
Collective Value of QoS: A Performance Measure
Framework for Distributed Heterogeneous Networks

Jong-Kook Kim1, Taylor Kidd2,
Howard Jay Siegel1*, Cynthia Irvine2, Tim Levin3, Debra A. Hensgen2,

David St. John3, Viktor K. Prasanna4, Richard F. Freund5, and N. Wayne Porter2

                                               
This research was supported by the DARPA/ITO Quorum Program, by the DARPA/ISO BADD Program and the Office of Naval Research
under ONR grant number N00014-97-1-0804, and by the DARPA/ITO AICE program under contract numbers DABT63-99-C-0010 and
DABT63-99-C-0012.
*Beginning Aug. 2001, H. J. Siegel will be a professor of ECE at Colorado State University.

1Purdue University
Electrical and Computer Engineering School

West Lafayette, IN 47907-1285, USA
{kim42, hj}@purdue.edu

2Naval Postgraduate School
Department of Computer Science

Monterey, CA 93943, USA
dhensgen@opentv.com

kidd@acm.org
irvine@cs.nps.navy.mil

Norman.Porter@jac.af.mil

3Anteon Corporation
2600 Garden Rd., Ste. 220A
Monterey, CA 93940, USA

levin@cs.nps.navy.mil
david@marakservices.com

4University of Southern California
Department of Electrical

Engineering-Systems
Los Angeles, CA 90089, USA

prasanna@ganges.usc.edu

5NOEMIX Inc.
1425 Russ Blvd., Ste. T-110
San Diego, CA 92101 USA

rffreund@noemix.com

Abstract
When users’ tasks in a distributed heterogeneous

computing environment are allocated resources, and the
total demand placed on system resources by the tasks, for a
given interval of time, exceeds the resources available,
some tasks will receive degraded service, receive no service
at all, or may be dropped from the system. One part of a
measure to quantify the success of a resource management
system (RMS) in such an environment is the collective value
of the tasks completed during an interval of time, as
perceived by the user, the application, or the policy maker.
For the case where a task may be a data communication
request, the collective value of data communication requests
that are satisfied during an interval of time is measured.
The Flexible Integrated System Capability (FISC) measure
defined here is one way of obtaining a multi-dimensional
measure for quantifying this collective value. While the
FISC measure itself is not sufficient for scheduling
purposes, it can be a critical part of a scheduler or a
scheduling heuristic. The primary contribution of this work
is providing a way to measure the collective value accrued
by an RMS using a broad range of attributes and to

construct a flexible framework that can be extended for
particular problem domains.

1. Introduction

Mixed-machine heterogeneous computing (HC)
environments provide a distributed suite of different types
of machines, connected by diverse types of networks, to
meet the varied computational and input requirements of
widely varying task mixtures (e.g., [4, 9, 26]). The goals of
a resource management system (RMS) in an HC
environment are to assign communication, computation, and
other resources in an attempt to satisfy users’ requests,
which may require different types and levels of quality of
service (QoS). When users’ tasks in a distributed
heterogeneous computing environment are allocated
resources, and the total demand placed on system resources
by the tasks, for a given interval of time, exceeds the
resources available, some tasks will receive degraded
service, receive no service at all, or may be dropped from
the system.



As described in [10], evaluation of performance is an
essential activity, and for any system, the most important
condition to satisfy is that the system performs its functions
correctly. Therefore, in the evaluation of the performance of
an RMS, it is essential to measure: (1) how well it
performed its goals or functions, (2) if it performed
correctly, and (3) how well it performed compared to other
RMSs.

The goal of this research is to quantify the collective
value of the tasks completed during an interval of time, as
perceived by the user, application, or policy maker.
Intuitively, if one RMS performs better than another in a
given environment, the better RMS would have a higher
collective value. This measure can be a part of a metric to
assess the success of an RMS in a certain environment
(other parts may include execution time, ability to work
with different operating systems, and user interfaces). This
research describes attributes that can be combined to derive
such a performance measure, provides a way to combine
them, and discusses other issues concerning the
performance measure.

The proposed approach is called the Flexible Integrated
System Capability (FISC) measure. This research extends
our earlier work ([15]) by exploring a different way to
combine the attributes to derive the FISC measure and
introducing some other issues concerning various aspects of
the measure.

