
An Approach to Security Requirements Engineering
for a High Assurance Systemi

 Cynthia E. Irvine, Timothy Levin, Jeffery D. Wilson, David Shifflett, Barbara Pereira
Department of Computer Science

Naval Postgraduate School
Monterey, California 93943

Abstract
Requirements specifications for high assurance secure systems are rare in the open

literature. This paper examines the development of a requirements document for a
multilevel secure system that must meet stringent assurance and evaluation requirements.
The system is designed to be secure, yet combines popular commercial components with
specialized high assurance ones. Functional and non-functional requirements pertinent to
security are discussed. A multi-dimensional threat model is presented. The threat model
accounts for the developmental and operational phases of system evolution and for each
phase accounts for both physical and non-physical threats. We describe our team-based
method for developing a requirements document and relate that process to techniques in
requirements engineering. The system requirements document presented provides a
calibration point for future security requirements engineering techniques intended to meet
both functional and assurance goals.

Key words: security, requirements, assurance, threat, specification, engineering

1. Introduction
Sometimes an organization possesses information of such a critical nature that its inappropriate exposure or
modification would cause grave damage to the enterprise. Because networked computer systems are now used to
store and manage this sort of highly sensitive information, management may seek assurances that those computers
and networks cannot be misused in ways that result in lapses of security policy enforcement that would expose the
organization to unacceptable risk. Malicious software has long been understood to be a significant threat to
information security [1]. Multilevel secure systems are intended to control the sharing of highly sensitive
information in the face of malicious software in a manner commensurate with policies relating to information
confidentiality and integrity [2].

High assurance computers and networks are intended for the protection of critical information resources in
environments that involve access by individuals with a range of authorizations to enterprise information. A high
assurance system is an implementation of the Reference Monitor Concept [3], a notion that describes an idealized
security policy enforcement mechanism. This ideal has three characteristics. First, it is always invoked to perform
its enforcement duties; thus, the resources it manages are only available via the reference monitor. Second, attackers
cannot successfully penetrate the mechanism and thus cause it to fail. Finally, it is small enough to ensure that it
will, in fact, correctly enforce policy and that it contains no artifices that might be used to neutralize the policy
enforcement mechanism. One objective of high assurance security engineering is to address the threat of system
subversion [4]. Examples of system subversion abound in commercial software as is evident from web sites devoted

i The views expressed in this paper are those of the authors and should not be construed to reflect those of their
employers or the Department of Defense. This work was supported in part by the MSHN project of the
DARPA/ITO Quorum program and by the MYSEA project of the DARPA/ATO CHATS program.

2

to Easter Eggs [5]. Thompson [6] expanded on the work of Karger and Schell [7] to amply illustrated how
subversion can be cleverly implemented to make detection virtually impossible.

A high assurance system is a real instance that approaches the Reference Monitor Concept ideal through a
rigorous security engineering process. Its development begins with the capture of the security policy that needs to
be enforced and an interpretation of that policy in terms of a computer system. This produces a formal security
policy model and subsequent evidence that policy enforcement objectives have been met. In parallel with that
formal approach, the engineering team develops a series of specifications that move from high-level requirements to
detailed implementation documents and code. The system requirements specification is the most abstract of these
specifications. A system requirements specification for a secure system incorporates security consideration in
conjunction with all other requirements. The creation of such a requirements document provides a good example for
those studying security requirements concerns.

In many cases, the design and development of high assurance secure systems has taken place behind closed
doors [8,9,10]. Although these systems have been evaluated under the guidelines of various criteria intended to
assess their security functionality and lifecycle assurance, little documentation is available for public scrutiny
beyond the final evaluation reports published at the end of the evaluation process. The actual documents produced
during system design and development remain cloaked in proprietary secrecy and government constraints and non-
disclosure agreements.

Three of the authors of this paper have been members of engineering teams whose previous work resulted in the
design and implementation of a proprietary highly trusted secure system [10]. Since entering a less restrictive
environment, our collaborators and we have commenced the development of the Multilevel Secure Local Area
Network, a high assurance network that relies on commercial-off-the-shelf (COTS) hardware and software to
present the user interface. This work has been undertaken as a university research project, under government
sponsorship, with the explicit intent of incorporating the commercial/industrial product development practices (e.g.,
per [10]) that are conducive to the production of highly trusted secure systems. This paper describes the general
method used to develop the high-level requirements specifications for a high confidence secure system.

Using our MLS LAN System Requirements Document (see Appendix) for the high assurance multilevel secure
local area network as a backdrop and example, we outline the steps needed to move from an intuitive, ad hoc notion
of the system requirements to a precise, coherent document that can be used for more detailed system specifications
and design. The system requirements specification captures not only the system’s functional requirements but the
non-functional requirements as well.

The construction and use of a system requirements document for a trusted system does not in and of itself ensure
that the resulting system is secure, and the point of this paper is not to convince the reader that the target system is
secure. In the end, formal and informal analysis (including testing) of the system, its design, its usage
documentation and its requirements are necessary to understand whether or not the constructed system is “secure”
with respect to its policy. Thus, examination of the requirements specification, and/or the requirements
documentation process (e.g., this paper) will not lead to conclusive understanding of the security provided by the
described system. A comprehensive formal evaluation of the MLS LAN (e.g., see [11]), which would be the
ultimate assessment of the requirements documentation methodology described here, has not been completed. We
note that the evidence described in this paragraph provides evaluators with a basis for assessing the assurance or
confidence one may ascribe to a security implementation.

The remainder of this paper presents our requirements development method. To put the requirements
specification process in the proper context, background information about the MLS LAN is provided in Section 2.
Techniques used to create the specification are discussed in Section 3 with reference to Appendix A, an image of the
requirements specification document. This section presents our multi-dimensional threat model as well as the
method we used to develop the specification. Some general observations about high assurance security
requirements specifications and recommendations for process improvement follow in Section 4. Our conclusion is
presented in Section 4.2.

3

2. Overview of the Multilevel Secure LAN
The Center for INFOSEC Studies and Research (CISR) Multilevel Secure Local Area Network (MLS LAN) project
[12,13,14,15] at the Naval Postgraduate School is an effort to develop a high assurance LAN that leverages COTS
components. The project was driven by two overarching requirements. The first was to protect security-critical
information from unauthorized disclosure or modification. The second was to provide users with the ability to use
popular COTS office productivity tools for information organization and management at authorized sensitivity
levels.

