
Quantifying Effect of Network Latency and Clock Drift
on Time-driven Key Sequencing

Geoffrey G. Xie∗ Cynthia Irvine† Tim Levin†

Department of Computer Science
Naval Postgraduate School, Monterey, CA 93943

{xie,irvine,levin}@cs.nps.navy.mil

Abstract

Time-driven Key Sequencing (TKS) is a key management
technique that synchronizes the session key used by a set of
communicating principals based on time of day. This rel-
atively low cost method of session key synchronization has
been used in specialized distributed systems with low-end
communicating devices where sessions are sparse and each
session spans a short time period comprising a small num-
ber of messages.

In this paper, we describe how TKS may be useful in
several scenarios involving high speed computer networks.
More importantly, we present a performance model of TKS
and conduct a detailed analysis to determine the impact of
clock drift and network latency on the required key refresh
rate. We give the exact conditions for determining the range
of adequate key refresh rates, and demonstrate that the de-
rived conditions are sufficient to ensure that data are both
protected and deliverable. Interestingly, these conditions
may be used to obtain a key refresh rate that can tolerate
a maximum amount of clock drift after other parameters in
the system are fixed.

1. Introduction

Time-driven Key Sequencing (TKS) is a key manage-
ment technique that synchronizes the session key used by
a set of communicating devices based on time of day. The
sequence of session keys is either dynamically generated

∗supported in part by DARPA under the Next Generation Internet Pro-
gram (AO# 417) and by a grant from NSF (ANI-0114014).
†supported in part by DARPA Quorum Program and the Defense Infor-

mation Systems Agency.

from a root key or preloaded into each device. This rel-
atively low cost method of session key establishment has
been used in specialized distributed systems where sessions
are sparse and each session spans a short time period com-
prising a small number of message exchanges. Typically, in
these systems some communicating devices, such as low-
end smart cards, have too little processing capacity to sup-
port a time-durable crypto-algorithm which features a static
key for all sessions spanning the entire system lifetime.
Nor can these devices afford an elaborate key management
scheme in which a new session key is regularly distributed
to the devices through open communication channels. This
is because the key transfers must be encrypted and the asso-
ciated tasks would impose a significant amount of process-
ing overhead at each device.

Compared to most other key synchronization techniques,
TKS has a clear advantage for incurring little processing
overhead. TKS also has several limitations. First, it re-
quires some form of system wide clock synchronization to
bound the maximum clock drift within a tolerable range.
Additional overhead may be incurred in other parts of the
system to address the security concerns associated with dy-
namically generating or preloading a sequence of keys. For-
tunately, most of this overhead occurs very infrequently on
the order of days or months. Second, a system may use
TKS to synchronize encryption keysonly if each piece of
data being encrypted has a lifespan that is shorter than the
maximum lifetime1 of the key used for the encryption.

A widely used TKS application is the SecureID authenti-
cation device produced by RSA Security, Inc. These devices
are used to enhance the security of remote dial-up accesses
to corporate servers. Most of them are essentially low-end

1The maximum lifetime of a key equals the minimum amount of time
it takes to compromise the key using brute-force.

smart cards with keypad and a small display area. Each Se-
cureID card is preloaded with user-specific root keys that it
shares with the target server. When initiating a dial-in ses-
sion, a card user first enters a user-specific pin code into the
card and retrieves a one-time passcode, which is a function
of the user’s root key and the current value of the card’s
local clock. The function is implemented by a proprietary
hash algorithm. The user then provides this passcode as an
additional authenticator to the server along with the pin. To
verify the passcode the server first derives its own version
of the passcode from the current value of its own clock and
the root key that it has stored for that user. The server then
compares the two codes and grants the dial-in session only
if they match.