The FISC measure is a multi-dimensional performance
measure, and may include factors such as priorities,
versions of tasks or data, deadlines, situational mode,
security, application- and domain-specific QoS, and task
dependencies. The FISC measure is a flexible framework
for quantifying the collective value of a set of tasks
completed during a given interval of time in an overloaded
distributed system. It provides one way of combining the
factors described. For the case where a task may be a data
communication request, the collective value of data
communication requests that are satisfied during an interval
of time is measured.

The FISC measure by itself is not a scheduler evaluator;
other factors, such as scheduler execution time, need to be
included for the FISC measure to be a part of a scheduler
evaluator. The FISC measure by itself is not a scheduling
heuristic, where parameters such as urgency (time to
deadline) or matching of task requirements to machine
capabilities are usually included (e.g., [4, 25, 38]).

The FISC measure can be used to determine the
scheduling heuristic that results in the highest value of the
tasks completed, for a given environment. It can also be
used to compare, via experimentation or simulation, the
effectiveness of changing the resources available in a given
distributed system. Furthermore, the FISC measure can be

incorporated as part of the objective function in a system’ s
scheduling heuristics.

There are varieties of performance measures that can be
considered when analyzing systems (e.g., [36]). In some
situations a combinations of QoS (or performance)
attributes must be considered (e.g., [23]). The FISC measure
will be focused on calculating the value of the tasks
completed using various QoS attributes. The measure
presented here is one instantiation of the FISC measure
where it is a linear measure. In the generalization subsection
(Subsection 4.8) of this work, a non-linear measure is
discussed.

This research is part of three related DARPA activities:
the DARPA Quorum-sponsored Management System for
Heterogeneous Networks (MSHN) project [12], the
DARPA Battlefield Awareness and Data Dissemination
(BADD) program [8, 32], and the Agile Information
Control Environment (AICE) program [1]. While this
research is motivated by military applications, the FISC
measure can be adapted for other environments, such as
industrial and government agency intra-nets (e.g., NASA),
clusters of PCs and workstations, and computational grids
[11].

The test of the goodness of a performance measure for
an HC RMS is if it allows a system administrator the
flexibility to quantify how it is desired for the system to
behave. Furthermore, the performance measure should
provide a vehicle for comparing the results achieved by
different RMSs given the same operational scenario, so that
the best RMS for a given environment can be selected. The
FISC measure has these qualities. Thus, the primary
contribution of this work is providing a way to measure the
collective value accrued by an RMS using a broad range of
attributes and to construct a flexible framework that can be
extended for particular problem domains.

The next section mentions some of the literature related
to this work. In Section 3, several examples of individual
QoS requirements are presented. Section 4 shows how all
the example QoS attributes can be combined into a single
measure. In addition, this section presents other issues such
as averaged FISC versus multiplied FISC, multiple copies
of versions, coefficients for the FISC measure, priority
levels within classes, and a generalized form of the
performance measure. A comparison of game theoretical
solution using the FISC measure is provided in Section 5.
The last section gives a brief summary of this research.

2. Related Work

The FISC performance measure discussed here
embodies parameters that are considered important in
scheduling tasks and communications on a distributed
computing system. There is much literature on the



scheduling and mapping of tasks, messages, and data items.
In this section, some examples of this literature are
mentioned. This is followed by a discussion of examples of
prior performance measure studies that the FISC measure
extends.

An optimistic priority-based concurrency control
protocol that schedules active transactions with a deadline
in real-time database systems is described in [16]. This
protocol combines forward and backward validation
processes to control more effectively concurrent
transactions with different priorities. The protocol is
designed such that deadlines of higher priority transactions
have a greater probability of being met than those of lower
priority transactions. While this is also the case for MSHN
and BADD/AICE, the FISC research presented here
includes other attributes that are important in evaluating the
overall value of the tasks completed.

In [24], priority is used for the mapping, adjustment, and
dropping of messages. The priority of a task is adjusted by
the length of time it was blocked by a higher priority
message, and tardy messages that already missed their
deadlines are dropped. This Least-Laxity-First priority
mapping gives an improved missed deadline ratio, which is
the rate of messages missing their deadlines. In [24],
priorities and deadlines are used as measures of
performance but the research effort does not consider other
QoS attributes used in heterogeneous distributed networks
that the FISC measure includes.

