
Security as a Dimension of Quality of Service in Active Service Environments

Cynthia Irvine, Tim Levin, Evie Spyropoulou and Bruce Allen
Center for INFOSEC Studies and Research

Naval Postgraduate School
[irvine | levin | eviespy | ballen] @cs.nps.navy.mil

1. Introduction

The introduction of metacomputing and distributed

resource management mechanisms to the Internet and
World Wide Web will make available to users and
applications a diverse set of previously unavailable
network and computing resources. Middleware resource
management systems (RMSs) will use geographically
distributed, heterogeneous resources to support
applications with a wide range of computation needs
[1][2][3][4].

The RMS in such an environment is responsible for:
efficiently scheduling multiple simultaneous tasks onto
specific network resources; supporting user requirements
for performance and security; and providing support for
tasks to adapt to changing resource availability. This is
accomplished by balancing costs for various services
against their benefits, where the benefits can be to
individual users or may be associated with the system as a
whole, e.g. total throughput.

The notion of security variability has been discussed
before. A Quality of Protection parameter is provided in
the GSS-API specification [5]. This parameter is intended
to manage the level of protection provided to a message
communication stream by an underlying security
mechanism (or service). Another early reference to a
variable security service is that of Schneck and Schwan
[6], which discusses variable packet authentication rates
with respect to the management of system performance.

In previous work we have discussed fundamental
Quality of Security Service (QoSS) concepts [7]. In [8]
we defined a preliminary security service taxonomy
defining the range of security services a RMS may need
to manage. We addressed the problem of how users and
administrators can understand and easily interact with the
wide range of security services and mechanisms, by
providing methods for translation of a simplified user
abstraction of security to detailed underlying mechanisms
[9].

We present our Quality of Security Service (QoSS)
concepts in terms of variant security mechanisms and

dynamic security policies. We also describe briefly our
QoSS costing framework and demonstration, which
illustrate how costs associated with network security
services can be calculated and supplied to a RMS. Finally
we talk about our experiments on linking QoSS
conditions to an underlying security mechanism, such as
IPsec. Our aim is to demonstrate an approach through
which security could be treated as a QoS dimension.

2. Overview of Quality of Security Service

Relative to traditional QoS attributes (e.g. jitter,
deadline, latency) security has been handled rather
statically and indirectly. We have developed a theory of
Quality of Security Service and a related security-costing
framework that supports extension of QoSS functionality
to embrace existing and emerging security technologies
[10] [11]. Our goals have been to leverage existing
security mechanisms to improve system availability,
predictability, and efficiency, while maintaining, if not
increasing the security of the distributed system.

Variability in user and application security
requirements allows the underlying control system to be
more adaptable in responding to requests for resources,
and variability in system and resource security
requirements allows the distributed system, e.g., through
quality of service (QoS) middleware, to offer security
choices to users or applications. The availability of user
security choices along with support for management of
security resources in response to user requests enables
quality of security service (QoSS). We have found that
many existing mechanisms and policies allow for security
variance. For example MAC and DAC allow for
complete solutions via their “dominance” and set
inclusion relationships, and many so-called fixed
requirements can be seen to actually define only
minimums, allowing for a range of solutions. Some
examples of security service attributes that provide ranges
are the choice of cryptographic algorithm, number of
rounds or key length, assurance level or strength of
boundary control in a remote environment, or even the

capability level of the environment’s security
administrators.

QoS can be seen as the modulation of resources to
deliver requested services to users, which depends on the
control and variability of resources. Similarly, QoSS
involves the modulation of security resources, and
depends on the control and variability of those security
resources. In a typical distributed system, the security
restrictions and requirements confronted by a user
emanate from many layers, components and services.
How can QoS or resource management middleware make
sense out of this apparent chaos in attempting to manage
the system efficiently? Our approach involves several
abstractions: the first is to view all security restrictions as
service attributes. The second is to view all security
restrictions as a range that defines a set of partially
ordered possibilities, where some values are “more
secure” than others. Of course, in some cases the range is
degenerate, meaning the related service can be used in
only one way.