To achieve these objectives, we undertook the design and development of a prototype infrastructure for
applications: a local area network that incorporates both high assurance security policy enforcement mechanisms
and COTS software and hardware platforms for users’ desktops. The former was intended to leverage the
considerable government investment in highly trusted systems, while the latter objective resulted from the
realization that unless a secure system offered users the same sort of convenient interfaces users have come to
expect when handling normal information, the secure system would be likely to fail due to lack of user acceptability
[16].

Figure 1: CISR MLS LAN Architecture

The CISR MLS LAN provides controlled sharing of labeled information while permitting users to access that
information through popular PC-based COTS personal and office productivity applications. Its architecture is
illustrated in Figure 1 [14].

The high assurance server enforces the security policy and controls access to information. It is the core trusted
computing base (TCB) for the distributed system. Application protocols run on the High assurance server and
provide services and access to shared resources. Each PC is equipped with a trusted computing base extension
(TCBE) plug-in board that provides TCB support at the workstation. From these clients, users log on to the TCB,
establishing an identity for audit and access control purposes. The TCB components, either the high assurance
server base or the TCB extensions, are the only components directly connected to the physical network. Individual
components are discussed below.

4

2.1 Trusted Servers
Each Trusted Server consists of the high assurance TCB, which enforces critical security policy, and untrusted
application server instances (viz., one per security level per user) constrained by the TCB. The server supports
sharing and labeling and is functionally equivalent in terms of overall application-level protocol support to a COTS
application server for the particular protocol it is providing. Thus, it is compatible with existing COTS client
packages.

Included in the application servers we have adapted to the high assurance environment are: Internet Mail Access
Protocol (IMAP) [17] based on a port of the University of Washington IMAP server [18], Hypertext Transfer
Protocol (HTTP) providing an Apache-based port [19], and Simple Mail Transfer Protocol (SMTP) based on
sendmail [20]. The servers required little or no code modification to be adapted to the multilevel environment. With
a proper configuration, users can view information at or below their current session levels.

2.2 High Assurance Base
The Wang XTS-300 provides our high assurance base [21]. This TCB, by virtue of the protection domains it creates,
provides confidence that malicious code will neither cause the exfiltration of sensitive data nor the corruption of
information of higher integrity. Thus, one has confidence of correct security policy enforcement.

The high assurance server is defined by the broad properties needed for a viable commercial product. Our
definition of a high assurance base is a TCB on the Evaluated Products List (EPL) [22] with a Class B3 or higher
digraph based on an evaluation against either the Trusted Computing System Evaluation Criteria (TCSEC) [11] or
its network interpretation [23], or equivalent Common Criteria requirements [24].

Minor modifications to XTS-300 TCB networking interfaces contribute to the support of the following desired
functions: (1) a trusted path between client workstations and the XTS-300, (2) session-level negotiation at the XTS-
300 from the client workstations, and (3) single-level session communications on the Ethernet for client
workstations at different session levels. Our modifications permit multiple clients at different access classes to
securely communicate with the server through a single physical network device [17]. As stated in Section 1, while
these modifications are designed to be secure, their formal verification has yet to be completed [14].

2.3 Client Workstations
Client workstations are typical COTS PCs hosting a popular commercial operating system and a commercial
application suite. For mail services the clients include: Lotus Notes, Outlook, Pine, Postal, and Netscapeii. A typical
browser supports the client interface to web pages.

To insure that object reuse requirements are met, workstations are considered, in effect, “diskless,” with
sufficient volatile RAM-disk capability to support a wide variety of user applications. The workstation TCB
extension satisfies object reuse requirements by ensuring that RAM and other volatile primary and secondary
storage at the workstation are purged with each change of session level or new user login at the workstation.

2.4 Trusted Computing Base Extension
To extend the TCB across the network, the architecture includes a trusted computing base extension (TCBE) at each
COTS workstation [25,15,26]. This component is planned to provide the following services:

• A secure attention key (SAK) that permits users to establish unambiguous communication with the high
assurance TCB for unspoofable presentation and capture of security critical data at the user interface.
• Non-bypassable, controlled access to the LAN.
• Protected communication channels between the TCB and the TCBE. These protected communications are
based upon protocols that support both the establishment and maintenance of a trusted path and session-level
communications.

ii These application names: Lotus Notes, Outlook, and Netscape, are trademarked by their respective owners.

5

• Mechanisms to ensure high assurance object reuse at the client PC for both primary and secondary storage.
While the implementation of these mechanisms is still in progress, experiments by Agacayak [27] indicate
that this is possible with the addition of an add-on card.
• Control of the client and its resources at the time of boot, as well as control over security critical actions
throughout the client session.
• Return to a secure initial state after an interruption in normal processing (e.g., system crash).

We concluded that a carefully written and reviewed system requirements document is necessary to guide the
development of the system architecture and various communications protocols needed in the trusted LAN.

3. Requirements Specification
In this section we provide some insights into our system requirements specification process. The motivation for the
process is described. Functional and non-functional requirements are discussed. Our multidimensional threat model
is presented. Finally we describe our requirements specification method.

3.1 Motivation and Objectives
A principal motivation for producing a system requirements specification was to provide focus for a complex effort.
As we began exploring the design of a group of distributed mechanisms that had to result in coherent enforcement of
the network security policy, it became clear that unless each mechanism had the same conceptual system as a goal,
the result might be ineffective. In order to create a functional specification from which we could proceed, a
requirements document that could be shared among all members of the engineering team was produced.

Another driver for the process was the desire to have a tool that would enable us to judge when we were done
building the LAN. The students were particularly concerned about requirements drift and requirements inflation
[28] that might have created a Sisyphean, never-ending, task. The requirements specification also allowed us to
examine the system in the abstract to determine whether some essential element had been omitted.

Several of us viewed requirements specification development for high assurance secure systems as a social
process within the context of a larger engineering design and development effort and wanted to teach this aspect of
high assurance system requirements specification to a new generation. We are not aware of any books or tools that
can convey the social and interactive nature of this process as well as actual participation in the effort.

The objective of the requirements specification process was to produce a high level yet rigorous description of
system behavior that is complete, consistent, and well formed. Our project objective was to produce a framework
for an enabling technology to both support desired user applications and enforce the security policy. The
requirements specification describes what we are trying to do, not how we are going to do it.

