to adjust security controls
according to changes in threat conditions, critical time
transmissions, and network congestion/traffic. This makes
IPsec a QoSS mechanism.

The effectiveness of this mechanism depends on
having in place a correct security policy specified in the
KeyNote specification language. For practical real-life
network operations, specifying such a dynamic and
granular policy is an almost insurmountable task due to
the syntactic complexity of the KeyNote language and the
inherent complexity of the policy logic involved. An
XML-based specification of the policy should provide the
desired flexibility, be easy to use, and support an interface
for administration of the security policy. Such a multi-
function toolkit should provide an abstraction of the
KeyNote language and enable users to better utilize the
power of IPsec and KeyNote in managing network
security [12].

1.3. Expected Benefits

A policy management toolkit will enable critical
commercial, government and military computer and
communications systems to automate security service
adjustments according to dynamic environmental
parameter settings, such as current network security status
(INFOCON and THREATCON, in military parlance).
The use of XML in such an effort enables common use of
available XML tools for ensuring security policy
consistency and also utilizes the flexibility and
compatibility that XML provides. An easy-to-use
interface ensures its use and the resulting policy
correctness will provide confidence in the overall security
implementation of the network.

1.4. Organization of this Paper

The paper will be organized as follows: Section 2
provides an overview of the QoSS model. Section 3,
KeyNote Support for QoSS, reviews the KeyNote
language and its specification for the QoSS
implementation in OpenBSD 2.8. Section 4, XML and
Policy Representation, describes XML technologies and
their application to the problem domain. Section 5,
Design and Implementation, presents the design
philosophy of the toolkit; the considerations and overall
architecture will be discussed in detail, and
implementation issues of the components will be
highlighted. Section 6 describes future work, and Section
7 summarizes our results.

2. Quality of Security Service (QOSS)

IPsec provides a high degree of granularity in
discriminating between traffic that is afforded IPsec
protection and traffic that is allowed to bypass IPsec.
Further use of a trust management system such as
KeyNote enables an application to simply ask the
compliance checker whether a requested action should be
allowed. We can use KeyNote to specify a granular
security policy to be enforced by IPsec and also use
KeyNote to verify communications requests based on the
policy. Then, we would be able to modulate the KeyNote
security policy settings dynamically in accordance with
the security and performance requirements of the
applications in particular, and networks as a whole. This
is the essence of ‘Quality of Security Service’ (QoSS).

2.1. Dynamic Parameters and Network
Modes

 Many organizations utilize a variety of dynamic
parameters to define a predefined response of specific
actions according to policy. For the Government and
DoD, examples include INFOCON and THREATCON
levels. In order for a security mechanism to be fully
functional within such a dynamic infrastructure, it has to
be able to reflect those dynamic parameters in its security
posture. A change in an INFOCON or THREATCON
level should have an immediate effect on attributes and
settings in the low-level security mechanisms. Security
level and network mode, defined in the following
sections, have been chosen as two abstract dynamic
parameters that govern changes to security attributes as
defined in the organization’s security policy [13].

In the examples described here, we use the following
network modes: normal, impacted, and crisis. Normal
mode is defined as ordinary operating conditions with
normal traffic load and no heightened threat conditions.
Impacted mode may be defined when the network/system
is experiencing high levels of traffic and therefore certain
security selection may not be available due to efficiency
constraints. Emergency mode may be defined as a

situation that requires the highest level of security or the
lowest level dependent on the situation and policy [14].

2.2. User Choices for Security Levels.

Network security policies may utilize a range of
maximum and minimum-security levels for each variant
security service. Minimum-security levels set the lowest
acceptable security attributes and maximum-security levels
establish a ceiling on the use of available security
resources. Intersections of policies require further
granularity in security settings to satisfy all governing
users and systems. A user may also desire to select a
higher level of security than the predefined minimum.