To understand how these ranges can be used in a
layered distributed architecture, consider how a request
for execution of a task is passed between different layers,
and security services are provided in response to these
requests. As this task sequence is processed, there are
both choices and limits regarding each security restriction
or requirement. A choice is the security range request
passed to the next layer. A limit defines which requests
from previous layers are acceptable. In the end, if the
task is realized by the system, meaning that the various
choices and limits have been successfully resolved, the
user’s expectations for quality of security service will
have been met. Additionally, the QoS middleware will
have had additional latitude, by way of variant security
requirements, in fulfilling user and system-wide goals,
thereby potentially increasing the availability,
predictability, and efficiency of the system.

With choices and limits applied for various security
attributes at different layers in the task sequence, the
question arises as to how these requirements should relate
to each other. The following relationships between
requirement ranges appear to be necessary for the
coherent enforcement of security in a layered distributed
system:

1. The maximum of each limit and choice range
dominates the minimum of that range.

2. At each layer, a requirement choice range must
be within the corresponding limit range.
q This restriction reflects the protocol that a

given layer will respect its own limits.

3. Each choice range must be within the previous
choice range in the sequence.
q This reflects a natural protocol to respect the

choice of the previous layer, without which,
the QoSS requested by the previous layers
(ultimately, the user) will fail. This also
indicates that security choices will constrict
as the task proceeds.

4. Each choice range must be within the next limit
in the sequence.
q This restriction means that requests that are

out of bounds will be rejected.

5. The limit ranges of each provider in a task
sequence must all intersect.
q This is a consequence of items 2, 3, and 4.

Obviously, if two ranges in a task invocation
sequence don't intersect, there does not exist
a value that could satisfy both ranges; this
would disallow a task from execution.

These relationships are illustrated in Figure 1. Because
the choices and limits are partially ordered and
consequently comparable, it is possible for a security
service selection algorithm to be encoded. In the
following discussion, automated mechanisms are
discussed for managing security-level choices and
network-mode limits.

3. Managing Costs and Variability of

Security Service

If a particular security mechanism is “fixed” (i.e.,
always applied) then the overhead for the mechanism is
part of the normal cost of running the task and the normal
costing mechanism used by the QoS control mechanism
will suffice. For variant security mechanisms, however,
the security overhead will vary, depending on the security
vector of the user’s QoS request and any subsequent
refinement of the user's choices due to the application or
RMS. Thus, the middleware must have access to detailed
information about the resource costs for each variant
security mechanism.

We are working on a QoSS costing demonstration. In
this approach we use a model for tasks, that incorporates
the ideas of variant security services and value ranges for
the security attributes. We additionally take into account
an operational mode parameter, because network status
could influence the security policy and security services
applicable to the task: under certain conditions, a user or
administrator may be willing to accept more (or less)
security for a given application.

Sequence

Max limit

Min limit

Min choice

Max choice

Max limit

Min limit

Max choice

Min choice

Max limit

Min limit

Max choice

Min choice

1

2

3

4

Figure 1: Requirement Range Relationships

For example, during an emergency, a military

commander might decide to forgo certain security
protocols in order to get some important information
transmitted quickly. If such dynamic policies are created
and analyzed before deployment of the computer network,
the network can respond to changing environments, by
having access to a predefined set of alternate security
policies. In each of these cases, the effects of changes to
the security mechanisms would be predefined and limited
to meet the desired alternate security policy. We refer to
three example modes:

q normal, which corresponds to the typical operating
conditions of the system

q impacted, which represents a situation with a large
amount of simultaneous requests received by the
system

q emergency, which can be translated to
requirements for the strongest security available (or
in another interpretation it could mean completion
of requested tasks as quickly as possible
disregarding security).

With the modes approach, the acceptable range of
values for a security variable attribute depends on the
network “mode”. So the selections offered to the users
and applications are within the limits of the mode.

Still, the security services and underlying mechanisms
may present too many variables and choices for users or
applications to manage without automated support.
Instead of presenting to the user all combinations of

security mechanisms and parameters for the variant
services, we can offer a simplified abstraction of security,
in the form of security level choices, like “high”,
“medium”, “low”. These selections are mapped to
detailed mechanism invocations via a translation matrix.
The security administrator or system security engineer
would pre-select various specific mechanisms and settings
that are assigned to the security variables for each of the
choices offered to the user.

