NPS-CS-02-001
January 2002

A\
-

.
v ‘c R Iwhite paper

The Center for INFOSEC Studies and Research

KeyNote Policy Files and Conversion to
Disjunctive Normal Form for Use in IPsec

Evdoxia Spyropoulou, Timothy E. Levin, Cynthia E. Irvine

Center for Information Systems Security Studies and Research
Computer Science Department

Naval Postgraduate School

Monterey, California 93943

Conversion of KeyNote Policy Filesto DNF for 1Psec

KeyNote Policy Filesand Conversion to
Digunctive Normal Form for Usein | Psec

Evdoxia Spyropoulou Timothy Levin Cynthialrvine

Naval Postgraduate School
Monterey, CA

1. Introduction

In this technical report we describe the utility we developed for converting a KeyNote policy file to
Digunctive Norma Form, so that it can be further utilized in our research on Quality of Security Service
for IPsec. Some background information on KeyNote and IPsec, on the Digunctive Normal Form of
logical expressions, as well as on | ex and yacc tools, which we employ in our utility, can be found in
paragraphs below.

2. KeyNoteand itsusein | Psec

2.1 KeyNote background

Details on the syntax of KeyNote policy files can be found in [1], [2], [3]. The paragraphs below are taken
from [2], [3].

KeyNote is a smple and flexible trust-management system designed to work well for a variety of large-
and small- scale Internet-based applications. It provides a single, unified language for both locd policies
and credentials. KeyNote policies and credentids, called assertions, contain predicates that describe the
trusted actions permitted by the holders of specific public keys. KeyNote assertions are essentially small,
highly-structured programs. A signed assertion, which can be sent over an untrusted network, is aso
caled acredential assertion. Credential assertions, which also serve the roleof certificates, have the same
syntax as policy assertions but are aso signed by the principa delegating the trust.

In KeyNote, the authority to perform trusted actions is associated with one or more principals. A principal
may be a physica entity, a process in an operating system, a public key, or any other convenient
abstraction. Principals perform two functions of concern to KeyNote: They request “actions and they
issue “assertions.’ Actions are any trusted operations that an application places under KeyNote control.
Actions are described to the KeyNote compliance checker in terms of a collection of name-vaue pairs
caled an action attribute set. The action attribute set is created by the invoking application. Assertions
delegate the authorization to perform actions to other principals.

KeyNote provides advice to applications on the interpretation of policy with regard to specific requested
actions. Applications invoke the KeyNote compliance checker by issuing a query containing a proposed
action attribute set and identifying the principal(s) requesting it. The KeyNote system determines and
returns an appropriate policy compliance value from an ordered set of possible responses. The policy
compliance value returned from a KeyNote query advises the application how to process the requested
action. In the smplest case, the compliance value is Boolean (e.g., "reject” or "approve").

Conversion of KeyNote Policy Filesto DNF for 1Psec

Assartions are the basic programming unit for specifying policy and delegating authority. Assertions
describe the conditions under which a principal authorizes actions requested by other principals. An
assertion identifies the principa that made it, which other principals are being authorized, and the
conditions under which the authorization applies.

A specid principa, whose identifier is "POLICY", provides the root of trust in KeyNote. "POLICY" is
therefore considered to be authorized to perform any action. Assertions issued by the "POLICY" principal
are caled policy assertions and are used to delegate authority to otherwise untrusted principas. The
KeyNote security policy of an application consists of a collection of policy assertions.

KeyNote assertions are divided into sections, caled fields that serve various semantic functions. One
mandatory fidd is required in dl assertions: Authorizer. Six optiona fields may aso appear: Comment,
Conditions, KeyNote-Version, Licensees, Local-Constants, and Signature.

The Authorizer identifies the Principal issuing the assertion.
The Comment field alows assertions to be annotated with information describing their purpose.

The Conditions field gives the “conditions under which the Authorizer trusts the Licensees to perform
an action. "Conditions are predicates that operate on the action attribute set.

The KeyNote-Version field identifies the version of the KeyNote assertion language under which the
assertion was written.

The Licensees field identifies the principals authorized by the assertion. More than one principa can
be authorized, and authorization can be distributed across several principals through the use of “and'
and threshold constructs.

The Local-Constants field adds or overrides action attributes in the current assertion only.

The Signature field identifies a sgned assertion and gives the encoded digita signature of the
principd identified in the Authorizer field.

Action attributes provide the primary mechanism for applications to pass information to assertions.
Attribute names are strings from a limited character set, and attribute values are represented internaly as
strings.

2.2 KeyNotein I Psec

IPsec provides security services including confidentiality, integrity, authenticity, through the
establishment of Security Associations (SA) among the entities that wish to communicate. The SA is a
"smplex connection that affords security services to the traffic carried by it" and it essentidly is "a
management construct used to enforce a security policy in the IPsec environment” [4]. There is a set of
parameters associated with each SA, which includes, among others. SA lifetime, encryption and/or
authentication algorithms and keys, and protocol mode (tunnel/transport). The SAs can be generated
manually, but that approach does not scale well. The Internet Key Exchange (IKE) aong with the Internet
Security Association and Key Management Protocol (ISAKMP) address the problem of establishing and
maintaining SAs through the use of an automated daemon.

The IPsec protocols themselves do not include an approach for managing the policies that control which
hogt is alowed to establish SAs with another host and what kind of characteristics the SAs should have.
We are using the OpenBSD's implementation of IPsec [5]. This implementation addresses the SA
management problem by including the KeyNote trust management system and providing an additiona
check in the IPsec processing: it makes sure that the SAs to be created agree with alocal security policy
(that can be expressed in KeyNote's language).

Conversion of KeyNote Policy Filesto DNF for 1Psec

KeyNote is used in OpenBSD for enforcing the local policy that controls which host is alowed to
establish SAs with another host and what kind of characteristics the SAs should have. When two IKE
daemons negotiate for establishing an SA, the initiator sends across proposals for the SAs he is willing to
establish. As mentioned in [6] "IKE proposas are "suggestions' by the initiator of an exchange to the
responder as to what protocols and attributes should be used on a class of packets. For example, a given
exchange may ask for ESP with 3DES and MD5 and AH with SHA1 (applied successively on the same
packet), or just ESP with Blowfish and RIPEMD-160. The responder examines the proposals and
determines which of them are acceptable, according to policy and any credentials. The god of security
policy for IKE is thus to determine, based on local policy, credentias provided during the IKE exchanges
(or obtained through other means), the SA attributes proposed during the exchange, and perhaps other
(dde-channdl) information, whether a pair of SAs should be ingtdled in the system (in fact, whether both
the I1Psec SAs should be installed). For each proposal suggested by or to the remote IKE daemon, the
KeyNote system is consulted as to whether the proposal is acceptable based on loca policy and remote
credentids (e.g., KeyNote credentials or X509 certificates provided by the remote IKE daemon)”. The
loca policy is contained in the i saknpd. pol i cy file, which is smply a flat ASCII file containing
KeyNote policy assertions.

The responder selects a proposd, the first one from the list of proposals that are sent to him that conforms
to hislocal policy (as expressed in i saknpd. pol i cy). He sends this proposal back to the initiator. The

initiator checks hisown i saknpd. pol i cy, to make sure that the selected proposal indeed agrees with
hislocd policy.

Briefly, KeyNote policy assertions used in IKE have the following characteristics as described in [6]:
The Authorizer field istypicaly "POLICY".

The Licensees field can be an expression of pass phrases used for authentication of the Main Mode
exchanges, and/or public keys (typicaly, X509 certificates), and/or X509 Canonica names.

The Conditions field contains an expression of attributes from the 1Psec policy action set (see below
for more details).

The ordered return-values set for IPsec policy is "false, true".

Information about the proposals, the identity of the remote IKE daemon, the packet classes to be
protected, etc. are encoded in what is caled an action set. The action set is composed of name-vaue
dtributes, smilar in some way to a shell environment variable. These values are initidized by the IKE
daemon before each query to the KeyNote system, and can be tested against in the Conditions field of
assertions. Note that assertions and credentials can make reference to non-existent attributes without
catastrophic failures (access may be denied, depending on the overal dstructure, but will not be
accidentally granted). One reason for credentials referencing non-existent attributes is that they were
defined within a specific implementation or network only.

The action attributes that are currently defined for IPsec can be seen in Figure 1 and more details on them
and their values can be found in [6].

app_donmi n

do

initiator

phase_1

pfs

ah_present, esp_present, conp_present
ah_hash_al g

esp_enc_alg

conp_alg

Conversion of KeyNote Policy Filesto DNF for 1Psec

ah_auth_alg

esp_auth_alg

ah_|ife_seconds, esp_life_seconds, conp_Ilife_seconds
ah_|life_kbytes, esp_life_kbytes, conp_life_kbytes
ah_encapsul ati on, esp_encapsul ati on, conp_encapsul ati on
comp_di ct _si ze

conp_private_alg

ah_key length, esp_key length

ah_key rounds, esp_key length

ah_group_desc, esp_group_desc, conp_group_desc

phasel _group_desc

remote filter_type, local _filter_type, renote_id_type
remote _filter_addr_upper, local _filter_addr_upper, renote_id_addr_upper
renmote filter_addr_|ower, local _filter_addr_|ower, renote_id_addr_ | ower
renmote filter, local _filter, renote_id

renmote filter_port, local _filter_port, renote_id_port
renote filter_proto, local _filter _proto, renpte_id proto
renot e_negoti ati on_address

| ocal _negoti ati on_address

GMITi meOf Day

Local Ti meOf Day

Figure 1: 1Psec Action Attributes
In Figure 2 an example of atypical i saknpd. pol i cy file can be found.

Keynot e-version: 2

Li censees: "passphrase: mekm tasdi goat” || "x509-base64: abcd=="

Comment: This policy accepts anyone using shared-secret
authentication with the password nmeknitasi sgoat, or the
public key contained in the X509 certificate encoded as
"abcd==", as long as he does ESP only (no AH) using perfect
forward secrecy with either 3DES or | DEA.

Aut hori zer: "POLICY"

Conditions: app_domain == "|Psec policy" && doi == "ipsec" &&
pfs == "yes" && esp_present == "yes" && ah_present == "no" &&
(esp_enc_alg == "3des" || esp_enc_alg == "idea") -> "true"

Figure 2: A typicd i saknpd. pol i cy file

3. Digunctive Normal Form of KeyNote policy files

3.1 Definition of Disunctive Normal Form

A boolean expression is an expression involving variables each of which can take on either the value true
or the value false. These variables are combined using boolean operations such as AND (conjunction),
OR (digunction), and NOT (negation) [7].