3.2 Functional and Non-Functional Security Requirements
Some past requirements-research efforts have stated very broadly that all security requirements are non-functional
[29,30]. On the other hand, it has been suggested that “functions” implement system state changes and that
functional requirements define how those functions will behave and what states can be reached [31]. In the latter
case, certain security requirements are functional, as they affect changes in state. Consider for example an attempt
to gain access in a system enforcing a mandatory confidentiality policy. Models for implemented systems [32,33]
describe system state changes while preserving system security properties. While the state of the system is being
functionally transformed, non-functional requirements ensure that a set of orthogonal system properties are
maintained.

To illustrate the nature of functional and non-functional requirements, consider two systems: a system enforcing
a mandatory confidentiality policy (designated SECURE) and a system to automate traffic lights (designated
TRAFFIC). Table 1 illustrates a few requirements for each. For the traffic light system, the requirement that the
traffic light turns yellow after it has been green for three minutes is a state-changing requirement and is therefore
functional. The accuracy of the clock that must be used to measure when three minutes have elapsed presents a non-
functional, non-state changing requirement. For the secure system, users must present a valid password in order to

6

log in to the system. This is a requirement which must be met in order for a state change from user-logged-on to
user-logged-in to occur. Similarly, the requirement that secret information be stored in objects labeled SECRET
affects whether information can move from an unstored to a stored state. In contrast, the requirement for the
accumulation of an audit trail recording all access attempts does not affect system state. When access attempts
succeed, state changes and when they fail state is unchanged. In either case, an audit record is generated.

Table 1: Functional and Non-Functional Requirements

Type Requirement System
Functional A user shall present a valid password in order to log in to the system. SECURE

Secret information shall be stored in objects labeled SECRET. SECURE

The traffic light shall turn yellow after it has been green for three minutes. TRAFFIC

Non-Functional Audit records shall be recorded for all access attempts. SECURE

The accuracy of the clock shall be to within five seconds. TRAFFIC

Thus, we conclude that the construction of a high assurance system intended to enforce national security policy
imposes both functional and non-functional requirements on a system. However, our requirements specification is
not organized to distinguish functional from non-functional security requirements, as we did not consider that to be
an advantage for this project.

3.3 Threat Model
The system requirements specification is motivated by an organization of various classes of threats, characterized as
a “threat model.” The threat model is derived through extensive experience with both trusted system design
elements and vulnerability analyses of the target environments. The basic elements of the engineering process
[28,34] are extended to address the threat model. Figure 2 illustrates our modification to the requirements process.

Figure 2: Requirements Process

An understanding of the threat model within the system’s developmental and operational domains drives system
requirements. The threat model deals with abstract classes of threats with respect to these domains, such as
subversive attacks against the system code base and malicious attacks against the system interface, rather than
detailed exploitation mechanisms, such as identity spoofing or elevation of privilege. As stated in Section 2, the
objective of the system, and hence the focus of threat analysis (which may deal with more detailed exploitations), is
to enforce a policy regarding the disclosure and modification of sensitive information. Availability is not a primary
concern, as is reflected in the threat model.

7

The threats to be addressed are of two kinds, representing the domains of concern. Developmental threats form
the first major class of threats to the TCB. These are threats to the ability of the system to fulfill its design
requirements. There are many design and implementation mistakes that can occur during a standard software
development project [35]. The threat of subversion by insiders [4, 36] is a major concern during the development of
secure systems, considering that the objective is to construct a system that is self-protecting [16]. To counter
mistakes due to poor engineering, we use a rigorous engineering process. To counter subversion, we use
configuration management and quality assurance procedures that require, for example, two-person authorization and
other redundant safeguards at key control points. Much like an internal banking system, these safeguards are
designed to protect against antagonistic individual insiders, rather than massive collusion.

Development threats are illustrated in Figure 3. Interfaces to the TCB are shown and threats utilizing those
interfaces are illustrated in hexagons. These threats include both physical and non-physical attacks. It is worth
noting that adequate configuration management and quality assurance can mitigate many physical threats during the
system development phase. Additional measures, including procedural security policies, to address physical threats
include traditional disaster recovery methods [37] such as: fire and earthquake protection, off-site backups, and
locked offices and laboratories.

A comprehensive framework is needed during the development phase of a secure system to counter
developmental threats. A requirements specification for this framework is beyond the scope of the example in
Appendix A, but some guidance for high assurance development appears in standard evaluation criteria [11,24].

Figure 3: Development Threats

8

The second, and more obvious, class of threats is operational threats. These are the threats that the system is
designed to counter during its operation, and that typically come to mind when one thinks of system security. In the
case of the MLS LAN, a high assurance multilevel system, the threats fall into three classes: network threats,
malicious software, and user or application misbehavior. Network threats are attacks to the communications
protocols within the LAN. For example, an attempt could be made to use a non-TCBE equipped workstation
attached to the LAN to modify or collect communications traffic. Malicious software is the principal operational
threat to the server. This software would attempt to violate security policies for information confidentiality or
integrity by obtaining unauthorized access to information. Trojan Horse software represents a classic example of
malicious software and can be used to either directly or indirectly access information [38]. Misbehavior applies to
the MLS LAN Workstation where both user actions and malicious software may be used as attack paths. In this
case, either users or software attempt to nullify the TCB Extension in order to gain unauthorized access to protected
information.

We further decompose the operational threats into software threats and physical threats. Figure 4 illustrates the
system of interest, i.e., the trusted computing base (TCB), its interfaces, and the operational software threats to the
system by external elements that will drive the requirements specification. Thus the TCB is the internal system. Its
interfaces are to the communications protocols, application protocol server, and MLS LAN Workstation. (A direct
correspondence between Figure 4 and the second figure of the requirements document (MLS LAN Component
Overview) can be observed.) External threats are network attacks, malicious software and misbehavior. The
requirements document, when complete, addresses these threats. For example, in the requirements document, the
section on MLS LAN Connection Protocol Requirements addresses mitigation of the threat of network attacks on
the system.

Figure 4: Operational Software Threats

9

An oft-neglected aspect of system lifecycle management that requires attention is the prospect of physical access
to and tampering with the system. For example, if an individual were to break the seals on the XTS-300 or the
TCBE and replace the chip containing the BIOS, this could render the system insecure. So, in addition to the usual
configuration management concerns the issue of physical protection of the fielded trusted system components must
be addressed. Physical threats complement software threats to the operational system, and are illustrated in Figure 5.
The TCB and its interfaces are the same, but the external threats are tampering with the communications lines, and
TCB components, i.e., the XTS-300 or the TCB Extensions.