3.1 An example for network modes and security

levels

Let's illustrate the notion of network modes and

security levels with the following example:
Assume that we work on a system which can provide

data confidentiality using any of the following encryption
algorithms: DES, 3DES, AES (these algorithms can be
considered to be ordered by strength, measured in terms
of the work factor associated with a brute force attack).
This means that there is variability for the security
attribute "encryption algorithm" and the set of acceptable
values for it ranges from no encryption to AES. These are
the limits imposed by our system's capabilities.

If we dynamically change the policy we apply,
according to a network mode parameter, the limits
imposed by the system can be different for each mode,
e.g.:

Table 1: Translation Matrix for Security levels and Network Modes

 Security Level

Network Mode Low Medium High

Normal DES 3DES AES

Impacted None DES DES

Emergency AES AES AES

-in Normal Mode: DES, 3DES, AES

-in Impacted Mode: no encryption, DES

-in Emergency Mode: AES (in this case the range is
degenerate).

Users can select any algorithm within the limits of the
mode. If we supply security levels, the user will have just
select "low", "medium" and "high". These levels will be
mapped to a specific algorithm through a translation
matrix, like Table 1. So we can see that network modes
provide alternate mappings for the security levels offered
to the users, since "high" security would be translated in a
different way if the system is in normal or in emergency
mode.

In this example the security levels are mapped to a
specific value for the encryption algorithm. Security
levels can also be mapped to a sub-range within the
acceptable range of values for the variant security
attribute. The underlying RMS would then be responsible
for further modulating the request and assigning specific
values to the attributes, that would be within the mapped
subrange.

The relationship between system capabilities, network
mode limits and security level choices can be seen in
Figure 2. This scheme represents an integration among
the choices and limits of the system's layers, in which
both user choices and system limits are determined by
network modes. Such a strong integration of modes with
choices as well as system limits would be typical in a
military environment, for example. In less integrated
policy domains, such as the Internet, user choices and
mode limits can be completely independent: that means
that user choices could involve values and ranges outside
the limits of the network mode (in such a case the request
would be rejected, however).

3.2 Calculation of Resource Costs for Quality of

Security Service

To quantify the costs related to a task’s security
requests, we use a costing framework (based on a security

service taxonomy [8]) with cost expressions relative to
every security service invoked by the task. Each service
may access various resources, e.g. CPU, memory and
bandwidth (other cost factors are possible, e.g. disk space,
and will be added to our framework). We discriminate
between start-up and streaming costs. The calculated costs
can then be fed to a middleware QoS mechanism for use
in its resource allocation and scheduling decisions.

Cost values of any given security selection within a
security policy may be calculated by knowing the fixed
and variable costs of all settings of security mechanisms.
In our QoSS demo, these mechanisms are represented by
variable attributes offered by applicable services. The
cost for a given service is calculated using a formula
dedicated to the cost type and the attributes relevant to the
given service. For example, a formula might exist for
calculating the CPU start-up cost associated with
providing the service of integrity on the Network Wire
where the variable attribute involved is the selection of
the authentication algorithm.

Formulas are defined by entering an algebraic
expression and a table of cost values for each non-linear
function in the expression. An algebraic expression
consists of attribute variables, non-linear functions,
constants, and basic mathematical operators. For example
a hypothetical algebraic expression might be: “1000 +
f(Authentication_Algorithm) + 2 x Key_Length”. An
example cost table value for the authentication algorithm
attribute md5 could be f(md5) = 1200. For
Key_Length=128 the resultant calculated cost for this
example is 2456 cost units (where in a real expression
cost units could be clocks or bytes per packet).