A user or application, however, may quickly become
overwhelmed with the security setting details, such as the
specific key and algorithm settings of a cryptographic
protocol, potentially resulting in degraded security or
performance. By developing security definitions that
encompass detailed security settings required by users or
applications, the complexity of the selection process for
the security settings can be simplified to a reasonable
level. Our examples involve the use of the following
abstract security levels: high, medium and low. ‘High’
security level would utilize strong levels of security
attributes, medium level, moderate level of security
attributes, and low level, low to no security attributes. In
this approach, the system security resource manager or
security engineer is responsible for presetting (mapping)
the detailed security variables in accordance with the
abstract security levels offered to users or applications.

2.3. Mapping Abstract Parameters to
Security Mechanism.

A mapping of abstract dynamic parameters to resident
security mechanisms is required to properly enforce policy
decisions. For example, network modes may be mapped
to security level ranges and ultimately to security
attributes and settings, as shown in Table 1.

Table 1. Mapping security policies to
security attributes

Network Mode Security Level Security Attributes

Low Encryption: None
Authentication: MD5

Medium Encryption: DES
Authentication: MD5

Normal

High Encryption: 3DES
Authentication: MD5

Low Encryption: None
Authentication: None

Medium Encryption: None
Authentication: None

Crisis

High Encryption: DES
Authentication: MD5

Low Encryption: 3DES
Authentication: MD5

Medium Encryption: 3DES
Authentication: SHA

Impacted

High Encryption: AES
Authentication: SHA

The security resource manager and security engineer
would define the network modes and security levels to
provide the users and applications with appropriate
security service. Once defined, the complexity of the
security mechanism and security attribute selection is
transparent to the user.

2.4. Implementation Issues

Quality of Security Service (QoSS) is a model for the
modulation of security settings and enhancement of
performance based on both necessity (e.g. threat) and
resource availability. It also provides a tool to ensure that
the minimum-security requirements of applications and
the network as defined in the security policy is not
violated. Hence, an adaptive security policy based on
network threat and performance conditions is the key to
optimal and secure utilization of the network resources.
KeyNote provides one such policy specification language
but its practical implementation with complex policy
statements is extremely difficult. A policy toolkit
providing an abstraction for this language was therefore
felt necessary. Our plan was to use the power of KeyNote
for formal compliance checking and at the same time be
easy to use and administer.

3. KeyNote Support for QoSS

The syntax and semantics of the KeyNote language is
described in detail in RFC 2704 [3]. The language is used
for specifying application ‘policies,’ which govern the
actions that principals (entities that can be authorized to
perform actions) are authorized to perform. The language
provides the semantics for describing ‘actions,’ which are
operations with security consequences that are to be
controlled by the system. It is also used for specifying
‘credentials’, which allow principals to delegate
authorization to other principals.

KeyNote assertions are divided into ‘fields’ that serve
various semantic functions. Each field starts with an
identifying label at the beginning of a line, followed by
the “:” character and the fields contents.
One mandatory field is required in all assertions:

• Authorizer
Six optional fields may also appear:

• Comment
• Conditions
• KeyNote-Version
• Licensees
• Local-Constants
• Signature

The conditions field is used to define a security
policy. This field gives the ‘conditions’ under which an
action may be performed.

 Security attributes reside in the conditions field and
are expressed in the form of a logical expression. The
expression’s syntax is similar to that of a programming
language “if statement”. The expression is usually broken
into sub statements by using && (“and”), || (“or”), and
parenthesis to construct logical conditions. For example
the following phrase describes two security proposals
supporting Telnet services (service_port= 23) using ESP
with 3DES for encryption and finger services
(service_port=79) using AH with SHA for authentication:

(local_filter_port == “23” &&
esp_present == "yes" &&

 esp_enc_alg == "3des") ||
(local_filter_port == “79” &&

ah_present == "yes" &&
 ah_auth_alg == "sha") -> “true”;