A statement is in Digunctive Norma Form (DNF) if it is a digunction (sequence of ORS) consisting of
one or more diguncts, each of which is a conjunction (AND) of one or more literas (i.e., statement letters
and negations of statement letters) [8].

Examples of digunctive normal forms include:
(A&&B)| (A &&C)

Conversion of KeyNote Policy Filesto DNF for 1Psec

(A&&C)|(B&&C)

(A&&B&&!C)[|('B&& C) || (B && C&& D)

where the symbols !, &&, ||, denote the logical NOT, AND, OR respectively.

Every expresson in logic conssting of a combination of multiple &&, |, and !s can be written in
digunctive normal form.

3.2 General algorithm for conversion to DNF
By systematically applying the laws of Boolean agebra, a digunctive normal form for any Boolean
expression can be computed as follows [9]:

() If any negation appears outside any parenthesis in the expression, move it insde by applying de
Morgan laws

I(A&& B)=!A||!B

I(A|B)=!A&& !B

This way the expression now involves |etters and negations of |etters combined by ANDs and ORs.
(i1) Use the distributive identities to create a digunction of conjunctions of literas

AllB&& C)=(A]B)&& (A]C)

A&& B|C)=(A&&B)|(A&&C)

(i) If any conjunction contains both a letter and its negation, it can be dropped.

3.3 Motivation for conversion of policy filesto DNF

The KeyNote policy file i saknpd. pol i cy contains the acceptable values for the IPsec parameters.
Our policy may accept more than one value for some of the attributes. For example, the palicy file:

KeyNot e- Ver si on: 2
Aut hori zer: "POLICY"
Li censees: "passphrase: mekm t asdi goat"”

Conditions: app_domain == "|Psec policy" &&
((esp_present == "yes") &&
((esp_enc_alg == "des") || (esp_enc_alg == "3des")) &&
((esp_auth_alg == "hmac-nd5") || (esp_auth_alg == "hnmac-sha"))

) -> "true";

accepts IKE proposals for encryption with the ESP protocol as long as the encryption algorithm is one of:
DES, 3DES and the authentication agorithm one of: MD5, SHA. This policy file accepts any vaue for
the rest of the IPsec SA attributes.

The DNF form of the Conditions fied is:

((app_domain == "I Psec policy") && (esp_present == "yes") &&
(esp_enc_alg == "des") && (esp_auth_alg == "hmac-nd5"))

| |

((app_donmmin == "I Psec policy") && (esp_present == "yes") &&
(esp_enc_alg == "des") && (esp_auth_alg == "hmac-sha"))

| |

((app_dommin == "IPsec policy") && (esp_present == "yes") &&
(esp_enc_alg == "3des") && (esp_auth_alg == "hmac-nmd5"))

Conversion of KeyNote Policy Filesto DNF for 1Psec

|
((app_domain == "IPsec policy") && (esp_present == "yes") &&
(esp_enc_alg == "3des") && (esp_auth_alg == "hmac-sha"))
So in the DNF form each conjunction describe a possible combination of 1Psec SA attributes and values
that avaid SA proposal can contain.

The DNF form is useful for constructing SA proposals from it. Currently the IKE daemon retrieves SA
proposals from a configuration file, sends them across to the IKE peer, and checks whether the peer’s
selected proposal agrees to the policy in i saknpd. pol i cy. Soloca policy is represented in two aress.
the daemon’s configuration file and KeyNote policy file. This causes a problem in the area of security
policy management. We have modified the IKE process so that it retrieves information for the proposals
from the KeyNote policy file. The policy file in DNF contains the set of al acceptable proposals,
athough al the SA characteristics may not be described. It is a straightforward process though to
construct the full proposals that will be sent to the peer by using default values for the |Psec attributes not
mentioned in the policy files.

Furthermore the DNF form of the KeyNote policy file facilitates another area of our work, which is
briefly described below.

We have introduced the notion of Quality of Security Service (QoSS) which refers to the ability to
provide security services according to user and system preferences and policies [10]. The enabling
technology for both QoSS and a security-adaptable infrastructure is variant security, or the ability of
security mechanisms and services to alow the amount, kind or degree of security to vary, within
predefined ranges.

We have described how variant security can be offered and presented to applications and users in an
organized manner [11]. Two abstractions were introduced:

an operational mode parameter, Network Mode, which represents the influence external conditions
and network status could have on the security policy and security services applicable to a task: for
example under certain conditions, an administrator may be willing to accept more (or less) security
for a given application. Example values for this parameter are: “normal”, “impacted”, “emergency”.

a Security Level parameter, which represents the choices available to users within the ranges
permitted from the policy for the security variables. Example values for this parameter are: “high”,
“medium”, “low”.
We are currently working on modulating the 1Psec security mechanism to provide different levels for
security in response to QoSS requests from users [12], [13]. This way we link QoSS conditions to I Psec,
so that we can adjust the kind of security services provided to applications according to QoSS "handles’,
like the network mode and/or the security leve.

We modified the IKE daemon and KeyNote, to include in the KeyNote action set the QoSS attributes
net wor k_node and security_I| evel [14]. Thisway the policy file may describe more complex
security policies that accept different characteristics for the SAs depending on the current system status.
An example of such a KeyNote policy file with the QoSS parameters can be found in paragraph 5.

If the newly introduced QoSS attributes and the respective authorized SA “attribute- attribute value” pairs
are represented in the Conditions field of KeyNote, the proposals that we are willing to accept and that
should be sent to IKE peers depend on the current values net wor k_node and security_I evel . If
we use the modified IKE process mentioned above, we should be able to select from the set of al possible
SA proposals the ones that are valid for the current system state. The DNF form of the KeyNote policy
file facilitates this selection (details for how this processing is done can be found in [14]).

Conversion of KeyNote Policy Filesto DNF for 1Psec

4. Usingl ex and yacc for Conversion to DNF

| ex and yacc are tools for imposing structure on the input to a program. | ex is alexicd anadyzer
generator and yacc is a parser generator. | ex programs recognize regular expressions and pick up the

basic items (tokens) from the input stream. yacc generates parsers that accept a large class of context-
free grammars and organize the tokens according to the input structure rules [15].

We use these tools to take an input KeyNote policy expresson and organize it into the digunctive norma
form.

4.1 | ex Background

The following paragraphs are taken from [16].

| ex isatool for generating scanners: programs which recognize lexical patternsin text. | ex reads the
given input file for a description of a scanner to generate. The description isin the form of pairs of regular
expressions and C code, caled rules. When the scanner isrun, it analyzes its input for occurrences of the
regular expressions. Whenever it finds one, it executes the corresponding C code.

Thel ex input file consists of three sections, separated by aline with just * 984 init:

definitions
V2

rul es

%)

user code

The definitions section contains declarations of smple name definitions to smplify the scanner
specification, and declarations of start conditions. Name definitions have the form:

nanme definition
For example,

DAT [0-9]
ID [a-z][a-z0-9]*

defines "DIGIT" to be a regular expresson which matches a single digit, and "ID" to be a regular
expression which matches aletter followed by zero-or-more | etters-or-digits.

The rules section of the | ex input contains a series of rules of the form:

pattern action

Findly, the user code section is used for companion routines, which call or are caled by the scanner.
When the generated scanner is run, it analyzes ts input looking for strings, which match any of its

patterns. If it finds more than one match, it takes the one matching the most text. If it finds two or more
matches of the same length, the rule listed first in the | ex input file is chosen.

Once the match is determined, the text corresponding to the match -the tokent is made available in the
global character pointer yyt ext , and its length in the globa integer yyl eng. The action corresponding
to the matched pattern is then executed (a more detailed description of actions follows), and then the
remaining input is scanned for another match.

Each pattern in a rule has a corresponding action, which can be any arbitrary C statement. If the action is
empty, then when the pattern is matched the input token is smply discarded.

Conversion of KeyNote Policy Filesto DNF for 1Psec

Actions can include arbitrary C code, including r et ur n statements to return a value to whatever routine
caled the scanner. Each time the scanner is called it continues processing tokens from where it last left

off until it either reaches the end of the file or executes areturn. Actions are free to modify yyt ext .

| ex provides a mechanism for conditionally activating rules. Any rule whose pattern is prefixed with
"<sc>" will only be active when the scanner isin the start condition named "sc". For example,

<STRI NG["] * { /* eat up the string body ... */

will be active only when the scanner isin the "STRING" start condition.

Start conditions are declared in the definitions section of the input. A start condition is activated using the

BEG N action. Until the next BEG N action is executed, rules with the given start condition will be active
and rules with other start conditions will be inactive.

One of the main uses of | ex isasacompanion to theyacc parser-generator. yacc parsersexpect to call
aroutine named yyl ex() to find the next input token. The routine is supposed to return the type of the
next token as well as putting any associated vaue in the globa yyl val .

REMARK:

| ex hasthe option” - Ppr ef i x' which changes the default * yy' prefix used by | ex for dl globaly-
visble variable and function names to instead be prefix. In our case we use ™ - Pkd" so for example the
name of yyt ext ischangedto ~ kdt ext ' .

4.2 Using | ex in KeyNote

The | ex file of our utility can be found in Appendix A. | ex was already used in KeyNote code for
processing of KeyNote files. For the purposes of our research we modified the file keynot e. | [17].
What follows is a description of the key points of our lex program and its differencesfrom keynot e. | :

Firg of dl it should be noted that in this work we only ded with the Conditions field of the KeyNote
files. The other fields do not participate in the DNF of the policy expression.

In the definitions section of our | ex file the same name definitions were used asin keynot e. | . These
regular expressions define what string sequences we consider to be digits, numbers, variables, literals etc.

The start conditions though are differentiated. We only need to process lexicaly the Conditions field of
the KeyNote policy file. Therefore we have two start conditions:

OUTCOND which indicates that we are outside the Conditions field and

CONDI TI ONS which means that we are in the Conditions field and we should be anayzing the
lexica patterns when we arein this state.

In the rules section of thel ex file:

A set of rules defines how we alternate between start conditions. When we are in QUTCOND, a match of
the keyword Condi t i ons inthe KeyNote palicy file, will put usin CONDI TI ONS start condition.

In CONDI TI ONS start condition, occurrence of the keywords KeyNot e- Ver si on, Conment ,
Aut hori zer, Li censees, Si gnat ur e indicates that a new KeyNote policy file field is beginning,
so we' re done with Conditions field and we go to OUT COND.

A set of rules active only in the CONDI T1 ONS gart condition analyze the strings of KeyNote policy file
to match them with the defined lexica patterns and returns a specific token to the yacc program.

Conversion of KeyNote Policy Filesto DNF for 1Psec

The strings that we are looking for and the token name returned can be seen below in Table 1.