Although TKS-based security applications like SecureID
are widely deployed, performance studies of these systems
are very limited. The few articles that we are able to find
in the literature focus exclusively on the potential security
risks of RSA SecureID based systems [8, 9]. Little analysis
has been done to quantify the adverse effects of clock drift
and network latency on the performance of systems imple-
menting TKS. These systems assume the time scale of clock
drift and network latency is several magnitude smaller than
the rekeying interval and is thus negligible. Because of this
assumption, the key refresh rate is often set in an ad hoc
fashion and may not be optimal.

The main contribution of this paper is a set of exact con-
ditions for determining the range of adequate key refresh
rates based on clock drift and network latency parameters.
We prove that the derived conditions are sufficient for the
corresponding TKS system to ensure that data are both pro-
tected and deliverable. Interestingly, these conditions may
be used to obtain a key refresh rate that can tolerate a max-
imum amount of clock drift after other parameters in the
system are fixed. The result also indicates that in general
TKS can tolerate large clock drift, on the order of minutes.

We also describe how TKS may be useful in several sce-
narios involving high speed computer networks. TKS may
prove advantageous for some applications even though the
processing capacity of individual components appears not to
be a limitation for implementing time-durable cryptographic
algorithms. In these scenarios, it may be desirable to have
a high rate of rekeying that is on the order of minutes and
thus approaches the time scale of clock error and network
latency. That is where determining a safe rekeying rate be-
comes a very important concern.

The remainder of this paper is organized as follows. In
Section 2 we describe a couple of networking scenarios in

which TKS may be favorable. A system model is presented
in Section 3 to provide a high-level context for TKS. The
performance measures used in this paper are introduced too.
In Section 4, a canonical TKS implementation is described,
along with intuitions for the negative effects of clock drift
and network latency. Section 5 follows with a formal anal-
ysis of TKS and two theorems that permit us to bound the
rekeying frequency based upon network latency, clock drift,
and key durability. In Section 6, a method for choosing the
optimal rekeying frequency based on system requirements
is presented. Related work is discussed in Section 7.

2. Potential TKS Usage Scenarios

In this section, two potential scenarios in which time-
driven key sequencing may prove advantageous are de-
scribed. The first requires a high speed packet authenti-
cation service to counter Denial of Service (DoS) attacks,
while the second requires message confidentiality for data
that has a short lifespan.

We define “cryptographic mechanism” to include spe-
cific selections for all variable parameters, including, where
applicable, the transformation algorithm (including the
number of internal “rounds” or permutations), blocksize,
and the length of the key. The security or “cryptographic
strength” of such a mechanism can be taken to be a measure
of its resistance to attack, and may be a function of some
or all of these parameters. Similarly, the specific parame-
ters of a cryptographic mechanism will determine its level
of resource use, or overhead. Processor utilization is the
most critical overhead. In general the stronger is a crypto-
graphic mechanism, the more processing overhead it incurs.
For example, the performance of the Advanced Encryp-
tion Standard (AES) algorithm (Rijndael)[4], is functionally
dependent on the size of the key used. Both setup and en-
cryption take longer as the key length increases.

Scenario 1. The Internet routing protocols such as
IS-IS, OSPF and BGP frequently flood the network with
link state or path update packets to keep routing tables syn-
chronized and up to date. In each of these update cycles, a
router must process a large number of control packets sent
by numerous other routers. Worse, these packets typically
arrive in bunches, creating “packet storms” that could over-
load the receiving routers. The problem will be exacerbated
when various proposals for achieving subsecond route con-
vergences are implemented [1, 2].

An adversary will explore this problem and launch DoS
attacks against these protocols rather easily as follows. The

2

adversary identifies those routers already busy processing
control packets and then aggravates their predicament by
sending a large number of faked or duplicated control pack-
ets to them. Such attacks will delay routing table conver-
gence and disrupt network services.