Using the example above, with security levels “high”
and “low” and network modes “normal” and “impacted”,
the condition expression is expanded:

Conditions: ((app_domain == "IPsec policy") && (
((network_mode = “normal” &&
((security_level = “high” &&
 ((local_filter_port == “23” &&

esp_present == "yes" &&
esp_enc_alg == "3des") ||

(local_filter_port == “79” &&
ah_present == "yes" &&

 ah_auth_alg == "sha"))) ||
((security_level = “low” &&
 ((local_filter_port == “23” &&

esp_present == "yes" &&
esp_enc_alg == "des") ||

(local_filter_port == “79” &&
ah_present == "yes" &&

 ah_auth_alg == "des-mac")))) ||
(network_mode = “impacted” &&
((security_level = “high” &&
 ((local_filter_port == “23” &&

esp_present == "yes" &&
esp_enc_alg == "aes") ||

(local_filter_port == “79” &&
ah_present == "yes" &&

 ah_auth_alg == "sha"))) ||
((security_level = “low” &&
 ((local_filter_port == “23” &&

esp_present == "yes" &&
esp_enc_alg == "3des") ||

(local_filter_port == “79” &&
ah_present == "yes" &&

 ah_auth_alg == "sha-md5")))) -> “true”;

This example illustrates that the complexity of the
language increases dramatically as we add more ports and
parameters to it. The nesting of parenthesis to multiple
levels makes writing a syntactically correct policy file
difficult. In the following section, the use of XML is
described for the practical specification of the KeyNote
policy file.

4. XML and Policy Representation

Extensible Markup Language (XML) [16] is a rapidly
maturing technology with powerful real-world
applications, particularly for the management, display and
organization of data. XML is a technology concerned with
the description and structuring of data. It is a subset of
Standard Generalized Markup Language (SGML), with
the same goals, but with much less complexity. XML is
not a language but a standard for creating languages that
meet the XML criteria. It describes a syntax that you use
to create your own languages [7].

Data is separated from presentation in XML. XML
structures the data, while style sheets format the data
presentation. That makes it easier to use the data for
multiple purposes. The same stylesheet can be used with
multiple documents to create a similar appearance among
them. Alternatively, multiple stylesheets can be applied
to an XML document to provide different forms of
presentation of the data. There are a variety of languages
that can be used to create stylesheets such as Extensible
Stylesheet Language Transformations (XSLT).

4.1. XML DTDs and Schemas

XML includes two methods of checking the validity o
an XML document: document type definitions (DTDs)
and schemas. A document is valid if its XML content
complies with a definition of allowable elements,
attributes and other document pieces. By utilizing special
‘Document Type Definition’ syntaxes or DTDs, it is
possible to check the content of a document type with a
special parser.

A schema is the XML construct used to represent the
data elements, attributes, and their relationships as
defined in the data model. By definition, a DTD and a
schema are very similar [17]. However, DTDs usually
define simple, abstract text relationships, while schemas
define more complex and concrete data and application
relationships. A DTD doesn't use a hierarchical formation,
while a schema uses a hierarchical structure to indicate
relationships. XML schema definitions are also
commonly referred to as XSD.

4.2. XSLT

XSL [19] is used to create stylesheets. An XSL engine
uses these stylesheets to transform XML documents into

other document types, and to format the output.
Extensible Stylesheet Language Transformations (XSLT)
is a language which can transform XML documents into
any text-based format, XML or otherwise. Stylesheets
define the layout of the output document and the location
of the data in the source document. That is, “retrieve data
from this place in the input document; make it look like
this in the output”. In XSL parlance, the input document
is called the source tree, and the output document the
result tree.