&& AND

| | R

I NOT

== EQ

I = NE

< LT

> GT

<= LE

>= Ge

~= REGEXP
true TRUE
fal se FALSE
DOTT
$ DEREF
(OPENPAREN
) CLOSEPAREN
{
}

OPENBLCOCK
CLOSEBLOCK
- > HI NT

; SEM COLON

Table 1: Strings and Token Namesin keynot e- dnf . |

When a variable or a literal string is met (regular expressions in the definitions section define what is
conddered a variable and a literal in KeyNote policy files), itsvaue is put in kdl val . st ri ng and the
name VARI ABLE or STRI NG respectively is returned.

Findly rules active independently of the start condition specify that comments, tabs and new lines should
be ignored during the lexical processing of the KeyNote policy file.

The user code section contains companion routines, which call or are called by the scanner.

Thefunction convert to_dnf () activates| ex and yacc parsing through the cdl to kdpar se()
and it is the one that should be called for converting a KeyNote policy file to DNF. It accepts as inputs the
file to be converted to DNF and the file where the DNF form will be stored.

NOTE 1. Some of the patterns that can be met in a KeyNote policy file and are processed in
keynot e. | , are not typicaly met in IPsec policy files and they were ignored in the rules section for the
purposes of this work. For completeness though they should be addressed in future versions. They mainly
deal with numerical expressions and operations and they are:

* !, % N @ & flt, nunber

Conversion of KeyNote Policy Filesto DNF for 1Psec

NOTE 2: In this verson of our work there is incomplete handling ¢ error flags, error numbers and
respective return values. These issues should be addressed in the future.

NOTE 3: The functions mystrncpy(), get_octal (), is_octal() were copied from
keynot e. | . They also exist identica in keynot e- ver. | [18], soit seemed best to dso copy themin

our lex file. Maybe there's a better way for doing this, instead of keeping separate functions in every | ex
file

4.3 yacc Background

The following paragraphs are taken from [19].

In the formal grammatical rules for a language, each kind of syntactic unit or grouping is named by a
symbol. Those which are built by grouping smaller constructs according to grammatica rules are called
nonterminal symbols; those which can't be subdivided are called terminal symbols or token types. We cdll
a piece of input corresponding to a single termina symbol a token, and a piece corresponding to a single
nontermina symbol a grouping.

The token type is a terminal symbol defined in the grammar, such as | NTEGER, | DENTI FI ERor ', ' . It
tells everything you need to know to decide where the token may validly appear and how to group it with
other tokens. The grammar rules know nothing about tokens except their types.

The semantic value has adl the rest of the information about the meaning of the token, such as the vaue of
an integer, or the name of an identifier. (A token such as ', which isjust punctuation doesn't need to
have any semantic value.)

The job of the yacc parser is to group tokens into groupings according to the grammar rules, for
example, to build identifiers and operators into expressions. As it does this, it runs the actions for the
grammar rulesit uses.

The tokens come from the lexica anayzer, which yacc parser calls each time it wants a new token. It
doesn't know what is "indde" the tokens (though their semantic values may reflect this). Typicdly the
lexica analyzer makes the tokens by parsing characters of text as aready described in previous
paragraphs.

The input file for yacc isa yacc grammar file. The general form of such afile has four main sections,
shown here with the appropriate delimiters:

A

C decl arations

%

Bi son decl arati ons

%%

Grammar rul es

%%

Addi tional C code

The C declarations section contains macro definitions and declarations of functions and variables that are

used in the actions in the grammar rules. #i ncl ude can also be used to get the declarations from a header
file

The declarations section contains declarations that define termina and nonterminal symbols, specify
operator precedence and the data types of semantic values of various symbols. Operator precedence is
determined by the line ordering of the declarations: the higher the line number of the declaration, the
higher the precedence.

10

Conversion of KeyNote Policy Filesto DNF for 1Psec

The grammar rules section contains one or more grammar rules that define how to construct each
nonterminal symbol from its parts.

The additional C code can contain any C code we want to use. Often the definition of the lexical analyzer

yyl ex goes here, plus subroutines called by the actions in the grammar rules. In asmple program, dl the
rest of the program can go here.

The %uni on declaration specifies the entire collection of possible data types for semantic values. For
example:

%uni on {

int intval;

doubl e dval;

synrec *tptr;
}
This says that the three aternative types are i nt, doubl e and synrec *. They are given names
intval, dval andtptr; these names are used in the % oken and % ype declarations to pick one of
the types for atermina or nontermina symbol.
The semantic value of a token returned by the lexical andyzer (if it has one) is stored into the global
variable yyl val , which is where the yacc parser will look for it. When we use multiple data types,
yyl val 's type is a union made from the %uni on declaration. So when we store a token's value, we must
use the proper member of the union. So for the above %uni on declaration the code in yyl ex might look
likethis

yylval .intval = value; /* Put value onto yacc stack. */
return | NT; /* Return the type of the token. */

A grammar rule has the following generd form:

result: conponents..

where result is the nontermina symbol that this rule describes, and components are various termina and
nonterminal symbols that are put together by thisrule.

For example,

exp: exp '+ exp

says that two groupings of type exp, with a + token in between, can be combined into a larger grouping
of type exp.

An action accompanies a syntactic rule and contains C code to be executed each time an instance of that
rule is recognized. An action looks like this:

{C statenents}

The task of most actions is to compute a semantic value for the grouping built by the rule from the
semantic values associated with tokens or smaller groupings.

The C code in an action can refer to the semantic values of the components matched by the rule with the
construct $n, which stands for the value of the nth component. The semantic value for the grouping being
constructed is $$.

Hereisatypical example:

exp: .
| exp "+ exp

11

Conversion of KeyNote Policy Filesto DNF for 1Psec

{ $% = 81 + $3; }

This rule constructs an exp from two smaler exp groupings connected by a plus-sign token. In the
action, $1 and $3 refer to the semantic values of the two component exp groupings, which are the first
and third symbols on the right hand side of the rule. The sum is stored into $$ so that it becomes the
semantic value of the addition-expression just recognized by the rule. If there were a useful semantic
value associated with the + token, it could be referred to as $2.

REMARK:

yacc has the option' - p prefi x' which renames the externa symbols used in the parser (including
yyparse,yyerror,yyl val), so that they start with prefix instead of yy. In our caseweuse™ -p kd',
so the names become kdpar se, kdl val , and so on.

4.4 Using yacc in KeyNote

4.4.1 Building the Expression Tree

We need to record the expression described in the Conditions field of the KeyNote policy file, while
reading it, in order to further processit. The best way to do thisis by using atree [20].

To understand how atree works, consider an expression such as:
8+9*5

which is evaluated as.
8+(9*5)

Each operation has these components. the operator and the operands.

/@\

A tree node may contain an operator. The node's branches (or its children) will represent the operands of
the operator. The end branches that are simple operands, not expressions, are called leaves.

Tree structures are a good way to represent logical expressions as well. They record all the information
needed to evaluate the expression.

To represent the tree of the logical expression we need the data types below (based on examples from
[20]), which are defined in the header filet r ee. h:

struct node
{
char* operator;
uni on
{
char* val ue;
struct node *np;
} left, right;

Conversion of KeyNote Policy Filesto DNF for 1Psec

b

#def i ne LCH LD(snode) ((snode) - >l ef t. np)
#def i ne RCHI LD(snode) ((snode) ->ri ght. np)
#defi ne NNULL ((struct node *) 0)

There can be two types of nodes: intermediate and leaf/terminal nodes.

An intermediate node uses the fields:
oper at or , which can be: alogicd or relational operator

left, which contains:
np pointer to left child node
and may also use (if the operator is binary)
right, which contains:
np pointer to right child node
A |edf node has:

oper at or , which can be: aVARI ABLE or STRI NGindicator
(for a KeyNote attribute or an attribute value respectively)

| eft, which contains:
val ue semantic value of VARI ABLE or STRI NG

The fields not mentioned for an intermediate or leaf node are empty or ignored.

The yacc file of our utility can be found in Appendix B. yacc was aready used in KeyNote code for
processing of KeyNote files. The grammar in our yacc program is based on the grammar defined in the
keynot e. y [21] and adescription of the key pointsin it follows.

To record an expression, weusenal | oc() to alocate anode structure.

The values returned by actions and declared in the %uni on definition are: a pointer to a string, an integer
or a pointer to a node structure.

The tokens and nontermina symbols defined are a subset of thosein keynot e. y.

In the rules section the bare grammar without actions attached to the rules in the rules section is a subset

of that in keynot e. y. The rules that do not refer to the Conditions field of KeyNote policy file are
omitted, as well as those dealing with numerical and float expressions.

The actions assigned to the rest of the rules are modified to alow the building of the expression tree as
outlined below:

The rules of our grammar add leaves to the tree, when we meet one of the tokens:
VARIABLE

A KeyNote attribute was returned by | ex, and the function add_| eaf () fillsin the operator field

of the | eaf node with the VARI ABLE indicator and the | ef t field with the actual name of the
KeyNote attribute

STRING

A KeyNote attribute value was returned by | ex, and the function add_| eaf () fills in the

oper at or fied of the | eaf node with the STRI NG indicator and the | ef t field with the actual
string representing the KeyNote attribute’ s value

- TRUE/FALSE,

13

Conversion of KeyNote Policy Filesto DNF for 1Psec

These tokens where found by | ex in the KeyNote file, and the function add_| eaf () fillsin the

oper at or field of the leaf node with the STRING indicator and the | ef t field with the actua
token string.

The rules of our grammar add nodes to the tree, when logical and relational expressions are met, like:

expr AND expr
expr OR expr
NOT expr

str EQ str
str NE str
str LT str
str GTI str
str LE str
str GE str

In this case the function add_node() fillsin
theoper at or field of the node with one of the indicators && ! ==,!=,<,>,<=,>=
- thel ef t fied with the pointer to the subtree of the |eft expression
- theri ght fidd, if the operator is binary, with the pointer to the subtree of the right expression

Asinput is collected, the tree structure is alocated and organized. When the compl ete statement has been
collected, we are ready to convert it to DNF.

4.4.2 Converting the Expression Tree to DNF
When we reach the rule
program prog

the tree representing the Boolean expression described in the Conditions field of KeyNote policy file has
been built and we can process it to convert it to DNF.

The first step is to move al the negation signs in to the atoms by applying de Morgan laws. While doing

this we eliminate double negations. The function doing this is per neat e_not s, which accepts as input
the root node of a tree/subtree and uses recursion. We'll briefly describe its functionality using example
trees:

When the root node is a NOT operator, it only has one child. The child node is examined and in caseit is:
1) alogic operator and more specificaly:
a) aNOT operator

The tree of the left side of Figure 3 is converted to the tree in the right side of Figure 3, by
eliminating nodes (1) and (2) and the function is called recursively for node (3).