Figure 5: Operational Physical Threats

In summary, our threat model accounts for the developmental and operational stages of system evolution, and
for each stage, accounts for both physical and non-physical threats. As the customer objective was not the
enforcement of an availability policy, the threat model for this project does not address denial of service concerns.

10

3.4 Method
Using a requirements specification format [39], we started with a skeletal requirements specification and filled in
sections. We often found that requirements from one section would affect decisions associated with another aspect
of the system. Thus the requirements specification process was iterative within the component.

We used a two-level “iterative” waterfall process [40] to ensure that the requirements specification was realistic
with respect to the design. This hybrid process combines elements of the classic waterfall and the spiral [41]
development processes to allow objective-driven stepwise refinement, as well as “upstream” feedback. After
completing what appeared to be a reasonable draft of the system requirements specification, we moved to the
development of a functional design specification for various communications protocols and protection mechanisms
of the distributed TCB. (Drafts of both the requirements specification and the functional specification appeared as
appendices to a student thesis [42].) This was a much more detailed and concrete design statement that provided
insights into the implementation details we were working toward. Those realities fed back into the (upstream)
system requirements document in interesting ways.

1. Design decisions gone awry sometimes indicated the need for a guiding principle at the requirements
level. For example, the need to repair an overly complex design for storing user data led to the
requirement for the Session Database Server to maintain data on each User Session (A.3.2.3.3).

2. Fundamental requirements statements moved out of design and up to requirements. For example,
repeated statements about the need for a Secure Attention Key mechanism in different circumstances at
the design level were replaced by a single statement at the requirement level (A.3.2.1.1)

3. Conflict with real world possibilities resulted in clarification or refinement at the requirements level. For
example, the possibility of session corruption resulting from a broken connection led to the inclusion of a
requirement to sever network access to resources if the underlying communication channel is broken
(A.3.2.1.3).

Concurrent development of a functional specification allowed us to identify notions that could potentially be
generalized in the requirements document. Conversely, items more appropriate for the functional specification were
removed from the requirements document. For the less experienced members of the team, the temptation to include
implementation details as requirements was enormous. It is fun to think about the implementation, but it is infinitely
harder to describe the abstract system. On the other hand, feedback from the more detailed design phase plays a key
role. This iterative waterfall approach permitted us to develop documents that would be suitable for evolutionary
engineering processes [43,44] as experiential or environmental factors lead to requirements for new versions of the
system.

Abstraction is one of the principal objectives of a high-level requirements specification and one of the most
difficult to achieve. Although our specification is intentionally abstract it is not intended to be vague, but instead
semantically precise. There should be no ambiguity with respect to requirements that the system absolutely had to
meet. In addition, the specification should be sufficiently abstract that a variety of implementations could satisfy the
requirements [31]. For example, our specification states in Section 3.2.1.1 “the TCB shall provide a Secure
Attention Key (SAK) mechanism to invoke a trusted path from workstations to which the TCB has been extended.”
Nowhere is there a statement regarding how that SAK should be implemented: that is the purview of the design
team. It could be invoked from a keyboard using a combination of keys such as “CTRL-ALT-DEL” or it could be
invoked using a special button.

Another aspect of the system that is abstracted away is the functionality associated with the applications. They
are relevant to the framework under consideration only in so far as they impose requirements for support from the
network in the form of resources for processing capability, memory and network bandwidth.

A key part of the process of developing the requirements specification involved recognition of implementation
details. Through a process of winnowing, we were able to avoid inclusion of the implementation details. Some
detailed descriptions were transferred to nascent design documents; some discarded; and others were generalized
and abstracted to become true requirements. For example, instead of stating what application protocol services were
to be supported, the specification states in Section 3.1.3 that “the MLS LAN shall provide...application protocol
services ...”.

11

A fundamental concept for requirements development is that of completeness with respect to the goals, as well
as well as functionality. In reviewing progress and draft versions, tests for completeness can include gedanken
exercises, such as: “can a useless or insecure system be built to this abstract specification?” A mapping of the
requirements specification to the threat models is used to ensure that all threats are accounted for. The individual
and group reviews ensured that these questions were asked regularly throughout the requirements development
process.

3.4.1 Social Process in Requirements Specification
Ultimately, system implementation is the job of the entire team, however during the specification process, it is
necessary to consider the perspectives of a larger set of individuals. During the requirements specification process,
different members of our specification team were assigned to represent the needs of the various stakeholders in the
ultimate product: customers, users, developers, certifiers and accreditors. The customer must be represented
because, otherwise the system might become an amusing sandbox for implementation team experimentation and the
likelihood that the system would actually be used would be substantially reduced. The engineering team requires
representation because this is the group that must be able to move from the abstract specification to a concrete
implementation. Certifiers and accreditors must be represented because they are the ones responsible for attesting
that the implementation is faithful to the specification. Various sets of system users are represented and include
typical users, operators, and administrators. The most senior members of the team, who serve as system architects,
represented the government customer. Junior members of the group represented developers whose task would be
system implementation. Our experience was that the active representation of all stakeholders helped to ensure that
the specification was well balanced with respect to the various, and sometimes conflicting, needs of these
stakeholders.

For several months we met on a weekly basis to discuss each new draft of the document. This type of teamwork
is best achieved in an environment in which criticism is viewed not as a subjective attack on the writer but as an
objective, scientific attempt to achieve the best possible result. As the team matured, criticism was accepted and
members with strengths in particular areas were able to contribute in corresponding ways to the emerging document.

The team approach adds to the assurance of the resulting system and mitigates development threats. Because a
group of system architects inspected the documents and discussed its semantics, the addition of a subversive artifact
during the design stage is considerably more difficult [4]. This threat is directly addressed by way of the project’s
configuration management and quality assurance system.

3.4.2 Implicit Requirements
Inspection of the MLS LAN System Requirements Document shows that a number of the functional requirements
are quite general. The system must support application protocols, but it is not necessary to specify which protocols.
The system must support inexpensive commercial PCs as user workstations. It must support up-to-date versions of
commercial operating systems. It follows implicitly that client applications can be up-to-date. The latter two
requirements encompass not only a requirement for immediate system performance, but also one for adaptability in
that both the COTS operating system and the applications it supports must be upgradeable at any time.