4.3. Advantages of XML for the Policy
Specification Language

As described above we have a need to represent the
intended IPsec policy in a form separate from the native
KeyNote representation. Some of the advantages that
would accrue by using XML are as follows:

4.3.1. Tools. Use of XML for specification of the
KeyNote policy file lends itself to be used with the freely
available, verified, tested and user-friendly tools. These
tools include among others, XML editors, parsers,
validators, translators etc. The availability of such tools
and the extensive use of XML in modern communication
protocols and other programs will enable users to
manipulate XML files easily. Wide availability of such
tools will also help in creating and maintaining the policy
files over diverse systems without the need for an
application specific editor.

4.3.2. Platform Independence. It is possible to edit,
maintain and distribute the XML policy file across
different OS platforms.

4.3.3. Single Data Multiple Presentation. Once we
represent the policy in an XML format it is possible to
extract relevant information and present it in different
forms that are more intuitive and useful to the
administrator or the user. XSLT style sheets can be
written and associated with the policy file to generate
different presentation formats. Presenting it in a more
understandable, graphic format will help the administrator
identify any inaccuracies, inconsistencies, or
contradictions in the policy file. Intelligent agents can
also be written to audit the policy file and signal the
administrator for errors in the policy file.

4.3.4. Consistency and Accuracy. XML schemas
and/or DTDs can be used to validate the XML file to see
if it matches our specifications. Validating the policy file
with a well-defined schema will enable errors to be picked
up. This will trap all errors without having to go through
the entire file manually. The use of generic schema
generators and validators only makes this an easier task.
This will also support users in their verification of policy
files received across the networks.

4.3.5. Extensible Format. An XML format will allow
the extension of the policy file to include new constructs.
Additional tags can be defined for elements and attributes

as and when the need to incorporate them arises. This
would not require changes to the application code as long
as the structure of the document is maintained.

4.3.6. Ease of Use. The hierarchical nature of XML
layout results in an easy to use and easy to manipulate
format. It makes the file more modular and more easily
understandable.

4.3.7. Semantic Content Use. The semantic content
of the policy file enables future deployment of intelligent
agents or roaming agents that can read policy files and
report problems, and that can resolve conflicts between
multiple systems by highlighting for instance the
difference in the policies between them.

4.4. Integrating XML and KeyNote Policy

The KeyNote engine requires that the assertions,
credentials and the policy files be specified in its native
syntax. As discussed, there is a clear problem of
differentiation between XML data content and its
representation. Specifying the policy data in an XML
format would enable us to use XSL to translate the data
to any format needed, such as a more human readable
form. Furthermore, specifying an XML schema would
provide us the benefit of validating the XML policy file
for correctness prior to its transformation to KeyNote
syntax.

5. Design and Implementation

The first challenge to using XML for security policy
specification was to determine an alternate representation
of the policy logic in the form of an XML user policy
file. The overall approach was to develop a format for the
user policy file and then create a style sheet to transform
it to the native KeyNote policy file format. This approach
also provides the flexibility of later being able to extract
useful administrative information from the user policy
file.

Arriving at a format for the user policy file is a
challenging task and there are multiple options available.
The primary requirement is that the resulting XML file be
well formed. During this research, multiple formats were
considered. Each had its strengths and shortcomings. For
instance one format would lend itself to an easy
application design while another would permit more
semantic content in the file format. The former therefore
makes it easier to write an application such as a ‘Policy
Editor’ while the latter results in a more descriptive self-
defining file, which could be a good interchange format
between multiple applications. However we realized that
the specific format is not so significant as long as it has
sufficient semantic content to be understandable. This
results because the choice of element tag names, their
sequence etc. is a personal preference: the power of XSL
is always available for another user who wishes to use an
alternative format. Thus arriving at a well annotated, self-
defining and logical policy file format was the endeavor.