An effective measure to counter these DoS attacks is
deploying to each router interface a packet filter to form
a first-line defense. Malicious packets are dropped early
and rapidly before they enter the more processing-intensive
stages. The main design objective for the filter is “minimal
processing overhead”, as long as security is not compro-
mised. Although the existing security extensions of the
Internet routing protocols can detect malicious packets, they
do not meet the requirement of minimum processing over-
head. Their main objective is “adequate security”. TKS,
on the other hand, provides an ideal basis for developing
the packet filter. By increasing the rekeying frequency, the
system may use a “weak-per-key” but lightweight crypto-
graphic mechanism like keyed-MD5 to achieve the same
filtering accuracy (i.e., 100% drop rate of malicious pack-
ets) as a strong but costly mechanism based on public key
cryptography.

We have developed such a filter as part of our effort to
build a link-layer high speed packet authentication protocol
[10]. Running as part of the NetBSD kernel on an antiquated
Pentium 200Mhz PC box, the filter was still able to achieve
a filtering rate of 75 Mbps.

Scenario 2. This scenario centers upon confidential-
ity. Use of rapidly changing keys would be useful in situ-
ations where time-critical data are distributed in encrypted
form to a group of subscribing customers. As an example,
consider time-critical analyses of highly volatile financial
markets. Here subscribers are provided with timely multi-
media analyses to support informed investment decisions in
a fast-paced market. The analyses are of considerable value
for a few hours, but are available to the public after a fixed
period and provide no added value to subscribers thereafter.
Subscribers receive continuous updates and analyses. They
may join and leave the subscriber pool periodically, for ex-
ample monthly, thus we are not concerned with rapid rekey-
ing in order to include or exclude particular subscribers or
former subscribers respectively. We are, however concerned
with attackers who wish to access the valuable sensitive in-
formation for free. Because attackers will be able use both
known ciphertext and known plaintext, it is necessary to
change the keys while subscribers are actively using the ser-
vice. Yet, the fact that the information is no longer sensitive
after a few hours means that the cryptographic mechanism

used needs only to be sufficiently strong to protect the infor-
mation for these relatively small intervals. Again, security
related processing overhead may be reduced by using the
right, not necessarily the strongest, cryptographic mecha-
nism.

In both scenarios, it may be beneficial to use a high
rekeying frequency. But because of non-negligible clock
drift and network latency in real systems, there is an upper
bound on the maximum rekeying frequency. On the other
hand, the minimum rekeying frequency is directly related to
the maximum key lifetime. The remainder of the paper is
dedicated to these topics.

3. A System Model of TKS

While TKS is applicable to different types of network
communication protocols, for ease of presentation we as-
sume a packet-based (e.g., IP) network. The following defi-
nitions applys to the System Model used to discuss TKS in
this paper.

• System. A set of communicating nodes, one or more of
which comprise a logical (viz, potentially distributed)
key distribution center (KDC). Nodes wish to com-
municate securely through the shared use of a cryp-
tographic key table. The nodes can be of various types
ranging from powerful workstations and gateways to
lighter-weight appliances. Therefore, the TKS pro-
cessing requirement at the node should be minimized.
One may also interpret a node as a logical entity such
as a user account or even an application activated on a
physical machine.

• Maximum Key Lifetime,T . Each cryptographic key
used in theSystem is subject to various attacks as soon
as the first packet secured with the key enters the public
network. The amount of time that the key can remain
concealed while under attack is defined to be themax-
imum lifetimeof the key.

• Key-Table. An ordered set of session keys. The same
table must be available at each node of the system.
These keys Key table distribution can be accomplished
by several means. One method is to transmit “seed”
keys (e.g., see [3]) which are used by the nodes as
part of an algorithm for local generation of the com-
plete key table. Another means is to distribute the
literal keys that make up the key table. Literal keys, to
the extent that they are generated “randomly,” will ex-
hibit more inter-key independence, as algorithmically

3

generated keys will be related to each other, however
remotely, via the algorithm.

For the purposes of this paper, the key-table has an
infinite size; this is understood as reflecting an imple-
mentation mechanism which replenishes all nodes with
additional sequence of keys before the expiration of the
last key in the current sequence, thus infinitely extend-
ing the length of the table.