4. Summary
When attempting to build a high assurance system, the objective is to provide a high level of confidence that
security policy will be correctly and continuously enforced. Minimization has been recognized as an effective
means of ensuring that the system can be judged for correctness and completeness [45]. In a minimized system we
ask two questions: first, are all components within the system boundary, i.e., the Trusted Computing Base perimeter,
necessary for the correct enforcement of security policy, and, second, are the mechanisms organized such that they
are sufficient for security policy enforcement. If additional functionality is added to the secure system, then
additional effort will be required to demonstrate that the result meets the assurance requirements. The task in
developing a requirements document is to restrict the design of the system by providing sufficient detail so that
system specifications are well focused.

12

4.1 A Calibration Point
Over the past decade there has been significant work in the area of requirements engineering [30] and new efforts
are underway to extend these achievements to the area of security requirements engineering. What metric should be
applied to judge the effectiveness of these new security requirements engineering techniques? Will those
requirements be sufficiently abstract to permit the development of a wide range of system implementations? Will
those requirements introduce restrictions that will facilitate the development of system specifications and other
documents [31]? The requirements document provided here is a worked example in that it has provided both the
abstraction and restrictions necessary to shorten the effort required to specify and construct a high assurance
multilevel system. Thus, our specification can provide a calibration point for new techniques in requirements
engineering.

4.2 Conclusions
This paper examines the development of a requirements document for a multilevel secure system that must meet
stringent assurance requirements. The system is designed to be secure, yet combines popular commercial
components with specialized high assurance ones. We describe security objectives as having both functional and
non-functional requirements. A multi-dimensional threat model that accounts for developmental and operational
phases of system evolution and considers both physical and non-physical threats is presented. Physical threats to the
system are explicitly addressed in the requirements engineering process. We describe our team-based approach to
system specification and design. By assuming the views of various stakeholders in the system, through open, non-
judgmental discourse, and by using the threat model and the high-level design specifications as a check, we have
developed an abstract requirements specification. The specification of the NPS MLS LAN provides a worked
example of a requirements document for a high assurance secure system and thus may be unique in the open
literature. Our specification can be used as a calibration point for future security requirements engineering
techniques intended to meet both functional and assurance goals.
5. Acknowledgements
The authors wish to thank Dr. Luqi for useful discussions of the requirements engineering process. The authors are
grateful to their U.S. Navy and government sponsors for their support of this research.

References
 [1] W.!H. Ware. Security Controls for Computer Systems: Report of Defense Science Board Task Force on

Computer Security. Technical Report R-609-1, Rand Corporation, Santa Monica, CA, 1970.
[2] D.!L. Brinkley and R.!R. Schell. Concepts and Terminology for Computer Security. In Abrams, Jajodia, and

Podell, editors, Information Security: An Integrated Collection of Essays, pages 40–97. IEEE Computer
Society Press, Los Alamitos, CA, 1995.

[3] J.!P. Anderson. Computer Security Technology Planning Study. Technical Report ESD-TR-73-51, Air Force
Electronic Systems Division, Hanscom AFB, Bedford, MA, 1972. (Also available as Vol. I,DITCAD-758206.
Vol. II, DITCAD-772806).

[4] P.!Myers. Subversion: The Neglected Aspect of Computer Security. Master’s thesis, Naval Postgraduate
School, Monterey, CA, 1980.

[5] The Easter Egg Archive. http: //www.eeggs.com/, last modified 19 May 2000.
[6] K.!Thompson. Reflections on Trusting Trust . Communications of the A.C.M., 27(8): 761–763, 1984.
[7] P. A. Karger and R. R. Schell, Multics Security Evolution: Vulnerability Analysis, ESD-TR-74-193, Vol. II,

Electronic System Division, Air Force Systems Command, Hanscom AFB, Bedford MA, June 1974
[8] National Computer Security Center. Final Evaluation Report: Boeing Space and Defense Group, MLS LAN

Secure Network Server System, 28 August 1991.
[9] Gemini Trusted Network Processor (GTNP). In Information Systems Security Products and Service Catalog

Supplement, Report No.CSC-PB-92/001. April 1992. 4-SUP-3a.3.

13

[10] National Computer Security Center. Final Evaluation Report of Gemini Computers, Incorporated Gemini
Trusted Network Processor, Version 1.01, 28 June 1995.

[11] National Computer Security Center. Department of Defense Trusted Computer System Evaluation Criteria,
DoD 5200.28-STD, December 1985.

[12] C.!E. Irvine, J.!P. Anderson, D.!Robb, and J.!Hackerson. High Assurance Multilevel Services for Off-The-Shelf
Workstation Applications. In Proceedings of the 20th National Information Systems Security Conference, pages
421–431, Crystal City, VA, October 1998.

[13] J.!P. Downey and D.!A. Robb. Design of a High Assurance Multilevel Mail Server (HAMMS). Master’s thesis,
Naval Postgraduate School, Monterey, CA, 1997.

[14] S.!Bryer-Joyner and S.!Heller. Secure Local Area Network Services for a High-Assurance Multilevel Network.
Master’s thesis, Naval Postgraduate School, Monterey, CA, March 1999.

[15] S.!Balmer. Framework for a High-Assurance Security Extension to Commercial Network Clients. Master’s
thesis, Naval Postgraduate School, Monterey, CA, September 1999.

[16] J.!H. Saltzer and M.!D. Schroeder. The Protection of Information in Computer Systems. Proceedings of the
IEEE, 63(9): 1278–1308, 1975.

[17] IMAP Information Center. http: //www.washington.edu/imap/.
[18] B.!Eads. Developing a High Assurance Multilevel Mail Server. Master’s thesis, Naval Postgraduate School,

Monterey, CA, March 1999.
[19] E.!Bersack. Implementation of a HTTP (Web) Server on a High Assurance Multilevel Secure Platform.