The XML User Policy file format we decided on is
illustrated in the following example:

<Conditions>
<ApplicationDomain app_domain="IPsec policy">

<NetworkMode network_mode="normal">
<SecurityLevel security_level="low">

<Port local_filter_port="21"
 remote_filter_port="21">

<Encapsulation esp_present="yes">
<EncryptionAlgorithm esp_enc_alg="des" />
<EncryptionAlgorithm esp_enc_alg="des3"/>

</Encapsulation>
</Port>
<Port local_filter_port="23"

 remote_filter_port="23">
<Encapsulation esp_present="yes">

<EncryptionAlgorithm esp_enc_alg="des3"/>

<EncryptionAlgorithm esp_enc_alg="aes" />
</Encapsulation>

<Ah ah_present="yes">
<AuthenticationAlgorithm

 ah_auth_alg="hmac-sha" />
<AuthenticationAlgorithm

 ah_auth_alg="des-mac" />
</Ah>

</Port>
</SecurityLevel>
<SecurityLevel security_level="medium">

<Port local_filter_port="21"
 remote_filter_port="21">

<Encapsulation esp_present="yes">
<EncryptionAlgorithm esp_enc_alg="des3"/>
<EncryptionAlgorithm

 esp_enc_alg="des-iv32" />
</Encapsulation>

</Port>
</SecurityLevel>
<SecurityLevel security_level="high" />

</NetworkMode>
<NetworkMode network_mode="impacted">

<SecurityLevel security_level="low" />
<SecurityLevel security_level="medium" />
<SecurityLevel security_level="high" />

</NetworkMode>
<NetworkMode network_mode="crisis">

<SecurityLevel security_level="low" />
<SecurityLevel security_level="medium" />
<SecurityLevel security_level="high" />

</NetworkMode>
</ApplicationDomain>

</Conditions>
<Dummy><![CDATA[

]]></Dummy>
</Policy>

Having arrived at the XML policy file format, XSL
stylesheets are used to transform the policy file into the
desired formats. Two stylesheets were designed using
XSLT (Refer Figure 1).

 Figure 1. XSL transformation of XML

 A stylesheet was created for transforming the file to
the KeyNote policy file format. An alternative stylesheet
to transform the XML policy file to a more human
readable, graphical web based format was also written.
The transformed output of the XML Policy file using this
template is shown in Figure 6 (see Appendix).

5.1. Java-based GUI

Although XML provides us with the flexibility to edit
the policy file in any XML editor, it would still be
convenient to provide a graphical user interface to
manipulate the policy file. This would help to eliminate
inadvertent errors, and would enable global policy
decisions to be applied throughout the policy file. An
experienced system administrator could still capitalize on
the use of the XML policy format and edit the file in the
absence of the graphical user interface (GUI).

A Java-based GUI was therefore built to integrate
various components of the software [9]. Drop down
menus and dialog boxes guide the user to input various
parameters required for the policy file. To enable
maintenance of the GUI, called the Policy-Editor, a
separate XML configuration file was used to feed the data
for various drop down menus and combo/list boxes. This
decoupling of the Java code from the configuration data
will enable continued use of the Policy-Editor without the
need to modify the Java code.

Figures 5 through 8 are screen shots of the Policy
Editor. Figure 2 and Figure 3 select ports, and operational
modes and security levels in the construction of a security
policy. Figures 4 and 5 show the granular settings of
encryption and authentication for particular ports. Figure
6 (see Appendix) shows how the XSL transformation of
the resulting policy file displays the policy in a graphical
and more intuitive format.

 Figure 2. Managing ports in the admin
module.

 Figure 3. Admin mode settings for security
level and op modes

 Figure 4. Encryption settings for ports

 Figure 5. Authentication for AH mode

 In addition to the policy editor a generic XML editor,
such as XML Spy (Copyright ©1998-2002 Altova
GmbH) can be used to view and edit an XML Policy file.
Figure 7 (see Appendix) is a screen shot depicting the use
of XML Spy editor to manipulate the XML Policy file
directly. The result of schema validation can also be seen
here. Figure 8 (see Appendix) is the design view of the
schema when viewed in XML Spy, which allows
specification and analysis of the policy from another
viewpoint.