The work presented in [28] describes an algorithm that
enables each node of a system to schedule the transmission
of messages generated locally while observing their
constraints. This algorithm uses the actual priority and the
deadline of a message for the scheduling of the messages.
The FISC measure allows more than one simple deadline
and includes other important QoS attributes that can be
considered in the calculation of the collective value of tasks
completed, which can be used as part of a scheduling
process.

Data staging, an important data management problem
for a distributed heterogeneous networking environment, is
discussed in [38]. The research in [38] assumed that each
requested data item is associated with a specific deadline
and priority. The FISC research presented here generalizes
the performance measure used in [38] to include more types
of deadlines and other QoS attributes.

From the works mentioned, parameters such as task
priorities and deadlines appear to be important attributes for
making scheduling decisions regarding tasks, messages, or
data items. A measure of the overall value accrued of
completed tasks is needed that can be used to compare and
analyze the algorithms, protocols, and heuristics while
incorporating all the QoS parameters that are relevant. The
works mentioned above consider only a few of the QoS

parameters that might be present in a distributed system.
Other parameters  (e.g., accuracy, precision, and security)
that are QoS requirements and part of the users’  requests
must be included in the performance analysis. These and
other QoS parameters that affect the overall value of
requests satisfied are discussed in the FISC research.

The FISC research on the performance measure
presented here builds on and extends a body of earlier work
in this field. Some examples are mentioned here.

The ERDoS project [5] describes an objective function
for optimizing the effectiveness of its QoS scheduling
mechanisms in meeting clients’  needs.  This function
reflects the benefit received by the user and a weight
assigned to each user application. An approach where the
requested QoS is taken into account when scheduling
computational resources in a network is presented in [27].
The model proposed a benefit function that uses application
deadlines and application priorities as metrics in
maximizing the total benefit for the applications. The
incorporation of multiple versions of a task, in addition to
priorities and deadlines, in the objective function is
described in [17]. The FISC performance measure presented
in this paper serves a purpose similar to the ones in [5, 17,
27]. However, the research presented here provides a more
detailed description of a measure using more parameters, so
that it can be used to find the performance of schedules in
the Quorum MSHN and BADD/AICE environments.
Furthermore, the QoS input specification for ERDoS [34]
accounts for only two specific security parameters
(confidentiality and integrity), whereas the security
component of the performance measure in this research can
describe an arbitrarily complex set of security features.

The resource allocation model for QoS management
proposed in [31] indicates multiple dimensions of QoS and
multiple resources. In [31], some of the QoS attributes
studied in this research are mentioned but not elaborated.
The utility that is described in [31], is the same as the value
accrued in a given time interval using a set of resources.
The FISC research discusses QoS attributes in more detail
and gives more QoS factors to consider. Work done in [21,
22] presents specific usage of the model presented in [31].
These use only a subset of QoS attributes that the FISC
research describes, indicating that the FISC measure would
be a generalized version of what they have used as the
utility function.

The FISC measure is similar to the utility function
described in [40] in that both measure system value. The
utility function in [40] calculates the value of the resource
management done in a system by summing the value of
resources allocated and resources reserved. The resources
reserved depend on the duration of a job, the deadline of a
job, and the price of allocated time slots. In contrast, the



FISC measure uses priorities and other QoS measures to
calculate the collective value of tasks that are completed.

The research in [29] describes a utility function that
considers the throughput and the link congestion of the
network and extends their analysis to QoS sensitive
requests. The utility function described in [29] and the FISC
measure both seek to achieve the optimum value of the
requests satisfied. In this FISC measure paper, QoS
attributes (e.g., deadlines, security) are considered in detail
while in [29], the QoS factor is represented by the link
congestion.

In the model proposed by [7], a function that indicates
the utility due to QoS attained when a certain bandwidth is
allocated to the user and the “willingness-to-pay of the
user” factor is employed to calculate the net benefit. The
FISC measure and the utility function in [7] are similar in
that they calculate the overall value of resources allocated.
While [7] considers only bandwidth, the FISC work
presented in this paper discusses one way to combine
different QoS attributes to result in a framework for
determining the total value accrued from completing tasks
in a given interval of time.