14

Conversion of KeyNote Policy Filesto DNF for 1Psec

:>
G o @
@

Figure 3
b) an AND operator
The tree of the left Sde of Figure 4 is converted to the tree in the right side of Figure 4.

b T oo

Figure 4
¢) an OR operator
The tree of the left side of Figure 5 is converted to the tree in the right side of Figure 5.

ORE
— ‘
D D GO D
Figure 5
2) ardationa operator

The tree of the left Side of Figure 6 is converted to the tree in the right side of Figure 6.

15

Conversion of KeyNote Policy Filesto DNF for 1Psec

INVERSE
RELATIONAL
QPERATOR
RELATIONAL
OPERATOR
(&)

Figure 6
The relational operator isinverted according to the table below:

RELATIONAL OPERATOR INVERSE RELATIONAL OPERATOR
== 1=
1= ==
< >=
> <=
<= >
>= <

At the end of the function if the root node’s children are not leaves, the function is applied recursively
to them.

The second step is the use of the distributive identity to create a digunction of conjunctions.

The function doing thisisand_di st ri but e, which accepts as input the root node of a tree/subtree and
uses recurson. We'll briefly describe its functionality using example trees.

The root node is examined. In caseit is
1) an OR operator

The function is called recursively for the node' s children.
2) an AND operator

The right child is examined and if it is an OR, the tree of the left sde of Figure 7 is converted to the
treein theright side of Figure 7.

16

Conversion of KeyNote Policy Filesto DNF for 1Psec

/0 /
S @a;
G GO DA

Figure7
Then the left child is examined. In case it is.
a) an OR operator,

the tree of the left side of Figure 8 is converted to the tree in the right side of Figure 8, and the
function is called recursively for the OR node of the right tree.

%D \
(o) TN CD @

Figure 8

b) if it is not an OR operator, the function is called recursively for its children, if they are not leaf
nodes.

This procedure is repeated until there are no more changes due to the distributive law on the tree.

The last step is writing the tree -which is now in DNF to afile (the file name was accepted as input in the
function convert_to_dnf() that activated |ex and yacc pasng) by cdling
print_tree_file().When thisoperation is completed, the tree is no longer needed, so the function
namedfree_tree() iscaledto free the memory used for al the structures that make up the tree.

For the conversion to DNF we used some code from the Managing Gigabytes (MG) project, whichisan
open-source indexing and retrieval system for text, images, and textua images [22]. MG is covered by a
GNU public license. The current version of MG is available for ftp from http://www.cs.mu.oz.au/mgy/.

More specificaly the files below were consulted:

bool _optim zer.c, bool _optin zer.h,

bool parser.c, bool parser.h, bool _parser.y
bool tester.c

bool _tree.c, bool _tree.h

termlists.c, termlists.h

17

Conversion of KeyNote Policy Filesto DNF for 1Psec

wor ds. h

NOTE: Our code does not attempt to simplify the expression e.g. check for the presence of both aterm
and its negation in a conjunction and remove it or check whether a term appears twice in a conjunction.
These issues can be addressed in the future.

5. Example of input KeyNote policy file and generated DNF

An example of an input isskmpd.policy KeyNote policy file containing our QoSS attributes can be seen
below:

KeyNot e- Ver si on: 2

Comment: Policy file for Network Modes and Security Levels
Aut hori zer: "POLICY"

Li censees: "passphrase: nekm t asdi goat "

Conditions: ((app_domain == "|Psec policy") &&
((network_mode == "normal") &&
(
((security_level == "low') &&
((esp_present == "yes") &&
((local _filter_port == "23") || (rempte_filter_port == "23")) &&
(esp_enc_alg == "des") &&
(esp_auth_alg == "hmac- nd5")
)
[
((ah_present == "yes") &&
((local _filter_port == "79") || (remote_filter_port == "79")) &&
(ah_auth_al g == "hmac-nmd5")
)
)
1
((security_level == "mediun') &&
(
((esp_present == "yes") &&
((local _filter_port == "23") || (rempte_filter_port =="23")) &&
(esp_enc_alg == "cast") &&
(esp_auth_alg == "hnmac-sha")
)
[
((ah_present == "yes") &&
((local _filter_port == "79") || (renpte_filter_port == "79")) &&
(ah_auth_al g == "hmac- nd5")
)
)
]
((security_level == "high") &&
(
((esp_present == "yes") &&
((local _filter_port == "23") || (rempte_filter_port == "23")) &&
(esp_enc_alg == "3des") &&
(esp_auth_alg == "hmac-sha")
)
[
((ah_present == "yes") &&
((local _filter_port == "79") || (rempte_filter_port == "79")) &&
(ah_auth_al g == "hmac-sha")
)
)
)
)
]
((network_mpde == "inpacted") &&

18

Conversion of KeyNote Policy Filesto DNF for 1Psec

(
((security_level == "low') &&
(
((esp_present == "yes") &&
((local _filter_port == "23") || (remote_filter_port == "23")) &&
(esp_enc_alg == "des") &&
(esp_auth_alg == "hmac-nd5")
)
[]
((ah_present == "yes") &&
((local _filter_port == "79") || (rempte_filter_port == "79")) &&
(ah_auth_al g == "hmac- nd5")
)
)
1
((security_level == "nmediun') &&
(
((esp_present == "yes") &&
((local _filter_port == "23") || (rempte_filter_port == "23")) &&
(esp_enc_alg == "des") &&
(esp_auth_alg == "hmac- nd5")
1
((ah_present == "yes") &&
((local _filter_port == "79") || (rempte_filter_port == "79")) &&
(ah_auth_al g == "hmac- nd5")
)
)
)
[] _ _
((security_level == "high") &&
(
((esp_present == "yes") &&
((local _filter_port == "23") || (remote_filter_port == "23")) &&
(esp_enc_alg == "3des") &&
(esp_auth_alg == "hmac- nd5")
)
[]
((ah_present == "yes") &&
((local _filter_port == "79") || (remote_filter_port == "79")) &&
(ah_auth_al g == "hmac-sha")
)
)
)
)
]
((network_mode == "crisis") &&
(
((security_level == "low') &&
(
((esp_present == "yes") &&
((local filter_port == "23") || (renmote_filter_port == "23")) &
(esp_enc_alg == "3des") &&
(esp_auth_alg == "hmac-sha")
)
[]
((ah_present == "yes") &&
((local _filter_port == "79") || (remote_filter_port == "79")) &&
(ah_auth_al g == "hmac-sha")
)
)
)
[l
((security_level == "npediun') &&
(
((esp_present == "yes") &&
((local _filter_port == "23") || (rempte_filter_port == "23")) &&
(esp_enc_al g == "3des") &&
(esp_auth_alg == "hmac-sha")

19

Conversion of KeyNote Policy Filesto DNF for 1Psec

)
[]
((ah_present == "yes") &&
((local _filter_port == "79") || (rempte_filter_port == "79")) &&
(ah_auth_al g == "hmac-sha")
)
)
I
((security_level == "high") &&
(
((esp_present == "yes") &&
((local _filter_port == "23") || (renpte_filter_port == "23")) &&
(esp_enc_alg == "aes") &&
(esp_auth_alg == "hmac-sha")
)
[]
((ah_present == "yes") &&
((local _filter_port == "79") || (rempte_filter_port == "79")) &&
(ah_auth_al g == "hmac-sha")
)
)
)
)
]
((network_mode == "default") &&
(security level == "default") &&

((esp_present == "yes") &&
((local _filter_port == "23") || (renote_filter_port == "23")) &&
(esp_enc_alg == "des") &&
(esp_auth_alg == "hmac- md5")
I
((ah_present == "yes") &&

(
((local _filter_port == "79") || (remote_filter_port == "79")) &&
(ah_auth_al g == "hmac- nd5")

The output of our uility can be seen below, which is the DNF of the Conditions field of the input file:

(eeeeeeeee(((l ocal _filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "des")) && (esp_auth_alg == "hmac-nd5")) &&
(security_level == "low')) && (network_npde == "normal")) &&
(app_domain == "I Psec policy"))

[|

(((((((remte_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "des")) && (esp_auth_alg == "hmac-nmd5")) &&
(security_level == "low')) && (network_mpde == "normal ")) &&
(app_domain == "|Psec policy")))

[|

(((((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-md5")) && (security_level == "low')) &&
(network_mpde == "normal ")) && (app_domain == "|IPsec policy"))

[]

((((((rempte_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-nmd5")) && (security_level == "low')) &&
(network_node == "normal ")) && (app_domain == "IPsec policy"))))
[]

(CCCC((C((local _filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "cast")) && (esp_auth_alg == "hmac-sha")) &&
(security_level == "mediun')) && (network_node == "normal")) &&

20

Conversion of KeyNote Policy Filesto DNF for 1Psec

(app_domain == "| Psec policy"))

[

(((((((remte_ fllter _port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "cast")) && (esp_auth_alg == "hmac-sha")) &&
(security_ IeveI == "nmediun')) && (network_node == "normal")) &&
(app_domain == "|Psec policy")))

[|

(((((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-nd5")) && (security_level == "npediunl')) &&
(network_mpde == "normal ")) && (app_domain == "IPsec policy"))

[|

((((((renote_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-nd5")) && (security_level == "npediunl')) &&
(network_mpde == "normal ")) && (app_domain == "IPsec policy")))))
[|

(((((((((Iocal filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "3des")) && (esp_auth_alg == "hmac-sha")) &&
(security level == "high")) && (network_node == "normal ")) &&
(app_domain == "I Psec policy"))

[

(((((((renmote_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "Sdes")) && (esp_auth_alg == "hnac sha")) &&
(security_ Ievel == "high")) && (netmmrk_nnde == "normal ")) &&
(app_domain == "| Psec policy")))

[]

(((((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_level == "high")) &&
(network_mpde == "normal ")) && (app_domain == "|IPsec policy"))

[]

((((((renote_ fllter _port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_level == "high")) &&
(network_mode == "normal ")) && (app_domain == "IPsec policy")))))
[

(((((((((((Iocal _filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "des")) && (esp_auth_alg == "hmac-nmd5")) &&
(security_ Ievel == "low')) && (network_mpde == "inpacted")) &&
(app_domain == "|Psec policy"))

[

(((((((remte_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "des")) && (esp_auth_alg == "hnac md5")) &&
(security_ Ievel == "low')) && (netmork_nnde == "inmpacted")) &&
(app_domain == "|Psec policy")))