Our QoSS demo offers two approaches for observing
calculated costs. In demo mode, the user selects the
network mode, security level, and a strategy for
determining settings within any selected ranges for mode
and level. This strategy simulates input from a resource
management system, and allows selection of minimum,
middle, and maximum settings for the given mode and
level. Figure 3 shows costs associated with a hypothetical
task for a given mode, level and resource management
strategy. This mode may be utilized for example when

min

max

min

max
AES

3DES

DES

None

System limitsMode limits

min

User choices

LLOWOW

MMEDIUMEDIUM

HHIGHIGH

Impacted

Normal

max

Emergency
min/max

ImpactedImpacted
NormalNormal
EmergencyEmergency

Figure 2: Security Level and Network Mode Range Relationships

planning the security requirement ranges provided to each
mode and level.

In task mode, costs for executing tasks are determined
based on 1) the administrator’s current selection of
network mode, 2) the user’s current selection of security
level, and 3) the current selection of the resource
manager’s strategy for determining specific values within
the selected mode and level ranges. Costs may also be
displayed in task mode, but, more significantly, task mode
is able to export cost values to a QoS resource manager.

4. Modulating IPsec for provision of Quality

of Security Service

For security to be a real part of QoS, security choices
must be presented to users, and the QoS mechanism must
be able to modulate related variables to provide
predictable security service levels to those users. As a
proof of concept we want to demonstrate how a specific
security mechanism can be modulated to provide different
levels for security, in response to QoSS requests from
users.

We chose to experiment with IPsec. The IPsec
mechanism provides services including confidentiality,
integrity, authenticity, through the establishment of

Security Associations (SA) among the entities that wish to
communicate. The SA is a "simplex connection that
affords security services to the traffic carried by it" and it
essentially is "a management construct used to enforce a
security policy in the IPsec environment" [12]. There is a
set of parameters associated with each SA, which
includes, among others: SA lifetime, encryption and/or
authentication algorithms and keys, and protocol mode
(tunnel/transport). The SAs can be generated manually,
but that approach does not scale well. The Internet Key
Exchange (IKE) along with the Internet Security
Association and Key Management Protocol (ISAKMP)
address the problem of establishing and maintaining SAs
through the use of an automated daemon.

The IPsec protocols themselves do not include an
approach for managing the policies that control which
host is allowed to establish SAs with another host and
what kind of characteristics the SAs should have. We are
using the OpenBSD's implementation of IPsec [13]. This
implementation addresses the SA management problem
by including a trust management system, KeyNote, and
providing an additional check in the IPsec processing: it
makes sure that the SAs to be created agree with a local
security policy (that can be expressed in the trust
management system's language [14]).

Figure 3: Task Costs for a given Mode, Level and Strategy

The IPsec protocols themselves do not include an

approach for managing the policies that control which
host is allowed to establish SAs with another host and
what kind of characteristics the SAs should have. We are
using the OpenBSD's implementation of IPsec [13]. This
implementation addresses the SA management problem
by including a trust management system, KeyNote, and
providing an additional check in the IPsec processing: it
makes sure that the SAs to be created agree with a local
security policy (that can be expressed in the trust
management system's language [14]).

This foundation gives us the opportunity to apply our
QoSS ideas. We activate the local security policy for
IPsec based on the current selection for the network mode
and the security level. If the network mode changes to
reflect a modification in the system status, or if we just
want to execute the same application but with higher
security, then we update the local security policy enforced
by the trust management system. Then we signal the
automated keying daemon that from now on it should use
the new policy when negotiating SAs. Additionally,
currently active SAs are renegotiated to conform to the
current set of security requirements.

This way, we manage to provide different IPsec
processing to traffic according to system settings: for
example, when we are in "Normal" mode and "Low"
security level, we apply no IPsec processing to finger
traffic and we encrypt telnet traffic with DES. If we
change security level to "High", then subsequent finger
traffic is authenticated with SHA, and telnet traffic is
encrypted with AES. Other things could change as a result
of our selections: the set of hosts we are willing to
communicate with using IPsec, the SA lifetimes, the key

lengths or rounds for variable key-size / variable round
algorithms.

Currently we have predefined sets of alternate local
security policies that describe the characteristics we want
our SAs to have for each <network mo de, security level>
pair and we make active the proper selection through one
of our programs. We are working on identifying an
architecture that would allow the trust management
system and/or the automated daemon to be automatically
notified of changes to QoSS parameters (like network
mode, security level) and to adjust properly the SA
characteristics they are willing to negotiate.