• Time-driven Key Sequencing, TKS. In a system uti-
lizing shared logical key tables, TKS is a method for
synchronizing the transition between keys without uti-
lizing explicit node-to-node handshaking.

3.1. Threat model

The threat model assumed in this paper is one of inse-
cure communication channels between System nodes, such
that cryptographically protected data packets might be inter-
cepted and then subjected to attacks on the key space. We
donotconsider with attacks aimed at directly compromising
the underlying hardware and/or software of a node. We as-
sume that the prefetched keys (or their seeds, in the case of
algorithmically-generated keys) are stored and distributed
securely.

3.2. Performance measures

We are primarily concerned with two performance mea-
sures. The first one is a Boolean indicator ofsecurity.
Specifically, the described System is said to be secure if
keys are not used beyond their maximum lifetime at any
node, per the TKS protocol, even in the context of an inse-
cure communication channel. A formal definition is given
in Definition 1 of Section 5.

If a key is used beyond its maximum lifetime, the system
may be vulnerable to a brute-force attack as follows. An in-
truder who intercepts packets from the message stream of a
trusted node can use cryptanalysis techniques or a search of
the key space to discover the key, and then hijack the mes-
sage stream. The receiver node will not be able to detect this
intrusion just by inspecting the messages since the intruder
is able to modify all packet fields (including any timestamp
or sequence number) after learning the key. Because of such
attacks, it is also not advisable to synchronize session keys
with a limited maximum lifetime by adding a key index field
to packets.

The second performance measure is aboutdata delivery.
It describes the efficacy of the TKS system in delivering use-
ful data while trying to meet the security requirement. The
specific metric we use is calledmaximum tolerable network
latency, denoted byD and a performance target that can be
seta priori. A TKS system is said to support maximum tol-
erable network latency ofD seconds if a node in the system
will never drop a valid packet — one that comes from an-
other node in the system and is not tempered with in transit
— unless the packet is delayed more thanD seconds by the
network. A formal data deliverability condition is defined
in Lemma 1 of Section 5.

4. Implementing TKS with
Dynamic Key Windows

In this section, the general behavior of a TKS system is
described using a reference implementation in which each
node stores active session keys in special variables named
dynamic key windows. The implementation is referred to as
TKS-DW. We hope the ensuing discussions will also pro-
vide some intuitive explanations for the adverse effects of
clock drift and network latency.

In TKS-DW, each node maintains two dynamic key win-
dows. The first is theSend-Key Window, which is of size
1. The node uses the session key in this window to cryp-
tographically transform outgoing packets. A special term
(s) is designated for the time when a key is first put into the
send-key window. The duration of a key staying in the send-
key window is fixed and is called theKey Window Period,
W . An obvious constraint needed onW is that it be less
than or equal to the cryptographic lifetime of one key. At
the end of the current key window period, aSend-Key Win-
dow Transitionoccurs and a new key is put into the send-key
window.

We will motivate the need for aReceive-Key Windowand
then give its precise definition. The effect of clock drift is
considered first and for the moment network latency is as-
sumed to be negligible.

In a perfect network where the local clocks of all of
the nodes are exactly synchronized, all nodes would make
send-key window transitions at precisely the same time. All
senders and receivers would see the same key in their re-
spective send-key windows.

Perfect clock synchronization does not exist in real net-
works. If a receiver’s clock is slow with respect to that of
a sender, then a current key of the sender will appear to be
either a current key or a future key to the receiver. Similarly,

4

a current key of a sender will be either a previous key or the
current key of a receiver with a relatively fast clock. What
is of interest to note is that between any particular sender-
receiver pair, a key will either be a previous/current key or
a current/next key at the receiver, not both. This means that,
for a particular sender-receiver pair, a key will be active for
a duration equal to a variable number,n, of Key Window
Periods, i.e.,nW .