[

(((((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-md5")) && (security_level == "low')) &&
(network_nmode == "inpacted")) && (app_domain == "IPsec policy"))
[

((((((remte_ fllter _port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == hnac-ndS")) && (security_level == "low')) &&
(network_nmode == "inpacted")) && (app_domain == "IPsec policy"))))
[

et ocal filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == des")) && (esp_auth_alg == "hmac-nmd5")) &&
(security_level == "mediun')) && (network_node == "inpacted")) &&
(app_domai n == ”IPsec policy"))

[|

(((((((remte_ fllter _port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "des")) && (esp_auth_alg == "hmac-nmd5")) &&
(security_level == "medium')) && (network_node == "inpacted")) &&
(app_domain == "|Psec policy")))

[

(C(((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hnac-nﬂS")) && (security level == "medium')) &&
(network_node == "inpacted")) && (app_domain == "|Psec policy"))
[

((((((remote_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hnac md5")) && (security_level == "nediunl')) &&
(network_node == "inpacted")) && (app_domain == "IPsec policy")))))
[

(CCC(((((local _filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "3des")) && (esp_auth_alg == "hmac-nd5")) &&

21

Conversion of KeyNote Policy Filesto DNF for 1Psec

(security_level == "high")) && (network_node == "inpacted")) &&
(app_domain == "| Psec policy"))

[

(((((((remte_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "3des")) && (esp_auth_alg == "hmac-nd5")) &&
(security_level == "high")) && (network_node == "inpacted")) &&
(app_domain == "|Psec policy")))

[

(((((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_level == "high")) &&
(network_nmode == "inpacted")) && (app_domain == "IPsec policy"))
[

((((((remote_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_level == "high")) &&
(network_nmode == "inpacted")) && (app_domain == "IPsec policy"))))))
[

(CCCC(C((((local _filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "3des")) && (esp_auth_alg == "hmac-sha")) &&
(security_level == "low')) && (network_npde == "crisis")) &&
(app_domain == "| Psec policy"))

[|

(((((((remte_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "3des")) && (esp_auth_alg == "hmac-sha")) &&
(security level == "low')) && (network_mpde == "crisis")) &&
(app_domain == "I Psec policy")))

[

(C(((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_level == "low')) &&
(network_node == "crisis")) && (app_domain == "I|Psec policy"))

[

((((((renote_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_ level == "low')) &&
(network_mpde == "crisis")) && (app_domain == "IPsec policy"))))
[

(CCC((((local _filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "3des")) && (esp_auth_alg == "hmac-sha")) &&
(security_level == "medium')) && (network_node == "crisis")) &&
(app_domain == "| Psec policy"))

[

(((((((rempte_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "3des")) && (esp_auth_alg == "hmac-sha")) &&
(security level == "medium')) && (network_node == "crisis")) &&
(app_domain == "I Psec policy")))

[

(((((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_level == "npediunl')) &&
(network_mpde == "crisis")) && (app_domain == "|IPsec policy"))

[

((((((renote_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_level == "npediunl')) &&
(network_mpde == "crisis")) && (app_domain == "IPsec policy")))))
[

(CCeC((((local _filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "aes")) && (esp_auth_alg == "hmac-sha")) &&
(security_level == "high")) && (network_node == "crisis")) &&
(app_domain == "| Psec policy"))

[

(((((((remte_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "aes")) && (esp_auth_alg == "hmac-sha")) &&
(security level == "high")) && (network_node == "crisis")) &&
(app_domain == "| Psec policy")))

[|

(((((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security level == "high")) &&
(network_mpde == "crisis")) && (app_domain == "|IPsec policy"))

[l

((((((renote_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-sha")) && (security_level == "high")) &&
(network_nmpde == "crisis")) && (app_domain == "|IPsec policy"))))))
[|

(C((((((local _filter_port == "23") && (esp_present == "yes")) &&

22

Conversion of KeyNote Policy Filesto DNF for 1Psec

(esp_enc_alg == "des")) && (esp_auth_alg == "hmac-nd5")) &&
((network_node == "default") && (security_level == "default"))) &&
(app_domain == "| Psec policy"))

[]

((((((remte_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "des")) && (esp_auth_alg == "hmac-nmd5")) &&
((network_node == "default") && (security level == "default"))) &&
(app_domain == "| Psec policy")))

[|

((((((local _filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-nmd5")) && ((network_node == "default") &&
(security _level == "default"))) && (app_domain == "IPsec policy"))
[|

(((((rempte_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-nmd5")) && ((network_node == "default") &&
(security level == "default"))) && (app_domain == "IPsec policy")))))

6. References

[1] Blaze, M., Feigenbaum, J., loannidis, J. and Keromytis, A.D., "The KeyNote Trust Management
System Version 2", Internet RFC 2704, Internet Engineering Task Force, September 1999.

[2] keynote(4), OpenBSD Programmer's Manual, http://www.openbsd.org/cg-bin/man.cgi, May 1999.

[3] keynote(5), OpenBSD Programmer's Manual, http://www.openbsd.org/cg-bin/man.cgi, October 1999.

[4] Kent. S. and Atkinson, R., "Security Architecture for the Internet Protocol”, Internet RFC 2401,
Internet Engineering Task Force, November 1998.

[5] Blaze, M., loannidis, J. and Keromytis, A.D., "Trust Management for IPSec”, Proc. of the Internet
Society Symposium on Network and Distributed Systems Security 2001, San Diego, CA, February
2001, pp. 139-151.

[6] isakmpd.policy(5), OpenBSD Programmer's Manud, http://www.openbsd.org/cg-bin/man.cgi,
October 1998.

[7] Fricke, T., Boolean Norma Forms, http://splorg.org/~tobin/projects/quinto/dnf.html, August 2001.

[8] Weisstein E.W., Digunctive Norma Form — from Mathworld,
http://mathworld.wolfram.com/Dig unctiveNormalForm.html.

[9] Garrett Birkhoff, Lattice Theory, American Mathematical Society, Providence, Rhode Idland, 1967,
pp. 61-63.

[20] Irvine, C. and Levin, T., “Qudity of Security Service’, Proc. of New Security Paradigms Workshop
2000, Cork, Ireland, September 2000, pp. 91-99.

[12] Irvine, C. and Levin, T., “A Note on Mapping User-Oriented Security Policies to Complex
Mechanisms and Services’, Technical Report NPS- CS-99-08, Naval Postgraduate School, Monterey,
CA, June 1999.

[12] Spyropoulou, E., Agar, C., Levin, T., and Irvine, C., “1Psec Modulation for Quality of Security
Service”, Technical Report NPS-CS-02-01, Naval Postgraduate School, Monterey, CA, January 2002.

[13] Spyropoulou, E., Levin, T., and Irvine, C., “Demonstration of Quality of Security Service Awareness
for IPsec”, Technical Report NPS-CS-02-03, Naval Postgraduate School, Monterey, CA, January
2002.

[14] Agar, C.D., “Dynamic Parameterization of I1Psec”, Master Thes's, Naval Postgraduate School,
Monterey, CA, December 2001.

[15] Johnson S.C., “Yacc: Yet Another Compiler-Compiler”, Bell Laboratories, Murray Hill, New Jersey,
July 1978.

23

Conversion of KeyNote Policy Filesto DNF for 1Psec

[16] Paxson V., “Flex, version 2.5. A fast scanner generator.”, Edition 2.5,
http://Amww.gnu.org/manual/flex-2.5.4/html_mono/flex.html, March 1995.

[17] keynot e. | , CVS Repository, http://mwww.openbsd.org/cgi-bin/cvsveb/src/lib/libkeynote/keynotel,
August 2000.

[18] keynot e- ver . | , CVS Repository,
http://www.openbsd.org/cgi-bin/cvsweb/src/lib/libkeynotelkeynote-ver.l, August 2000.

[19] Dondly, C. and Stalman, R., “Bison. The Y ACC-compatible Parser Generator”, Bison Version
1.25, http:/imww.gnu.org/manua/bisorn/html_mono/bison.html, November 1995.

[20] “OS/390 V2R10.0 UNIX System Services Programming Tools” vialBM BookManager BookServer,
http://publibz.boul der.ibm.com/cgi-
bin/bookmgr_OS390/BOOK S'BPXA6071/1.67DT=20001016170315, Document Number: SC28-
1904-08, October 2000.

[21] keynot e. y, CVS Repository,
http://www.openbsd.org/cgi-bin/cvsweb/src/lib/libkeynotelkeynotey, October 2000.

[22] Managing Gigabytes, Compressing and Indexing Documents and Images, Second Edition,
http://www.cs.mu.oz.au/mg/, August 1999.

24

Conversion of KeyNote Policy Filesto DNF for 1Psec

APPENDIX A
| ex Code File: keynot e-dnf. |

%

#i nclude "tree. h"

#i ncl ude "d. tab. h"

#i ncl ude "assertion. h"

static void nystrncpy(char *, char *, int);
static unsigned char get_octal (char *, int, int *);
static int is_octal (char);

static int first_tok = 0;
%
digit [0-9]
specnunber [1-9][0-9]*
nunber {digit}+
flt {digit}+"."{digit}+
vstring [a-zA-Z_][a-zA-Z0-9_1*
litstring VUCCONNAN) NN) IRV))N
vari abl e {vstring}
conment "#'[Mn]*
% OUTCOND CONDI Tl ONS
%poi nt er
%opti on noyyw ap never-interactive yylineno
%W
%
/*
* Return a preset token, so we can have nore than one grammars
* in yacc.

*

: REMARK: taken as is fromkeynote. |
exiern int first_tok;
if (first_tok)

int holdtok = first_tok;

first tok = 0;
return hol dt ok;

}
%
<OUTCOND>" Condi ti ons" {
BEG N(CONDI Tl ONS) ;
}
<CONDI TI ONS>" (" {
ret urn OPENPAREN;
}
<CONDI TI ONS>") ™ {
ret urn CLOSEPAREN,
}
<CONDI TI ONS>" &&" {
return AND,
}
<CONDI TIONS>" | | " {
return OR
}
<CONDI TI ONS>" - >" - {

25

<CONDI TI ONS>" {

<CONDI TI ONS>"}

<CONDI TI ONS>"; "

<CONDI TI ONS>" I

!

<CONDI Tl ONS>" ~="

<CONDI Tl ONS>" =="

<CONDI TI ONS>" I ="

A

<CONDI TI ONS>"

V.