A security policy that allows a percentage of packets
authenticated to vary with network load is described in [35].
This type of policy can be accommodated with the variant
components included in the FISC security vector (see
Subsection 3.4). Related work on network security policy
specification languages can be found in [2, 3], and works in
progress [6, 33]. While the FISC security vector contains a
set of Boolean security policy statements, it does not specify
a general-purpose language for these statements. A
framework for quantifying the strength of a set of security
mechanisms is described in [39], where high-level static
security properties can be decomposed hierarchically.
However, in [39] the approach cannot accommodate the
measurement of how well an executed task meets the
security requirements of its environment. Nor does [39]
account for variant security policies or mechanisms.

The FISC measure assesses the effectiveness of a
schedule in terms of the value accrued by tasks that are
completed and the fraction of their QoS requirements
satisfied. In [35], other types of attributes for the evaluation
of different QoS and RMS services in distributed real-time
systems are investigated. Some examples include
survivability (fault-tolerance), openness (open architecture),
and testability (easily testable and verifiable). These are
beyond the scope of the FISC performance measure.

3. Example QoS Attributes

3.1. Priorities

Policy makers determine the number of priority levels
available within a system and assign some semantic
meaning to each priority level, such that relative importance
of each level is qualitatively reflected (e.g., high, medium,
and low). Each priority level will then be given a weight
that can be calculated by a priority weight function and this
weight may be a function of the situational mode (e.g. war
or peace). It is assumed that the FISC measure is being used
to compute the value of a subset of tasks successfully
completed, during some time interval, from a set of t tasks
that have been requested. Let the priority level (e.g., high,
medium, or low) of task j (0 ≤  j < t) be pj, and let m be the
situational mode. The priority weight function π (pj)
calculates the weight of pj given the situational mode m.
The weight assigned to a priority level may be considered
to be the maximum value possible for completing the
corresponding task, if all of the task’ s specified QoS
requirements are completely satisfied.

3.2. Versions

A task may exist in different versions, each with its own
resource requirements. Because available resources will
vary dynamically, it may not be possible to complete the
most desired version of a task. When a user’ s first choice of
a task version cannot be completed, a method for choosing
an alternative version is needed. Having multiple versions
of a task is related to the precision and accuracy parameters
discussed in [34], in the sense that each version of a task
may have different accuracy and precision.

For each version of a given task, a worth (preference)
relative to the other versions will be indicated by the
application developer, the user, and/or the policy makers.
The worth may be a function of the situational mode. To
allow worth to be quantified in an arbitrary format, the
worths assigned to different versions of a task must be
normalized so that there is a consistent scheme for
evaluating worths across tasks and versions.

 The worths are normalized as follows. Assume there are
Ij versions for a given task j. Let vij be the i-th (0 ≤  i < Ij)
version of task j. Let wij(m) be the worth the user assigns to
i-th version of task j given m, the situational mode. Thus,
the normalized worth (ηij) of wij(m) is given by

 















<≤

=

)(max
0

)(

mw
Ii

mw

ij

ij
ij

j

η .        (1)



All worths for all versions of each task are normalized
by the version with the largest worth. Therefore, the version
with the largest worth of each task will have a normalized
worth of 1 and the rest of the versions will have normalized
worths that are less than 1.

3.3. Deadlines

Many tasks in typical heterogeneous computing
environments have deadlines associated with them.
Frequently, due to limited resources and the multiplicity of
tasks sharing these resources, not every task can be
completed by its deadline. Three types of deadlines will be
considered for the i-th version of task j: earliest (eij

d), soft
(sij

d), and firm (fij
d). The deadline attributes discussed here

are related to the timeliness parameter given in [34].
The earliest deadline (eij

d) is the time when the system is
ready to complete the i-th version of task j. The soft
deadline (sij

d) ([37]) is the time by which the i-th version of
task j must complete to be of full value to the user. If a task
is completed between the earliest deadline and the soft
deadline, then the task will have its maximum value. A task
that is completed after its firm deadline (fij

d) ([18, 37]) will
have 0 value, because the task will be of no use after that
deadline. These three deadlines are illustrated by example
in Figure 1.

Figure 1: The deadline coefficient graph shows the
variation in the value of a task with various
deadlines.

Let τij be the time that the i-th version of task j actually
completes. The deadline function δij assigns a fraction of the
maximum value of the i-th version of task j based on m, τij,
eij

d, sij
d, and fij

d, where 0 ≤  δij ≤  1. The deadlines eij
d, sij

d,
and fij

d may be the same for all versions of a certain task. A

characteristic function δij′ is used to represent whether a
version completes with a δij > 0: δij′ = 1 if δij > 0, and δij′ =0
if δij = 0. If no version of task j is completed, δij = 0 and
δij′ = 0 for all versions of the task.