Furthermore we plan to conduct experiments and
measurements to help us understand the impact of QoSS
on the performance of applications under various network
operational modes and high level policies.

5. Conclusion

We presented here our approach for handling security
as a QoS dimension and we discussed how variability in
network security services and their associated costs can be
managed in a middleware environment. Finally we
illustrated that a security mechanism like IPsec, can be
modulated to provide levels for security in harmony with
QoSS requests.

6. References

[1] Foster, I. and Kesselman, C., “Globus: A Metacomputing

Infrastructure Toolkit”, Intl J. Supercomputer applications,
11(2):115-128, 1997

[2] Dail, H., Obertelli, G., Berman F., Wolski, R., Grimshaw,
A., “Application-Aware Scheduling of a
Magnetohydrodynamics Application in the Legion
Metasystem”, Proc. of the Ninth Heterogeneous Computing
Workshop (HCW 2000), Cancun, Mexico, May 2000, pp.
216-228

[3] Huh, E.N., Welch, L.R., Shirazi, B.A., Cavanaugh, C.D.,
“Heterogeneous Resource Management for Dynamic Real-
Time Systems”, Proc. of the Ninth Heterogeneous
Computing Workshop (HCW 2000), Cancun, Mexico, May
2000, pp. 287-296

[4] Hensgen, D., Kidd, T., St. John. D. Schnaidt, M., Siegel,
H.J., Braun, T., Maheswaran, M., Ali, S., Kim, J., Irvine,
C., Levin, T., Freund, R., Kussow, M., Godfrey, M.,
Duman, A., Carff, P., Kidd, S., Prasanna, V., Bhat, P.,
Alhusaini, A., “An Overview of MSHN: The Management
System for Heterogeneous Networks”, Proc. of the Eighth
Heterogeneous Computing Workshop (HCW’99), San
Juan, Puerto Rico, April 1999, pp. 184-198

[5] Linn, J., Generic Security Service Application Program
Interface, IETF Request for Comments: 1508, September
1993

[6] Schneck, P.A. and Schwan, K, “Dynamic Authentication for
High-Performance Networked Applications”, Technical
Report GIT-CC-98-08, Georgia Institute of Technology,
College of Computing, Atlanta, GA, 1998

[7] Irvine, C. and Levin, T., “The Effects of Security Choices
and Limits in a Metacomputing Environment”, Technical

Report NPS-CS-00-004, Naval Postgraduate School,
Monterey, CA, January 2000

[8] Irvine, C. and Levin, T., “Toward a Taxonomy and Costing
Method for Security Services”, Proc. of the Computer
Security Applications Conference, Phoenix, AZ, December
1999, pp. 183-188.

[9] Irvine, C. and Levin, T., “A Note on Mapping User-Oriented
Security Policies to Complex Mechanisms and Services”,
Technical Report NPS-CS-99-08, Naval Postgraduate
School, Monterey, CA, June 1999.

[10] Irvine, C. and Levin, T., “Quality of Security Service”,
Proc. of New Security Paradigms Workshop 2000, Cork,
Ireland, September 2000, pp. 91-99

[11] Spyropoulou, E., Levin, T., and Irvine, C., "Calculating
Costs for Quality of Security Service", Proc. of the
Computer Security Applications Conference, New Orleans,
LA, December 2000, pp. 334-343.

[12] Kent. S. and Atkinson, R., "Security Architecture for the
Internet Protocol", Internet RFC 2401, Internet Engineering
Task Force, November 1998

[13] Blaze, M., Ioannidis, J. and Keromytis, A.D., "Trust
Management for IPSec", Proc. of the Internet Society
Symposium on Network and Distributed Systems Security
2001, San Diego, CA, February 2001, pp. 139-151.

[14] Blaze, M., Feigenbaum, J., Ioannidis, J. and Keromytis,
A.D., "The KeyNote Trust Management System Version
2", Internet RFC 2704, Internet Engineering Task Force,
September 1999.