Because the clock of a given receiver may be slow with
respect to some senders and fast with respect to others, the
receiver must maintain a receive-key window that encom-
passes both previous, current, and future send-keys. Thus
theReceive-Key Windowdefines a set of one or more keys
that a node uses to cryptographically transform (e.g., vali-
date) incoming packets. The window also has a finite period
of W . In other words, one key in the window is replaced ev-
eryW time.

The receive-key window has the following generic posi-
tions:

• x previous send-keys

• 1 current send-key

• y next send-keys

We wish to minimize the number of keys that must be in-
spected upon receipt of a packet. In what follows, the size of
the receive-key window is assumed to be 3 (i.e.,x = y = 1).
This assumption places limitations on the allowed clock
drift, which will be explained below.

As a key window period expires, aReceive-Window
Transitiontakes place and the receive-key window “slides”
down the key table in the following manner. The key in each
position of the receive key window is replaced by its “next”
neighbor, such that in the subsequent receive-key window,
(1) the current key has become the newest previous key, (2)
the oldest next key has become the current key, (3) a new
key has entered the table (as the newest next key) and (4)
the oldest previous key has left the table.

Figure 1 illustrates how key windows move with time at
a node.s denotes the time whenki, the key at theith row
of the table, becomes the current sending key. Recall that
W is the Key Window Period. In time interval (a),ki is
the current sending key and it is in the receive key window
along withki−1 andki+1. At the end of the interval, i.e.,
exactly2 s + W , the node slides the key windows down one
row of the table. The node has now entered window interval

2For ease of presentation, we assume that the node useski as the send-
ing key ats + W and switches toki+1 at (s + W)+.

ki

i-1k

i+1k

i+2k

...

Key table

...

(b)

s+2W

Key table

...

i-1k

i+1k

...

ki

(a)

s+W

(c)

s+3W

ki

i-1k

i+1k

i+2k

i+3k

Time

...

s

Send
key window

Receive
key window

ki

i-1k

i+1k

...

...

ki-2

Key table Key table

...

s-W

Figure 1. Key windows of a node at different
time intervals

(b) andki is the previous key. The node then slides the key
windows one more row at times + 2W . At this point the
node has entered window interval (c) andki is no longer
in the receive-key window. Observe that with perfect clock
synchronization, a key stays in receive-key window for two
consecutive window periods after becoming the send key
and subject to attack. In that case, the key lifetime must be
greater than2W to ensure security.

Suppose the clock drift of each node is bounded with re-
spect to a standard time source by a valuee. The maximum
clock time that two nodes can drift apart with respect to each
other is2e. Thus the receive-key window period must be ex-
tended by2e to ensure data delivery in the worst-case, which
occurs for a (fast sender, slow receiver) pair. Consequently,
the lower bound on key lifetime must be increased from2W
to 2W + 2e.

What are the consequences of network latency? The time
that it takes a packetp to get from source to destination is
called thenetwork latency ofp and is denotedd(p). This
means that the key window periodW must be at least as
large asd(p) to have a chance to not dropp mistakenly.
When also taking into consideration a maximum of clock
drift 2e between the sender and receiver,W must be at least
D + 2e to not drop packets whose network latency can be
as large asD.

5. Exact conditions for using TKS

In the last section, we presented intuition that there are
exact limits on the key window periodW (and thus the

5

rekeying frequency) with respect to the maximum key life-
time, clock drift, and network latency. In this section, we
formally establish that these limits are sufficient to ensure
that data is both protected and deliverable under TKS-DW
with the receive-key window size set to three keys.3 The
security objective of TKS-DW is formally defined below.

Definition 1 Assume that the maximum lifetime of each key
is T seconds measured by standard time. The protocol is
not vulnerable to brute-force attacks if it never uses a key
beyond the maximum key lifetime; that is, the protocol is not
vulnerable if the following holds for any keyk that it uses,

tl(k)− tf (k) ≤ T, (1)

wheretf (k) is the standard time when the first packet se-
cured withk enters the public network, andtl(k) the last
standard time thatk is in a receive-key window at any node.