The security policy management toolkit is comprised
of the Java based Policy-Editor and an XML editor such
as XML Spy, XML Notepad, etc. The XML editors are
not essential, but can aid in file manipulation, their
transformation to multiple forms, and validation of
schemas.

6. Future Work

Our work can be complemented with additional work
in a number of areas to provide better tools for policy
management. Listed below are several major items that
will require attention.

6.1. Policy File Format

The XML policy file format currently specified could
benefit from a more elaborate format with tags for other
parameters. XML Namespaces and XML vocabularies
could be utilized for a more comprehensive policy format
[18]. Examples could involve incorporating other
parameters such as algorithm key length, time-of-day
parameters etc. The policy format should be able to
accommodate other Boolean operators such as inequality
definitions (<, >, !=) in the security policy
management mechanism. For example, esp_enc_alg >
DES could imply 3DES and AES if we have an ordering
for the ‘security strength’ of each algorithm. Global

policy statements such as encryption in crisis mode <
3DES, etc., should be possible. Inclusion of IP addresses
in policy statements should also be made possible. These
concepts have been demonstrated in the implementation.
Addition of more parameters as stated above could
however open up possibilities for inconsistencies in
policy statements and the same will have to be carefully
and formally worked out.

6.2. Policy Editor Enhancements

The policy editor interface, though complete and
functional, can be improved upon. The particular
improvements envisioned are as follows:

6.2.1. Global policy settings. The policy editor could
be modified to enable global policy settings. For instance
we could have a statement such as all ports should have a
minimum encryption of DES or the maximum encryption
algorithm for Crisis mode should not exceed 3DES, etc.
(again, assuming a partial ordering of such algorithms).
The global settings option could enter the default settings
for all permissible ports and then more granular changes
could be made.

6 .2 .2 . Translation and viewing XML. XML
translation and viewing currently need the help of a
general purpose XML editor. Using Java packages such as
Javax, the same could be incorporated into the GUI thus
dispensing the need for XML editors for translation.

6.2.3. Schema validation. Validation of the XML
document against DTD and schema need to be
incorporated into the GUI. Validation is currently
performed using an XML tool such as XML Spy.
DOM/JDOM/SAX could be used for this purpose.

6.2.4. Inconsistency and contradiction checks. As
the policy file is extended to include global parameters
and overlapping rules apply to a particular port or
application, inconsistencies and contradictions could
emerge. Various XML tools could help in avoiding this.
Distributed IPsec policies could also give rise to policy
consistency issues.

6.3. XML Interface to KeyNote.

Extending the XML policy language specified here to a
broader XML specification and providing an XML
processor in the KeyNote engine itself would greatly
enhance the use of KeyNote. This could reduce the
overhead of parsing in KeyNote and provide the power of
XML for better auditing and dynamic management of
trust. By providing an XML interface to KeyNote,
application users could define their own versions of the
policy language and use XSL for translating it into the
desired KeyNote format, which would be trivial, or
alternatively they could use the vocabulary specified in
the KeyNote specifications.

7. Conclusion

Security policy management is a critical issue in the
management of computer and networking resources. IPsec
and KeyNote provide a mechanism to implement a
granular security policy. Previous research in the area of
‘Quality of Security Service’ demonstrates how an
adaptive security policy can provide enhanced security
with optimal utilization of network resources. A missing
link in this process was the difficulty in specifying a
well-defined, granular, error free and consistent security
policy in the language understood by the KeyNote trust
management engine. We have presented a solution to this
problem in the form of an easy to use yet powerful
security policy editor. The work demonstrates that use of
XML technology as a middle layer provides us with a
means to combine the security of KeyNote with the
simplicity of a policy editor. This novel approach also
provides us all the benefits of XML, such as XSL and
XML security. While XSL was extensively used, XML
security tools could also be used in follow up future
work.