Master’s thesis, Naval Postgraduate School, Monterey, CA, December 2000.
[20] E.!Brown. SMTP on a High Assurance Multilevel Server. Master’s thesis, Naval Postgraduate School,

Monterey, CA, September 2000.
[21] National Computer Security Center. Final Evaluation Report of HFSI XTS-200, CSC-EPL-92/003 C-

Evaluation No. 21-92, 27 May 1992.
[22] Evaluated Products List, National Computer Security Center. http: //www.radium.ncsc.mil/tpep/epl/.
[23] National Computer Security Center. Trusted Network Interpretation of the Trusted Computer System

Evaluation Criteria, NCSC-TG-005, July 1987.
[24] ISO/IEC 15408 - Common Criteria for Information Technology Security Evaluation. Technical Report CCIB-

98-026, May 1998.
[25] J.!Hackerson. Design of a Trusted Computing Base Extension for Commercial Off-The-Shelf Workstations

(TCBE). Master’s thesis, Naval Postgraduate School, Monterey, CA, September 1997.
[26] B.!Turan. Client Bootstrap Under TCBE Control. Master’s thesis, Naval Postgraduate School, Monterey, CA,

March 2000.
[27] C.!Agacayak. TCBE Control of Object Reuse in Clients. Master’s thesis, Naval Postgraduate School,

Monterey, CA, March 2000.
[28] V.!Berzins and Luqi. Software Engineering with Abstractions. Addison Wesley, Reading, Massachusetts, 1990.
[29] J.!Mylopoulos, L.!Chung, and B.!Nixon. Representing Using Nonfunctional Requirements: A Process-Oriented

Approach. IEEE Transactions on Software Engineering, 18(6): 483–497, June 1992.
[30] A.!van Lamsweerde. Requirements engineering in the year 00: A research perspective. In Proc. ICSE’2000 -

22nd International Conference on Software Engineering, pages 5–19, Limerick, Ireland, June 2000. ACM Press.
[31] D.!Parnas and J.!Madey. Functional documents for computer systems, in Science of Computer Programming,

volume!25, October 1995, chapter pages 41–61.
[32] D.!E. Bell and L.!LaPadula. Secure Computer Systems: Mathematical Foundations and Model. Technical

Report M74-244, MITRE Corp., Bedford, MA, 1973.
[33] D.!E. Bell and L.!LaPadula. Secure Computer System: Unified Exposition and Multics Interpretation.

Technical Report ESD-TR-75-306, MITRE Corp., Hanscom AFB, MA, 1975.
[34] I.!Sommerville. Software Engineering. Addison-Wsley, Reading, MA, Fifth edition, 1995.
[35] N.!G. Leveson. Safeware. Addison Wesley, Reading, Massachusetts, 1995.
[36] E. A. Anderson, A Demonstration of the Subversion Threat: Facing a Critical Responsibility in the Defense of

Cyberspace, Master’s thesis, Naval Postgraduate School, Monterey, CA, March 2002.

14

[37] C.!P. Pfleeger. Security in Computing. Prentice Hall, Inc., Englewood Cliffs, NJ, 2nd edition, 1986.
[38] B.!Lampson. A Note on the Confinement Problem. Communications of the A.C.M., 16(10): 613–615, 1973.
[39] K.!L. Heninger. Specifying Software Requirements for Complex Systems: New Techniques and their

Applications. IEEE Transactions on Software Engineering, 2(1): 2–12, January 1980.
[40] W.!W. Royce. Managing the Development of Large Software Systems: Concepts and Techniques. In

Proceedings WESCON, August 1970.
[41] Boehm, Barry W., "A Spiral Model of Software Development and Enhancement", SIGSOFT Software

Engineering Notes, 11, 22-42, 1986.
[42] J.!Wilson. Trusted Networking in a Multilevel Secure Environment. Master’s thesis, Naval Postgraduate

School, Monterey, CA, June 2000.
[43] Luqi. Software Evolution Through Rapid Prototyping. IEEE Computer, 22(5): 13–25, May 1989.
[44] Luqi. A Graph Model for Software Evolution. IEEE Transactions on Software Engineering, 16(8): 917–927,

August 1990.
[45] M.!Gasser. Building a Secure Computer System. Van Nostrand Reinhold, New York, NY, 1988.

APPENDIX
A. MLS LAN System Requirements Document - Version 0.2

A.1 Introduction
A.1.1 Purpose
The purpose of this System Requirements Document is to define the design requirements for the Naval Postgraduate
School Center for INFOSEC Studies and Research (CISR) Multilevel Secure Local Area Network (MLS LAN)
Project.
A.1.2 Scope
This requirements document provides extensive information concerning the design requirements for each of the
components of the MLS LAN project. It outlines the mandated system goals perceived for successful completion of
the project and the development of an operational multilevel secure local area network. It is understood that some of
the specified requirements are designated as mandatory to fulfill near-term functionality and are to be addressed in
the initial design. Other requirements, that are annotated, are considered to be future goals and are recorded to
support long-range design specifications. This requirements document is intended to provide sufficient detail and
content to assist the design team in specification definition.

A.2 System Overview
A.2.1 MLS LAN System Overview
The MLS LAN Project is an effort to provide government and commercial organizations with a cost effective,
multilevel, easy-to-use office environment leveraging existing high assurance technology [Ref. 1]. The goals of the
project are to produce a networking environment that provides concurrent high assurance access for network users to
data at multiple sensitivity levels through the incorporation of inexpensive commercial personal computers.

15

Figure A.2.1. MLS LAN Component Overview

The proposed systems architecture for the MLS LAN is based on the use of the Wang Government Services
Incorporated XTS-300(tm) Class B3 rated server. [Ref. 2] The XTS-300 provides both mandatory and
discretionary access controls, which “allow separation of users who are at different clearance levels, and prevents a
lower level user from reading a higher level user’s files or data". [Ref. 3] In accordance with the TCSEC Class B3
rating requirements, the XTS-300 establishes a “Trusted Computing Base" (TCB) that contains all of the Trusted
Software Commands, the TCB System Services (TSS), and the Security Kernel. It is the last that implements the
TCSEC defined Reference Monitor concept in the XTS-300 [Ref 4]. The MLS LAN incorporates a “logically
isolated and unmistakably distinguishable" trusted communications path between the server and its clients through
development of a Trusted Computing Base Extension (TCBE). The TCBE will provide a trusted network interface
entity for verifiable expansion of the TCB over the communications path to the client workstation. The current
hardware solution for the TCBE is to be developed using the Intel I960jx or comparable processor. The TCBE will
dominate all actions of the untrusted workstation and allow connectivity into the High Assurance LAN only
following the establishment of a trusted path.