Equation (1) tells us that the protocol is secure when
the keys are used within the time bounds of their defined
lifetimes, given standardized (i.e., perfectly synchronized)
clocks at all nodes. However, in reality, the clocks at local
nodes may deviate from standard time. Theorem 1 presents
an condition under which we can guarantee that the protocol
is secure using local, non-standard, clocks.

Assumption 1 Each node has a local clock. A mechanism
is in place to synchronize these clocks with the standard time
so that at any time the absolute difference between any local
clock and the standard time is upper bounded bye seconds.
That is, at any standard timet and for any noden in the
TKS system,

| cn(t)− t |≤ e, (2)

wherecn denotes the local clock ofn, andcn(t) the reading
on that clock at standard timet.

Theorem 1 (Condition for Security)
Consider a TKS-DW system. LetW be the key window
period. Assume that the maximum lifetime of each key isT
seconds. If the following security conditionholds

W ≤ T
2
− e, (3)

then for every keyk used by the system,

tl(k)− tf (k) ≤ T. (4)

3The results can be extended to arbitrarily large receive-key window
sizes.

The proof of Theorem 1 is straightforward based on the
intuition given in the end of previous section. (See [11].)
Combining the results of Definition 1 and Theorem 1, it is
clear that a TKS-DW system is secure if it meets the con-
dition specified by equation (3). Thus, we have derived a
condition for TKS-DW to ensure security.

Next, we turn attention to the adverse effect of network
latency on packet delivery. The network latency of a packet
is measured as the difference between the standard time
when the packet leaves the sending node and the standard
time when the packet arrives at the receiving node. Given a
specific maximum tolerable network latency targetD, The-
orem 2 establishes the importance of choosingW based on
D to ensure that data are deliverable.

Lemma 1 Consider an arbitrary packetp secured by a TKS
sender. Letk be the key that secures the packet.a(p)
denotes the standard time when the packet arrives to the
receiving node, andtpl (k) the last standard time thatk is
in the receive-key window of the receiving node ofp. If the
packet has not been tempered with, and

tpl (k)− 3W ≤ a(p) ≤ tpl (k), (5)

then the packet will be accepted by the receiving node.

Theorem 2 (Condition for Data Deliverability)
If W meets the following data deliverability condition

W ≥ D + 2e, (6)

then for any packetp whose network latency (denoted by
d(p)) does not exceedD,

tpl (k)− 3W ≤ a(p) ≤ tpl (k). (7)

Lemma 1 follows directly from the protocol specification
of TKS-DW and the fact that(tpl (k)− 3W,≤ tpl (k)] is the
receive-key period ofk at the receiving node. The proof
of Theorem is straightforward based on the intuition given
in the end of previous section. (See [11].) Combining the
results of Lemma 1 and Theorem 2, it is clear that if the
condition specified by (6) holds, then a valid packet, i.e.,
one that is secured by a TKS sender and is not tempered
with in transit, will be accepted by the receiver as long as its
network latency does not exceedD. Thus, we have deter-
mined a condition on TKS-DW to ensure deliverability of
data.

6. Practical Uses of the Conditions

We see several practical uses of the theoretical results
presented in the previous section. They are described below.

6

T/2

T/2

-D/2

D

e

W

(T + D) / 3

(T
 -

 2
D

)
/ 6

e = T/2 - W

e = (W - D) / 2

Figure 2. Relationship between e and W

6.1. Choosing W to maximize tolerance of
clock drift

Assume that the key lifetimeT and the maximum net-
work latency toleranceD have already been determined
based on system needs. Next we will discuss the relation-
ship between the key window periodW and the maximum
tolerable clock drifte. We will show that there exists aW
value that maximizes allowablee. That is,givenT andD
one can choose a particular key window period to maxi-
mize the system’s clock drift tolerance.Although a time
synchronization protocol such as the Internet Network Time
Protocol (NTP) can be used to reducee to tens of millisec-
onds, it is still desirable to maximize the system’s clock drift
tolerance because the NTP could be under attack itself or
malfunction, in which casee would be much higher than
normal.