<CONDI TI ONS>"

<CONDI TI ONS>" <="

<CONDI TI ONS>" >="

<CONDI TI ONS>" . "

—_~——

}

return HI NT;
return OPENBLCOCK;
return CLOSEBLCOCK;
return SEM COLON;
return NOT;
return RECEXP,;
return EQ
return NE;
return LT;
return
return LE;

return CGE

return DOIT;

<CONDI TI ONS>" KeyNot e- Ver si on"

}

BEG N(QUTCOND) ;

<CONDI TI ONS>" Comment "

BEG N(QUTCOND) ;

}
<CONDI TI ONS>" Aut hori zer"

{
}

BEG N(QUTCOND) ;

<CONDI TI ONS>" Li censees"

}

BEG N(QUTCOND) ;

<CONDI TI ONS>" Si gnat ur e”

<CONDI TI ONS>"t r ue”

}

BEG N(QUTCOND) ;

{

return TRUE;

}
<CONDI TI ONS>"f al se" {

return FALSE;

Conversion of KeyNote Policy Filesto DNF for 1Psec

26

Conversion of KeyNote Policy Filesto DNF for 1Psec

}

{coment } /* eat up comments */
<CONDI TI ONS>{ vari abl e} {
[* XXX keynot e_exceptionflag, keynote_donteval issues
have not been addressed, so the code bel ow from
keynote.l is commented out */
/*
i f (keynote_exceptionflag ||
keynot e_dont eval)

kdl val . string = (char *) NULL;
return VARl ABLE;
pol

kdl val .string = calloc(strlen(kdtext) + 1,
si zeof (char));
if (kdlval.string == (char *) NULL)

{
/* XXX keynote_errno i ssues have not been addressed,
so the code bel ow fromkeynote.l is comented out */
/ *keynot e_errno = ERROR_MEMORY; */
return -1;

strcpy(kdlval . string, kdtext);
return VARl ABLE;

}
<CONDI Tl ONS>" $ {
ret urn DEREF,;

<CO\ID|TIO\IS>{Iitst1ing} {
/* XXX keynot e_exceptionflag, keynote_donteval issues
have not been addressed, so the code bel ow from
keynote.l is commented out */
/*if (keynote_exceptionflag ||
keynot e_dont eval)

kdl val . string = (char *) NULL;
return STRI NG
yorl
kdl val .string = calloc(strlen(kdtext) - 1,
si zeof (char));
if (kdlval.string == (char *) NULL)

/* XXX keynote_errno issues have not been addressed,

so the code bel ow fromkeynote.l is commented out */
[*keynot e_errno = ERROR_MEMORY; */
return -1;

}
nystrncpy(kdl val . string, kdtext + 1,
strlien(kdtext) - 2);
return STRI NG
[Vt\n]

[* XXX keynote_errno issues and | ex/yacc return val ues
have not been addressed systematically,

so the code bel ow from keynote.l is comrented out */
/ *keynot e_errno = ERROR_SYNTAX;

return -1;

REJECT; */ /* Avoid -Vall warning. Not reached */

27

Conversion of KeyNote Policy Filesto DNF for 1Psec

90

/*

*

* 0% ok X X X Ok X X X X

*

R R R R b R R R R R R kR Sk Rk R R R R Rk Sk kS R R Rk ke kR R

int convert_to_dnf(char *policyfile, char *dnffile)

This is the function that activates | ex and yacc parsing
through the call to kdparse()
It creates a buffer containing the input file for the parser
and calls the parser for it. It copies the ouput file name to
the global variable for the file nanme in which yacc wites its
out put .
XXX I nconpl ete handling of error flags, error nunbers and
return val ue. ..
I nput s:
char *policyfile - nanme of file to be converted to DNF
char *dnffile - nane of file where DNF will be stored

**/

int convert_to_dnf(char *policyfile, char *dnffile)

{

/*

/*

YY_BUFFER _STATE kdbuf f er
FI LE *fp;
int i

targetdnf = dnffile
fp = fopen(policyfile, "r");
if (fp == (FILE *) NULL)
{
perror(policyfile);
return -1;

}

kdbuffer = kd_create_buffer(fp, YY_BUF_SIZE)

kd_swi tch_t o_buf f er (kdbuf fer);

BEG N(QUTCOND) ;

first_tok = ACTSTR

i = kdparse()

kd_del et e_buf f er (kdbuffer);

fclose(fp);

fprintf(stderr, "convert_to_dnf: FINISHED, result = % \n", i);

return -99888; /* XXX return an arbitrary value for test purposes */

/* XXX keynote_errno issues and | ex/yacc return val ues

have not been addressed systematically,

so the code bel ow from keynote-ver.|l is commented out */
switch (i)

case O:
return 0

defaul t:
i f (keynote_errno == ERROR_MEMORY)
fprintf(stderr
"Mermory error while processing policy file <%>\n",

policyfile);
el se
fprintf(stderr
"Syntax error in environnent file <%>, line %\n",
policyfile, kdlineno);
return -1;
P

28

Conversion of KeyNote Policy Filesto DNF for 1Psec

Copy at nost len characters to string s1 fromstring s2, taking
care of escaped characters in the process. String sl is assuned
to have enough space, and be zero' ed.

REMARK: This function was copied fromkeynote.l. It also exists
identical in keynote-ver.|l, so it seenmed best to also copy it
here. Maybe there's a better way for doing this, instead of

* keeping a seperate function in every lex file.

*/

static void

nystrncpy(char *sl, char *s2, int |en)

*
*
*
*
*
*
*

unsi gned char c;
i nt advance;

if (len == 0)
return;

while (len-- > 0)
{
if (*s2 =="\\")

S2++;

if (len-- <= 0)
br eak;

if (*s2 == '\n')

while (isspace((int) *(++s2)) && (len-- > 0))

}

el se
if ((c = get_octal (s2, len, &dvance)) != 0)
{

|l en -= advance - 1;
s2 += advance;
*sl++ = c;
}
el se
if (*s2=="n") [/* Newine */
{
*S1++
S2++;
}
el se
if (*s2 =="t") [* Tab */
{
*sl++ = "\t
S2++;
}
el se
if (*s2 =="r") [* Linefeed */

"\n';

*sl++ = "\r';
S2++;
}
el se
if (*s2 =="'f') [/* Fornfeed */
{

*sl++ = "\

S2++

}

29

Conversion of KeyNote Policy Filesto DNF for 1Psec

el se
if ((*sl++ = *s2++) == 0)
br eak;
conti nue;
}
if ((*sl++ = *s2++) == 0)
br eak;
}
}
/*
* Return octal value (non-zero) if argument starts with such a
* representation, otherw se 0
*
* REMARK: This function was copied fromkeynote.l. It also exists
* identical in keynote-ver.l, so it seermed best to also copy it
*

here. Maybe there's a better way for doing this, instead of
* keeping a seperate function in every lex file.

*/

static unsigned char

get _octal (char *s, int len, int *adv)

{
unsi gned char res = 0
if (*s =="'0")
if (len > 0)
{
if (is_octal (*(s + 1)))
res = *(s +1) - '0
*adv = 2;
if (is_octal(*(s + 2)) & (len - 1 > 0))
{
res =res * 8 + (*(s +2) - '0);
*adv = 3;
}
}
}
}
el se
if (is_octal(*s) & (len - 1 > 0)) /* Non-zero leading */
if (is_octal (*(s + 1)) &&
is_octal(*(s + 2)))
*adv = 3;
res = (((*s) - '0") * 64) +
(((*(s + 1)) - "0) * 8) +
((*(s +2)) - "0);
}
}
return res;
}
/*

* Return RESULT _TRUE if character is octal digit, RESULT_FALSE ot herw se

*

* REMARK: This function was copied fromkeynote.l. It also exists

30

Conversion of KeyNote Policy Filesto DNF for 1Psec

* jdentical in keynote-ver.l, so it seermed best to also copy it
* here. Maybe there's a better way for doing this, instead of
* keeping a seperate function in every lex file.
*
/
static int
is_octal (char c)

switch (c¢)
{
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
return 1; /*RESULT_TRUE; */
defaul t:
return 0; /*RESULT_FALSE; */

31

Conversion of KeyNote Policy Filesto DNF for 1Psec

APPENDIX B
yacc CodeFile: keynot e-dnf.y

%

#i ncl ude "assertion. h"
#i ncl ude "tree. h"

#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

struct node* nalloc();

struct node* add_| eaf (char*, char*);

struct node* add_node(char*, struct node*, struct node*);
int binary_node(struct node*);

void print_binary_node(struct node*);

void print_unary_node(struct node*);

void print_tree(struct node*);

void fprint_binary_node(FILE* file, struct node*);
void fprint_unary_node(FILE* file, struct node*);
void fprint_tree(FILE* file, struct node*);

void print_tree file(struct node*);

void free_tree(struct node*);

void apply_doubl e_negation(struct node*);

void apply_and_DeMrgan(struct node*);

void apply_or_DeMorgan(struct node*);

void inverse_tokens(struct node*);

void perneate_nots(struct node*);

struct node* copy_bool _tree(struct node*);

void distribute_branches(struct node*);

int and_di stribute(struct node*);

void distribute DNF(struct node*);

void extract DNF_tree(struct node*);

static int keynot e_dont eval , keynot e_excepti onfl ag;
0,
&
%uni on {
char *string;
int intval;
struct node *np;
b
% ype <intval > afterhint
% ype <string> STRI NG VAR ABLE
% ype <np> strnotconcat str stringexp expr notenptyprog prog
% oken TRUE FALSE STRI NG VAR ABLE
% oken OPENPAREN CLOSEPAREN ACTSTR
% oken DOTT HI NT OPENBLOCK CLOSEBLOCK
% oken SEM COLON TRUE FALSE
%monassoc EQ NE LT GI' LE GE RECEXP
%eft OR
% eft AND
% i ght NOT
% onassoc DEREF
Y%start grammarswitch

%
grammar swi tch: ACTSTR { keynote_exceptionflag = keynote_donteval = 0; } program
{ /* XXX need to do sonething?
printf("yacc: RULE granmarswi tch: ACTSTR programn®); */

32

program prog {

[lprint_tree(%$1);

Conversion of KeyNote Policy Filesto DNF for 1Psec

extract DNF tree($1);

[lprint_tree($1);
print_tree_file($1);
free tree($1);