16

A.2.2 MLS LAN User Description
The MLS LAN user is any operator, regardless of authentication, who accesses MLS LAN resources or network
functionality. A TCB Authenticated user is one who has successfully established a TCB-to-User connection and
been validated by the TCB for operations within the MLS LAN. A Non-TCB Authenticated User, which is a future
requirement, is one who has not been validated by the TCB. Accountability of Non-TCB Authenticated Users shall
be provided using existing commercial authentication and identification mechanisms.
A.2.3 Component Descriptions
The MLS LAN is comprised of three components (Fig 2.1). The principal component is the Trusted Computing
Base (TCB), which provides an fixed security perimeter for MLS LAN operations. Network functionality for access
to available application software, file transfer, electronic mail, or remote printing is provided by the Network
Application Protocol Services. Finally, the MLS LAN requires a workstation that acts as an agent for the User to
access any required network functionality.

Figure A.3.1. TCB Layering Abstractions

17

A.2.3.1 Trusted Computing Base
The Trusted Computing Base is an abstraction for the collection of elements of a computer system that pertain to the
security policy. Its aegis encompasses all policy enforcement mechanisms, any auditing (retrieval and analysis),
identification and authentication, and the interface for security administration.
A.2.3.1.1 Trusted Computing Base Services
The services provided by the MLS LAN to establish a Class B3 rated Trusted Computing Base were outlined in
section 2.1 “MLS LAN System Overview". To extend this TCB securely to users additional services are required.
A.2.3.1.2 TCBE Extension Server
The use of the XTS-300 High Assurance Server enables the MLS LAN to place a trusted daemon process in the
Operating System Services (OSS) Domain that can provide the protection and communications protocols necessary
to establish a trusted path between the workstation and MLS LAN. This “Server" process is used to extend the TCB
perimeter securely over the network to the requesting TCBE-equipped workstation. This “Server" process will
provide the following functionality: user identification and authentication, session negotiation, session activation,
and session termination. [Ref 5.]
A.2.3.1.3 Secure Session Server
The Secure Session Server is an additional trusted daemon “Server" process contained in the OSS. This process will
only accept incoming Network Application Protocol Service requests from workstations/users that have established
a session via the trusted path and the TCB Extension Server. Validated requests will be passed on to untrusted
Application Protocol Servers, operating on behalf of the user, at the user’s negotiated session sensitivity level [Ref
5.]

(Future Requirement) The Secure Session Server will accept Network Application Protocol Services requests
from workstation/users that have not established a session, viz. Non-TCB Authenticated Users. These requests will
be passed on to untrusted Application Protocol Servers, operating as a system defined anonymous user, at a system
defined low secrecy, low integrity, session sensitivity level.
A.2.3.1.4 MLS LAN Session Database Server
The MLS LAN requires a trusted database to maintain all pertinent information concerning each unique TCB
session connection. The Session Database Server must provide protection for trusted “read" functionality from all
TCB entities and “write" functionality from the TCB Extension Server.
A.2.3.1.5 Trusted Computing Base Extension
The Trusted Computing Base Extension (TCBE) is a hardware-based computer subsystem that is embedded into the
MLS LAN workstation. The TCBE provides the MLS LAN with a verifiable high assurance entity that can be used
to extend the TCB.
A.2.3.1.6 MLS LAN Connection Protocols
The MLS LAN connection protocols define the parameters for initiation, security and communications
establishment between two or more components of the MLS LAN.
A.2.3.2 Network Application Protocol Services
The MLS LAN uses the TCP/IP stack to support numerous Application Layer Protocol services such as Hyper Text
Transfer Protocol (HTTP), Internet Message Access Protocol (IMAP), and File Transfer Protocol (FTP). These
services are provided to the users through Application Protocol Servers (APS). While use of these application
services are considered “untrusted" and external to the TCB, their access is controlled strictly through the Secure
Session Server allowing access to data of multiple sensitivity levels.

18

A.2.4 MLS LAN
The MLS LAN workstations are the network computers employed by the user to access MLS LAN resources and
network functionality.

A.3 System Requirements
A.3.1 MLS LAN Requirements
A.3.1.1
The MLS LAN shall support multiple simultaneous workstation connections.
A.3.1.2
The MLS LAN shall support simultaneous high assurance access for unique workstations operating at different
sensitivity levels.
A.3.1.3
The MLS LAN shall provide access to shared resources, application protocol services, and popular application
products for both TCB Authenticated Users and, in the future, Non-TCB Authenticated Users.
A.3.1.4
The MLS LAN shall provide high assurance connectivity to application protocols that give access to multiple levels
of data in accordance with security policies.
A.3.2 Trusted Computing Base Requirements
This section elaborates on the requirements for the TCB in total. The overall requirements are germane to each of
the sub-components while their specific requirements are contained in subsequent sections. An abstract depiction of
the MLS LAN layering is provided in Figure 3.1.
A.3.2.1 TCB Overall Requirements
A.3.2.1.1
The TCB shall provide a Secure Attention Key (SAK) mechanism to invoke a trusted path from workstations to
which the TCB has been extended.
A.3.2.1.2
The TCB shall establish a trusted path communications connection between network users and the Trusted
Computing Base. This trusted path shall be established for initial session authentication purposes, such as “login" or
for any specified user operations that require a trusted path, such as “logout", “set session level", downgrade, change
user password, etc.
A.3.2.1.3
Once the session has been established, the TCB shall not allow the TCB-to-TCBE Protocol Channel to be broken
without loss of network functionality with respect to shared resources, protocol services and applications provided
by the MLS LAN.
A.3.2.1.4
The TCB shall allow the user to change the current session sensitivity-level up to the configured maximum for that
user.
A.3.2.1.5
The TCB shall provide assurance that the security policy will be enforced in the presence of malicious software.
A.3.2.1.6
The TCB shall provide protection against disclosure and modification of information on all communications
channels used by the network.
A.3.2.1.7
The TCB shall control access all devices and networks external to the MLS LAN.