References
[1] Agar Christopher, Dynamic Parameterization of IPsec,
Master of Science Thesis, Department of Computer Science,
Naval Postgraduate School, December 2001.

[2] Keromytis, A. D., Ioannidis, J. and Smith, J. M.,
Implementing IPsec, In Proceedings of the IEEE Global
Internet (GlobeCom) 1997, pp. 1948 - 1952. November 1997,
Phoenix, AZ.

[3] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis,
A. D, The KeyNote trust management system Version 2, (RFC
2704, Network Working Group, September 1999,
http://www.ietf.org/rfc/rfc2404.txt

[4] Blaze, M., Feigenbaum, J., and Keromytis, A. D.,
KeyNote: Trust Management for Public-Key Infrastructures,
In Proceedings of the 1998 Security Protocols International
Workshop, Springer LNCS vol. 1550, pp. 59 - 63. April 1998,
Cambridge, England. Also AT&T Technical Report 98.11.1.

[5] Blaze, M., Ioannidis, J. and Keromytis, A. D. Trust
Management and Network Security Protocols, In
Proceedings of the 1999 Security Protocols International
Workshop, April 1999, Cambridge, England.

[6] Blaze, M., Ioannidis, J. and Keromytis, A. D., Trust
Management for IPsec, In Proceedings of the Internet Society
Symposium on Network and Distributed Systems Security
(SNDSS) 2001, pp. 139 - 151. February 2001, San Diego, CA.

[7] Hunter, D., Cagle, K., Dix, C., Kovack,R., Pinnock, J., and
Rafter, J., Beginning XML 2nd Edition , Wrox Press Ltd,2002.

[8] Irvine, C.E. and Levin, T., Quality of Security Service,
Proceedings of the New Security Paradigms Workshop, Cork,
Ireland, September 2000

[9] Java 2 Standard Edition, V1.2.2 API Specification,
http://java.sun.com/products/jdk/1.2/docs/api/, Sun
Microsystems, Inc., 1999.

[10] Kent, S and Atkinson, R, Security Architecture for the
Internet Protocol, RFC2401, Network Working Group,
November 1998, http://www.ietf.org/rfc/rfc2401.txt

[11] Maughan, D., Schertler, M., Schneider M., Turner J.,
Internet Security Association and Key Management Protocol
(ISAKMP), RFC 2408, Network Working Group, November
1998, http://www.ietf.org/rfc/rfc2409.txt

[12] Mohan, R. XML Based Adaptive Policy Mnagement in a
trust management system Context, Masters Thesis, Naval
Postgraduate School, Monterey, CA, September 2002.

[13] Spyropoulou, Evdoxia., Agar, Christopher D., Levin,
Timothy, and Irvine, Cynthia, IPsec Modulation for the
Quality of Security Service, NPS-CS-02-001, Naval
Postgraduate School, January 2002.

[14] Spyropoulou, Evdoxia., Levin, Timothy, and Irvine,
Cynthia, Demonstration of Quality of Security Service
Awareness for IPsec, NPS-CS-02-003, Naval Postgraduate
School, January 2002.

[15] Thayer, R., Doraswamy,N., and Glenn, R., IP Security
Document Roadmap, RFC 2411, Network Working Group,
November 1998, http://www.ietf.org/rfc/rfc2411.txt

[16] XML Specification, http://www.w3.org/TR/2000/REC-
xml-20001006 , Aug 2002

[17] XML Schema specifications,
http://www.w3.org/TR/xmlschema-0 , Aug 2002

[18] XML Namespace Recommendation,
http://www.w3.org/TR/REC-xml-names/

[19] XSLT Specifications, http://www.w3.org/TR/xslt , Aug
2002 RFC2396

Appendix: Detailed Screen Illustrations

 Figure 6. XSL transformation of the policy file

 Figure 7. Editing and validation of XML policy file using XML Spy

 Figure 8. Schema design view of the XML policy document