}
prog: /* Nada */ { $$ = NNULL; }
| notenptyprog SEM COLON prog
{
$$ = $1,
}
not enptyprog: expr H NT afterhint
{
$$ = $1;
}
| expr
{
$$ = $1;
}
afterhint: str
[* XXX need to do sonething?
printf("yacc: RULE afterhint: str\n"); */
}
| OPENBLCCK prog CLOSEBLOCK
[* XXX need to do sonething?
$$ = $2; */
}
expr: OPENPAREN expr CLOSEPAREN
{
$$ = $2;
}
| expr AND expr
$$ = add_node("&&", $1, $3);
}
| expr OR expr
{
$$ = add_node("||", $1, $3);
}
| NOT expr
{
$$ = add_node("!", $2, NNULL);
}
| stringexp
{
$$ = $1;
}
| TRUE
{
$$ = add_| eaf ("STRING', "TRUE");
}
| FALSE
{
$$ = add_| eaf ("STRING', "FALSE");
}

Conversion of KeyNote Policy Filesto DNF for 1Psec

stringexp: str EQ str

{
[lprintf("yacc:stringexp: str EQstr\tadd EQ strl: %, str2: %\n",
/1 $1->l eft.val ue, $3->left.value);
$$ = add_node("==", $1, $3);
}
| str NE str
{
[/printf("yacc: stringexp: str NE str\tadd NE, strl: %, str2: %\n",
/1 $1->l eft.val ue, $3->left.val ue);
$$ = add_node("!=", $1, $3);
}
| str LT str
{
[lprintf("yacc: stringexp: str LT str\tadd LT, strl: %, str2: %\n",
/1 $1->l eft.val ue, $3->left.val ue);
$$ = add_node("<", $1, $3);
}
| str GT str
{
[lprintf("yacc: stringexp: str GI str\tadd GT, strl: %, str2: %\n",
/1l $1->l eft.val ue, $3->left.val ue);
$$ = add_node(">", $1, $3);
}
| str LE str
{
[lprintf("yacc: stringexp: str LE str\tadd LE, strl: %, str2: %\n",
I $1->l eft.val ue, $3->left.val ue);
$$ = add_node("<=", $1, $3);
}
| str CGE str

[lprintf("yacc: stringexp: str GE str\tadd GE, strl: %, str2: %\n",
/1 $1->l eft.val ue, $3->left.val ue);
$$ = add_node(">=", $1, $3);

}
| str REGEXP str

[* XXX - unhandl ed case
printf("yacc: RULE stringexp: str REGEXP str - unhandl ed case\n");
??? add a REGEXP node ??7? */

}

/* XXX - unhandl ed case, ignoring rule alltogether

str: str DOIT str {
printf("yacc: RULE str: str DOIT str - unhandl ed case\n");
strcpy($$, $1);
strcpy($$ + strlien($1), $3);

free($1);
free($3); end of comment here
}
*/
str: strnotconcat
{
$$ = $1;

[* XXX left default handling from keynote.y
add a "string??" node */

}
strnotconcat: STRI NG

$$ = add_| eaf ("STRING', $1);
}

Conversion of KeyNote Policy Filesto DNF for 1Psec

| OPENPAREN str CLOSEPAREN

{
$$ = $2;
}
| VAR ABLE
{
$$ = add_| eaf (" VAR ABLE", $1);
}
| DEREF str
[* XXX - unhandl ed case
printf("yacc: DEREF str - unhandl ed case\n");
$$ = calloc(strlen('$) + strlen($2),
si zeof (char));
strcpy($$,'$');
strcpy($$ + strlen('$'), $2);
*/
}
%%
void
kderror(char *s)
{}

/**

* nal |l oc

* Allocates nenory for a node

* Qut put:

* struct node* - pointer to the node

***/

struct node*
nal | oc()

struct node *np;
[*XXX add: error checking for nenory allocation np==-1*/

np = (struct node *) rmall oc(sizeof (struct node));
if (np == NNULL)

{
printf("nalloc: Qut of Menory\n");
return ((struct node*) -1);
}
return np;
}
/**
* add_| eaf
* Cenerates a leaf (a node with only left value filled)
* | nputs:
* char *type - type of info in |leaf, can be STRI NG or VAR ABLE
* char *value - actual value of STRING or VAR ABLE
* Qut put:
*

struct node* - pointer to the |eaf

***/
struct node*
add_| eaf (char* type, char* val ue)
{

[*XXX add: error checking for menmory allocation np==-1*%/

struct node *np = nalloc();

np- >operator = type

np- >l eft.val ue = val ue

[lprintf("adding leaf: %\twith | eaf value : %\n", np->operator, np->left.val ue);

return np;

Conversion of KeyNote Policy Filesto DNF for 1Psec

/**

* add_node

* Cenerates a node

* | nputs:

* char *op - type of operator (can be &, ||,!,==1= > >= <, <=
* char node *left - pointer to the left child of node

* char node *right - pointer to the right child of node

* Qut put :

* struct node* - pointer to the node

*

**/

struct node*
add_node(char* op, struct node *left, struct node *right)

[*XXX add: error checking for nenory allocation np==-1*/
struct node *np = nalloc();

np- >operator = op

[lprintf("adding node: %\n", np->operator);

np->left.np = left;

np->right.np = right;

return np;

}

/**

* appl y_doubl e_negati on

* Converts expression of type NOT (NOT x) to X

* | nputs:

* struct node *snode - pointer to the node to which double negation will be
* applied
***/
voi d

appl y_doubl e_negati on(struct node* snode)

struct node *child, *grand_child;

[lprintf("\napply_doubl e negation");
child = LCH LD(snode)
grand_child = LCH LD(child);

bcopy(grand_child, snode, sizeof(struct node));
free(child);
free(grand_child);

}

/**
* appl y_and_DeMor gan

* Converts expression NOT (x AND y) to (NOT x) OR (NOT y)

* | nputs:

* struct node *snode - root node that contains the NOT

***/
voi d
appl y_and_DeMor gan(struct node* snode)

struct node *child, *grand_childl, *grand_child2, *new_child
child = LCHI LD(snode);

grand_chi | d1 LCHI LD(chi I d);
grand_chi | d2 RCHI LD(chi | d) ;

snode- >operator = "||";

chi | d->operator = "!";

RCH LD(chi | d) = NNULL;

new child = add_node("!", grand_child2, NNULL);

36

Conversion of KeyNote Policy Filesto DNF for 1Psec

RCHI LD(snode) = new_chil d;
}

/**
* appl y_or_DeMor gan

* Converts expression NOT (x ORy) to (NOT x) AND (NOT vy)

* | nputs:

* struct node *snode - root node that contains the NOT

***/

void

appl y_or _DeMor gan(struct node* snode)

[*XXX e apply_and_DeMorgan, apply_or_DeMrgan can be unified to one function through
snode- >operator */

{

struct node *child, *grand_childl, *grand_child2, *new child;

child = LCH LD(snode);
grand_childl = LCH LD(child);
grand_child2 = RCH LD(chil d);

snode- >operator = "&&";
chil d->operator = "!";
RCHI LD(chi | d) = NNULL;

new _child = add_node("!", grand_child2, NNULL);
RCH LD(snode) = new_chil d;

}

/**

* inverse_tokens
* Converts expression NOT (x RELATI ONAL_COPERATOR y) to

* X | NVERSE_RELATI ONAL_OPERATCR y
* | nputs:
* struct node *snode - root node that contains the NOT

***/
voi d
i nverse_t okens(struct node* snode)

{
struct node *child = NNULL;
int relational = 0;

child = LCH LD(snode);

if (strcnp(child->operator, "==") == 0)

chil d->operator = "I=";

relational = 1;
}
else if (strcnp(child->operator, "!=") == 0)
{

chil d->operator = "==";

relational = 1;
}
else if (strcnp(child->operator, "<") == 0)
{

chi | d->operator = ">=";

relational = 1;
}
else if (strcnp(child->operator, ">") == 0)
{

chil d->operator = "<=";

relational = 1;
else if (strcnp(child->operator, "<=") == 0)
{

37

}

Conversion of KeyNote Policy Filesto DNF for 1Psec

chil d->operator = ">";
relational = 1;
else if (strcnp(child->operator, ">=") == 0)
chil d->operator = "<";
relational = 1;

if (relational)

bcopy(child, snode, sizeof(struct node));
free(child);
}

/**

*
*
*
*
*
*

*

per neat e_nots
Converts expressions of type NOT (x AND y) to (NOT x) OR (NOT y)
NOT (x CRYy) (NOT x) AND (NOT vy)
for the whole tree
I nput s:
struct node *snode - root node of the tree in which NOTs
wi Il be perneated

***/
voi d
permeat e_not s(struct node* snode)

{

}
/*
{

i f (snode == NNULL)
{

return;

/1if root node operator is a NOT
if (strcnp(snode->operator, "!") == 0)

[lprintf("\npermeate_nots: found a NOT");
if (LCH LD(snode) != NNULL)
{

/1if left child operator is a NOT
if (strcnp(LCH LD(snode)->operator, "!") == 0)
{

//remove the two NOTs and perneate
appl y_doubl e_negat i on(snode) ;
per meat e_not s(snode) ;

}
else if (strcnp(LCH LD(snode)->operator, "&&') == 0)
appl y_and_DeMor gan(snode) ;

else if (strcnp(LCH LD(snode)->operator, "[|") == 0)
appl y_or _DeMor gan(snode) ;
el se

//the node's operator is relational
i nver se_t okens(snode);

}
i f (strcnp(snode->operator, "VAR ABLE') == 0)

printf("\npernmeate_nots: found a VAR ABLE");
printf("\n\t snode->left.value %", snode->l|eft.val ue);

if (strcnp(snode->operator, "STRING') == 0)
{
printf("\npermeate_nots: found a STRING');

printf("\n\t snode->left.value %", snode->|eft.value);
ol

Conversion of KeyNote Policy Filesto DNF for 1Psec

//if node's children are not |eaves, perneate nots for them

if ((strcnp(snode->operator, "VARI ABLE') != 0) &&
(strcnp(snode->operator, "STRING') != 0))

{

per meat e_not s(LCH LD(snode)) ;
per nmeat e_not s(RCH LD(snode)) ;

}
}

/**

* copy_bool _tree

* generates a copy of a tree

* | nputs:

* struct node *snode - root node of tree to be copied

***/

struct node*
copy_bool _tree(struct node* snode)

struct node *ctree;
i f (snode == NNULL)

return NNULL;
}

[/ copy root node
[*XXX add: error checking for nenory allocation ctree==-1*/
ctree = nalloc();
bcopy(snode, ctree, sizeof(struct node));
[/copy left child
if ((strcnp(LCH LD(snode)->operator, "VARI ABLE") !
(strcnp(LCH LD(snode) - >operator, "STRING') !=
i f (LCH LD(snode) != NNULL)
LCH LD(ctree) = copy_bool tree(LCH LD(snode));
//copy right child
if ((strcnp(RCH LD(snode)->operator, "VARI ABLE') != 0) &&
(strcnp(RCH LD(snode) - >operator, "STRING') != 0))
i f (RCH LD(snode) != NNULL)
RCH LD(ctree) = copy_bool _tree(RCH LD(snode));
return ctree;