19

A.3.2.1.8
(Future Requirement) The TCB shall limit the allowable session sensitivity-level to the greatest lower bound
between the user’s clearance and the TCBE security rating.
A.3.2.2 Trusted Computing Base Extension Requirements
A.3.2.2.1
The TCBE shall support the use of Trusted Path communications with the TCB for security related operations.
A.3.2.2.2
The TCBE shall prevent data retention between session security levels and support proper object reuse.
A.3.2.2.3
The TCBE shall support a hardware mechanism that has the ability to purge all memory between session security
levels.
A.3.2.2.4
The TCBE shall maintain the ability to reset the host computer system.
A.3.2.2.5
The TCBE shall support the use of a secure attention key.
A.3.2.2.6
The TCBE shall control the information flow into and out of the host computer system.
A.3.2.3 MLS LAN Connection Protocol Requirements
A.3.2.3.1
The MLS LAN shall provide a protocol that supports both the establishment of a secure interaction communications
channel and the mutual authentication between two TCB entities. This protocol will be known as the “Protected
Communications Channel (PCC) Protocol". This protocol will establish the security conduit through which all other
MLS LAN protocols operate.
A.3.2.3.2
The MLS LAN shall provide a protocol to support communications between a TCBE equipped workstation and the
TCB Extension Server. This protocol will be known as the “TCB-to-TCBE Protocol".
A.3.2.3.3
The MLS LAN shall provide a protocol to support the secure transfer of information from the TCB Extension Server
to the Session Database Server to initialize or modify the data maintained on each User Session. This protocol will
additionally support the query by a TCB Entity to the Session Database Server for information concerning a User
Session. This protocol will be known as the Session Status Protocol.
A.3.2.3.4
The MLS LAN shall provide a protocol to support a TCBE equipped workstation connection to a MLS LAN Secure
Session Server. This protocol is the conduit for application protocols and will be known as the “TCBE-to-Session
Server Protocol".
A.3.2.3.5
(Future Requirement) The MLS LAN shall provide a protocol to support the connection of a workstation that is not
using TCBE services to an untrusted Application Protocol Server, e.g., INTERNET or WWW.
A.3.2.3.6
(Future Requirement) The MLS LAN shall provide a protocol to support a connection of a workstation that is not
using TCBE services to a MLS LAN Application Protocol Server.
A.3.3 MLS LAN Network Application Protocol Services Requirements.
A.3.3.1
The MLS LAN shall support multiple simultaneous accesses to higher layer application protocols, e.g., HTTP,
IMAP or FTP.

20

A.3.3.2
The MLS LAN Application Protocol Servers shall provide access to shared network resources, and popular
application products for TCB authenticated users.
A.3.3.3
Access to data maintained on the MLS LAN Applications Protocol Servers (APS) shall be controlled by the TCB in
accordance with the security policy.
A.3.3.4
(Future Requirement) The MLS LAN Application Protocol Servers shall provide access to shared network
resources, and popular application products for Non-TCB authenticated users.
A.3.4 MLS LAN Workstation Requirements
A.3.4.1
The MLS LAN shall support the use of two configurations of inexpensive commercial personal computers:
A.3.4.1.1
Trusted Computing Base Extension (TCBE) equipped.
A.3.4.1.2
(Future Requirement) Non-TCBE equipped.
A.3.5
The MLS LAN Workstations shall support up-to-date commercial operating systems.
A.3.6
The MLS LAN TCBE Equipped Workstation shall be [in effect] “diskless thin-client" computers operating under
the control of the TCBE.

A.4 MLS LAN System Restrictions
A.4.1 MLS LAN Restrictions
A.4.1.1
The MLS LAN shall support no more than one logged in user per workstation at a time.
A.4.2 Environmental Restrictions
A.4.2.1
The TCB platform shall not be subjected to physical tampering.
A.4.2.2
The TCBE hardware shall not be subjected to physical tampering.

A.5 Abbreviations, Acronyms, and Definitions

Abbreviations, Acronyms

APS - Application Protocol Server
CISR - Center for INFOSEC Studies and Research
FTP - File Transfer Protocol
HTTP - Hyper Text Transfer Protocol
IMAP - Internet Message Access Protocol
LAN - Local Area Network
MLS - Multilevel Secure

21

NPS - Naval Postgraduate School
OSS - Operating System Services
SAK - Secure Attention Key
TCB - Trusted Computing Base
TCBE - Trusted Computing Base Extension
TIC - Trusted Interaction Channel
TSS - TCB System Services
TCSEC - Trusted Computer Security Evaluation Criteria

Definitions
Trusted Computing Base: The Trusted Computing Base is defined as “The totality of protection
mechanisms within a computer system - including hardware, firmware, and software - the combination of
which is responsible for enforcing a security policy. A TCB consists of one or more components that together
enforce a unified security policy over a product or system. The ability of a trusted computing base to
correctly enforce a security policy depends solely on the mechanisms within the TCB and on the correct input
by system administrative personnel of parameters (e.g., a user’s clearance) related to the security policy" [Ref
4.]
Trusted Path: The Trusted Path is defined as “A mechanism by which a person at a terminal can
communicate directly with the Trusted Computing Base. This mechanism can only be activated by the person
or the Trusted Computing Base and cannot be imitated by untrusted software." [Ref 4.]
Session: A Session is defined as the period of interaction between a user and entities within the MLS LAN
following session activation and until session termination. Sessions are established or denied based upon
based on “attributes such as the location or port or access, the user’s security attribute (e.g., identity, clearance
level, integrity level, membership in a role), ranges of time (e.g., time-of-day, day-of-week, calendar dates) or
combinations of parameters." Limitations may be placed upon user active sessions such as limitations of the
number of multiple concurrent sessions or session locking based upon inactivity. [Ref 6.]
TCB Authenticated User: A TCB Authenticated user is one who has successfully established a TCB-to-
User connection and been validated by the TCB for operations within the MLS LAN.
Non-TCB Authenticated User: A Non-TCB Authenticated user is one who has not been validated by the
TCB.

A. References
1. Irvine, C. E., Anderson, J. P., Robb, D. A., and Hackerson, J. High Assurance Multilevel Services for Off-
The-Shelf Workstation Applications. In Proceedings of the 20th National Information Systems Security
Conference, pp. 421-431, Crystal City, VA, October 1998.
2. Downey, J., Robb, D. Design of a High Assurance Multilevel Secure Mail Server (HAMMS), Naval
Postgraduate School, Monterey CA, September 1997.
3. XTS-300, STOP 4.4.2, Trusted Facility Manual, Document ID: FS96-371-07, Wang Government Services
Inc.
4. Department of Defense Trusted Computer System Evaluation Criteria, DoD 5200.28-STD, National
Computer Security Center, December 1985.
5. Bryer-Joyner, S., Heller, S. Secure Local Area Network Services for a High Assurance Multilevel Network,
Naval Postgraduate School, Monterey, CA. March
6. 1999Common Criteria for Information Technology Security Evaluation Version 2.1, Common Criteria
Project Sponsoring Organisations, August, 1999