From the security and deliverability conditions of The-
orem 1 and 2, the following upper bound one can also be
established

e ≤ min{W −D
2

,
T
2
−W} (8)

Now we have a range ofe to choose from based onW . If the
value ofW is set too close toT/2 or D, then from equation
(8) e is required to be very small, which may be infeasible.

TheW value that maximizese can be derived based on
equation (8) as follows. Figure 2 shows thee-W relation-
ship embedded in equation (8). There is a feasible region,
the shaded triangle of the figure, of(e,W) combinations
that meet both security and deliverability conditions. Within

that region, whenW =
T + D

3
, e is maximized at

T − 2D
6

.

As an example, letD = 30 seconds, which is much
larger than the normal network latency in the Internet. Fur-
thermore, letT = 1800 seconds, which is a conservative

estimate for current cryptograhic systems. If clock drift
is the principal concern, one should choose a key window
period that is close to(1800+30)

3 = 610 seconds so that a

maximum clock drift of(1800−2×30)
6 = 290 seconds can be

tolerated.

6.2. DeterminingD and e

When selecting a value for the maximum network la-
tency toleranceD one should consider how the application
reacts to packet delays. For example, it would be ok to set
D to a very small value (i.e., subsecond) if the system is
to just carry live voice traffic. Overly delayed packets are
useless to this type of applications. Similarly for typical In-
ternet Web applications, the value ofD can be in the range
of seconds.

It would be prudent to make a conservative estimate on
maximum clock drifte. Several existing time synchroniza-
tion protocols can bound the clock drift within a second.
Global Positioning System (GPS) satellite based clocks may
reducee further to the order of 1-2 microseconds. However,
these performance numbers are achieved in normal operat-
ing situations. The time synchronization protocols or GPS
satellites may malfunction or be under attack. Therefore,
it is important to select ane value that is sufficiently large
to account for extra clock errors caused by unusual system
conditions.

Our analysis suggests that the security of a TKS system
will not be compromised by an overestimatede or an im-
properly setD value. This is because the security condition
is independent ofD and a largere value causes keys to
be refreshed more frequently. On the other hand, the data
delivery performance of the system may be significantly
impacted by these values. Other factors such as rekeying
overhead need to be considered too in determining the right
D ande values for a system. (See sections below.)

6.3. ChoosingW based onD, e, and T

After T , D ande are determined, a range ofW values
may be feasible. Based on the security and deliverability
conditions, specifically equations (3) and (6), the window
periodW can be selected from the following range

D + 2e ≤ W ≤ T
2
− e (9)

For example, letD = 20 seconds,e = 20 seconds, and
T = 1800 seconds. ThenW can be any value between 60
and 880 seconds.

7

The value ofW determines how often a new key is
needed. When there is a range of values to select from,W
should be as large as possible. The main advantage of this
approach is that it minimizes the overhead of key generation
and/or distribution. The trade-off is that largeW requires
long-lasting keys and possibly more processing overhead
associated with the transform.

6.4. Choosing the right cryptographic mechanism

For well-designed cryptographic systems, the per packet
transform overhead typically increases with the maximum
key lifetime (T). To reduce the overhead, it is desirable to
use a cryptographic mechanism whose maximum key life-
time is just right for the task at hand. AfterD ande are
determined for the system, a lower bound onW can be ob-
tained based on the deliverability condition, i.e., equation
(6). OnceW is set, a lower bound onT can be determined
from the security condition, i.e., equation (3). Finally, an
appropriate cryptographic algorithm may be selected based
on this lower bound on key lifetime.