}

/**

* distribute_branches
* Converts an expression of type (x ORy) AND z

= 0) &
0))

* (x AND z) OR (y AND 2z)
* | nputs:
* struct node *snode - root node of tree whose branches we distribute

***/
voi d
di stri bute_branches(struct node* snode)

{
struct node *rchild, *cp_rchild, *gchildl, *gchild2;

rchild = RCH LD(snode);
cp_rchild = copy_bool _tree(rchild);

gchi 1 d1
gchi | d2

LCH LD(LCHI LD(snode)) ;
RCHI LD(LCHI LD(snode)) ;

snode- >operator = "||";

LCH LD(snode) - >operator = "&&";

RCH LD(snode) = add_node("&&"', gchild2, rchild);
RCH LD(LCHI LD(snode)) = cp_rchild;

39

Conversion of KeyNote Policy Filesto DNF for 1Psec

}

/**

* and_distribute
* Converts recursively expressions of type (x ORy) AND z to

* (x AND z) OR (y AND z)

* | nputs:

* struct node *snode - root of tree on which distributive law w |l be
* applied

* Qut put:

* int - 1if distributive law was applied or if there was a change to
* sone part of tree, O otherw se
***/
int

and_di stri bute(struct node* snode)

{

int left, right;

if (snode == NNULL)
{

return O;

}

//if node is not an AND

if (strcnp(snode->operator, "&&') != 0)
{

[1if node is already an OR apply distributive | aw
//to its children
if (strcnp(snode->operator, "[|") == 0)

left = and_di stribute(LCH LD(snode));
right = and_di stri but e(RCH LD(snode));
return (left || right);

}

el se
return O;

}/if node is an AND
el se
t
int swap = 0;
struct node *tenp;
[lif right child s operator is an OR, swap positions of left and
[/right child (so if expression |ooked |ike x AND (y OR 2)
[1it beconmes (y OR z) AND x
[*XXX m ssing check that LCH LD isn't already an OR */
i f (strcnp(RCH LD(snode)->operator, "[|") == 0)
{

/*XXX add: error checking for nenory allocation tenp==-1 */
tenp = nalloc();

bcopy(RCH LD(snode), tenp, sizeof(struct node));

bcopy(LCH LD(snode), RCHI LD(snode), sizeof(struct node));
bcopy(tenp, LCH LD(snode), sizeof(struct node));

swap = 1;
free(tenp);
}
[1if left child is an OR convert (y OR z) AND x to
I (y AND x) OR (z AND x)
if (swap || (strcnp(LCH LD(snode)->operator, "||") == 0))

di stri bute_branches(snode);

and_di st ri but e(snode) ;
return 1,

Conversion of KeyNote Policy Filesto DNF for 1Psec

}
[lif left child is not an OR
el se
{
left =right = 0;
/1if left childis not a |leaf, apply distributive lawto it
if ((strcnp(LCH LD(snode)->operator, "VARI ABLE') !'= 0) &&
(strcnp(LCH LD(snode) - >operator, "STRING') = 0))
left = and_di stribute(LCH LD(snode));
/1if right childis not a leaf, apply distributive lawto it
if ((strcenp(RCH LD(snode)->operator, "VARI ABLE') !'= 0) &&
(strcnp(RCH LD(snode) - >operator, "STRING') = 0))
right = and_di stribute(RCH LD(snode));
return (left || right);
}
}
}

/**

* distribute DNF

* Applies distributive lawto tree

* | nputs:

* struct node* root - root of bool ean tree

***/
voi d
di stri bute DNF(struct node* snode)

{

int distribution = 1;
while (distribution)

di stribution = and_di stri bute(snode);
}
}

/**

* extract _DNF_tree

* Converts tree to DNF form

* | nputs:

* struct node* root - root node of boolean tree to be converted to DNF

***/
voi d
extract DNF _tree(struct node* root)

{

per meat e_not s(root);
di stribute DNF(root);
}

/**

* bi nary_node

* Checks if node has a | ogical or relational operator involving two operands
* | nputs:

* struct node* snode - node to be checked

* Qut put:

* int - 1if node has two operands, O otherw se

*

**/
int
bi nary_node(struct node* snode)

if ((strcnp(snode->operator, "&&%"') == 0) || (strcnp(snode->operator, "||") == 0) ||
(strcnp(snode->operator, "==") == 0) || (strcnp(snode->operator, "!=") == 0) ||
(strcnp(snode->operator, "<") == 0) || (strcnp(snode->operator, ">") == 0) ||
(strcnp(snode->operator, "<=") == 0) || (strcnp(snode->operator, ">=") == 0))

4

Conversion of KeyNote Policy Filesto DNF for 1Psec

return 1;
el se
return 0;

}

/**
* print_binary_node

* Prints a binary node to screen: left child first, operator, right child |ast

* | nputs:

* struct node* snode - binary node to be printed
***/
voi d

print_binary_node(struct node* snode)

[lprint left child

if (snode->left.np !'= NNULL)
print_tree(snode->left.np);

//print operator

printf(" % ", snode->operator);

[/lprint right child

i f (snode->right.np !'= NNULL)
print_tree(snode->right.np);

}

/**

* print_unary_node
* Prints a unary node to screen: operator first, left child |ast
* | nputs:
* struct node* snode - unary node to be printed
***/
voi d
print_unary_node(struct node* snode)
{

//print operator

printf("%", snode->operator);

[lprint left child

if (snode->left.np !'= NNULL)

print_tree(snode->left.np);

}

/**
* print_tree
* Prints tree to screen
* | nputs:
* struct node* snode - root of tree to be printed
***/
voi d
print_tree(struct node* snode)
{ if (snode == NNULL)
return;
/1if node is leaf print it
if (strcnp(snode->operator, "STRING') == 0)
printf("\"%\"", snode->l eft. val ue);
else if (strcnp(snode->operator, "VAR ABLE') == 0)
printf("%", snode->| eft.val ue);
/1if node with two children
el se if (binary_node(snode))
{ printf("(");
print_bi nary_node(snode);
printf(")");

42

Conversion of KeyNote Policy Filesto DNF for 1Psec

/1if node with one child
else if (strcnp(snode->operator, "!") == 0)

printf("(");
print_unary_node(snode);

printf(")");
}

/**
fprint_bi nary_node
Prints a binary node to a file: left child first, operator, right child |ast
I nput s:
FILE* file - file to output node to
struct node* snode - binary node to be printed
**/
void
fprint_binary_node(FlILE* file, struct node* snode)

*
*
*
*
*
*

[lprint left child

if (snode->left.np !'= NNULL)
fprint_tree(file, snode->left.np);

//print operator

fprintf(file, " % ", snode->operator);

[lprint right child

if (snode->right.np != NNULL)
fprint_tree(file, snode->right.np);

}

/**

fprint_unary_node
Prints a unary node to a file: operator first, left child |ast
I nput s:

FILE* file - file to output node to

struct node* snode - unary node to be printed

*
*
*
*
*
***/
voi d

fprint_unary_node(Fl LE* file, struct node* snode)

//print operator
fprintf(file, "%", snode->operator);
[lprint left child
if (snode->left.np !'= NNULL)
fprint_tree(file, snode->left.np);
}

/**
* fprint_tree
* Prints tree to a file
* | nputs:
* FILE* file - file to output tree to
* struct node* snode - root of tree to be printed
***l
voi d
fprint_tree(FILE* file, struct node* snode)
{ i f (snode == NNULL)
return;
/1if node is leaf print it
if (strcnp(snode->operator, "STRING') == 0)
fprintf(file, "\"9%\"", snode->| eft.val ue);
else if (strcnp(snode->operator, "VAR ABLE') == 0)
fprintf(file, "9%", snode->l| eft.val ue);

Conversion of KeyNote Policy Filesto DNF for 1Psec

/1if node with two children

el se if (binary_node(snode))

{
fprintf(file, "(");
fprint_binary_node(file, snode);
fprintf(file, ")");

/1if node with one child
else if (strcnp(snode->operator, "!") == 0)

fprintf(file, "(");
fprint_unary_node(file, snode);
fprintf(file, ")");
}
}

/**
* print_tree_file

* Prints tree to the file described by the global variable targetdnf

* | nputs:

* struct node* snode - root of tree to be printed
***/
void

print_tree_file(struct node* snode)

{
FI LE *file;
if ((file=fopen(targetdnf, "w')) != NULL)
fprint_tree(file, snode);
fclose(file);
}
el se
[*XXX I nconpl ete error handling*/
printf("\nprint_tree file: error in opening file %", errno);
}

/**

* free_tree

* Frees nenory al oocated for tree

* | nputs:

* struct node* root - root node of tree to be freed
***/
voi d

free_tree(struct node* root)

if (root == NNULL)
{

}
//recursively free children
//if node has two children, free both of them

if (binary_node(root))

return;

free_tree(root->left.np);
free_tree(root->right.np)

}
/1if node has only one child, free this left child only
else if (strcnp(root->operator, "!") == 0)

free_tree(root->left.np);
/*freeing a |leaf or the root*/

/*if ((strcnp(root->operator, "STRING') == 0) || (strcnp(root->operator, "VAR ABLE")

== 0))

Conversion of KeyNote Policy Filesto DNF for 1Psec

printf("\nfreeing a leaf : %", root->left.val ue);
el se

printf("\nfreeing a root node: %", root->operator);*/
free(root);
return;

Conversion of KeyNote Policy Filesto DNF for 1Psec

APPENDIX C

Header Filee tree. h

#ifndef _ TREE H
#define _ TREE H

/**
* node

* There can be two types of nodes: internediate and | eaf/termi nal nodes

* An internmedi ate node uses:

* operator, which can be: a logical or relational operator
* left, whi ch cont ai ns:

* np pointer to left child node

* and may al so use (if the operator is binary)

* right, whi ch cont ai ns:

* np pointer to right child node

* (Fields not nentioned are enpty/ignored)

* A leaf node has:

* oper at or, whi ch can be: a VAR ABLE or STRI NG i ndi cat or
* | eft, whi ch cont ai ns:

*

value actual value of VAR ABLE or STRI NG
* (Fields not nentioned are enpty/ignored)

***/

struct node

{ char* operator
uni on
{
char* val ue;
struct node *np
} left, right;
b
char* targetdnf;
#def i ne LCH LD(snode) ((snode) - >l ef t. np)
#def i ne RCHI LD(snode) ((snode) ->ri ght. np)
#defi ne NNULL ((struct node *) 0)

#endif /* _TREE H_ */