For example, consider designing the packet filter de-
scribed in the usage scenario 1. letD = 20 seconds and
e = 10 seconds. From equation (6), the lower bound onW
is (20 + 2× 10) = 40 seconds. Let’s assume thatW can be
set to a minimum of 120 seconds due to key generation and
distribution overhead and other concerns. Then from equa-
tion (3),T has a lower bound of(2× 100 + 2× 10) = 220
seconds. This lower bound ofT can be used to select a
(transform, key-length) pair with just the right strength.

7. Related Work

Several security risks of a particular RSA SecureID im-
plementation and recommended fixes are reported in [9].
All of the problems seem to have something to do with how
the SecureID system is engineered and operated, not the
TKS concept itself. A cryptanalysis of the RSA SecureID’s
supposedly proprietary hash algorithm is presented in [8].

The IPSec protocol [7] provides a framework for man-
aging encryption and authentication, and their associated
policies, at the network (IP) level. The default automated
key management protocol for IPSec is referred to as In-
ternet Key Exchange (IKE) [5]. Key exchange is based
on the use of the Diffie Hellman algorithm, which is rel-
atively computationally intensive. By default, the lifetime
of a IPSec session key must at least as long as the duration
of the target session. One may avoid using a long dura-
tion key by partitioning the traffic of a long session into

several sub-flows. However, each of these flows requires ad-
ditional set-up overhead4 [6]. For usage scenarios described
herein, TKS would be ideal for replacing IKE or other ex-
pensive key exchange algorithms (viz, instead of using IKE
to change keys for sub-flows of a long session).

8. Concluding Remarks

There is a limit to how much efficiency can be gained
from more frequent rekeying. At some point, the per-key
overhead of changing keys can overtake the resource ad-
vantage of using more efficient cryptographic mechanisms.
Further work is needed to quantify the characteristics of this
effect.

References

[1] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards millisec-
ond igp convergence. Internet Draftdraft-alaettinoglu-isis-
convergence-00.txt, Nov. 2000.

[2] A. Basu and J. G. Riecke. Stability issues in ospf routing. In
Proceedings of ACM SIGCOMM 2001, pages 225–236, San
Diego, CA, Aug. 2001.

[3] B. Briscoe. MARKS: Zero side effect multicast key manage-
ment using arbitrarily revealed key sequences. Presented at
46th IETF meeting, Dec. 1999.

[4] J. Daemen and V. Rijmen. Available from
csrc.nist.gov/encryption/aes/round2/AESAlgs/Rijndael/Rijndael.pdf,
June 1998. NIST AES Proposal.

[5] D. Harkins and D. Carrel. The interenet key exchange (IKE).
RFC 2409, Nov. 1998.

[6] A. Kara. Protecting privacy in remote-patient monitoring.
IEEE Computer, pages 24–27, May 2001.

[7] S. Kent and R. Atkinson. Security architecture for the Internet
Protocol. RFC 2401, Nov. 1998.

[8] Mudge and Kingpin. Initial cryptanalysis of the RSA SecurID
algorithm. On-line White Paper, Jan. 2001. Available from
www.atstake.com/research/reports/initialsecuridanalysis.pdf.

[9] PeiterZ@silence.secnet.com. Weakness in Se-
curID. On-line White Paper. Available from
www.tux.org/pub/security/secnet/papers/secureid.pdf.

[10] G. G. Xie, C. Irvine, and C. Colwell. LLPA: A protocol for
high speed packet authentication. Technical Report NPS-CS-
99-003, Department of Computer Science, Naval Postgradu-
ate School, Feb. 1999.

[11] G. G. Xie, C. Irvine, and T. Levin. Conditions for
time-driven key sequencing. Technical Report NPS-CS-00-
001, Department of Computer Science, Naval Postgraduate
School, Aug. 2000. Revised, July 2001. Available from
www.cs.nps.navy.mil/people/faculty/xie/papers.

4The idea of key prefetching for long duration flows is briefly men-
tioned for IPSec. However, no details for its realization are given.

8