3.4. Security

User and task security requirements are met by “security
services.” Overall network security can be viewed as a
multi-dimensional space, represented with a vector (S) of
security services. A Boolean statement, for a given
situational mode, specifies the functional requirement for
each component. Both resources and tasks may have
multiple security components [13, 20].

 The instantiation of a task either meets, or does not
meet, each component’ s requirement. Let the characteristic
function σij′ be used to represent required security
attributes. If the minimum security requirements are not all
met, there is no value accrued for executing vij and σij′ = 0.
The characteristic function σij′ = 1 if the instantiated
Boolean value of all components is true.

The desire to provide adaptable security motivates the
inclusion of variant security components in the system [14].
Thus, security affects the performance measure when
components are variable. Let Sij be a subset of S for version
i of task j, and gij.κ be the fraction of κ satisfied in Sij. Let
n be the number of security components in Sij. To quantify
the effectiveness of the RMS in providing variant security,
let security factor σij be the sum of all gij.κ divided by n as
shown in

    
n

ijS
ijg

ij
















∑

∈
=

κ
κ

σ

.

.        (2)

The overall security measure is defined as: σij ×σij′,
where 0 ≤ σij ×  σij′ ≤ 1.

3.5. Application Specific QoS

There is a multi-dimensional space of application- and
domain-specific QoS attributes (e.g., jitter level, frame rate,
and bit error rate) that can also be represented by a vector.
There will be zero or more such components per task or
data set. These components can be specified in the same
way that security was represented. The FISC measure will
use αij to denote such QoS components and the
characteristic function αij′ is used to represent the required
application specific QoS attributes. If all minimum
application specific QoS requirements are met αij′ = 1; if

earliest soft
firm

time

fr
ac

ti
on

 o
f 

va
lu

e

0

0.2

0.4

0.6

0.8

 1



they are not all met αij′ = 0. This QoS attribute is analogous
to the security factor σij.

3.6. Associates

There are many possible types of inter-task
dependencies. For example, for the MSHN environment
(Figure 2), consider a task whose only function is to
generate data for other tasks (descendants). There may be an
inter-related set of such tasks. If there is a descendant along
a dependency path of tasks that generates an external output
(as opposed to only generating an input for a subsequent
task) and if this descendant completes its execution, then all
of its predecessors will have a value.

The first task in a dependency path that generates an
external output is called required associate of all of its
predecessors. The variable ρij will be used to represent
whether a required associate of a given task completes.
That is, if at least one required associate of a given task
completes, then ρij = 1, otherwise ρij = 0.

Figure 2: An example set of tasks that has
dependency. Tasks 1, 2, 3, and 5 are tasks that
only generate input data for other tasks. Tasks 4
and 6 give user output.

In Figure 2, task 1 is needed for task 2 to generate data
for task 4. Task 4 needs data from tasks 2 and 3 to generate
data for task 5 and output target identification information
(an external output). Only if task 4 completes will tasks 1,
2, and 3 have value. Only if task 6 outputs the launch
coordinates (an external output) will tasks 4 and 5 have
value.

For the BADD/AICE environment, the objective is to
schedule inter-machine data transfers to satisfy data
requests. There may be multiple data requests for a given
application to provide the needed input. Unless all such data
requests are satisfied, the application cannot execute. If
even one of the required data requests is not available, the
value of all data requests that were satisfied is zero (i.e., ρij

= 0 for all data requests).
In Figure 3, data item 1, 2, and 3 are required for

application 1 to execute. Therefore, if any one of these data
requests is not satisfied (if only a subset of the data requests
arrive by the firm deadline), there is no value for any of the
satisfied data requests.

Figure 3: An example set of data items that have
dependency. Data items 1, 2, and 3 are required
input data for application 1.

4. Performance Measure

4.1. FISC Measure

In general, it is a difficult problem to determine whether
a distributed system has delivered “good” service to a
mixture of applications. For example, the applications may
be compute-intensive and others interactive, perhaps having
stringent security requirements. In this research, the
collective value of QoS achieved is used for determining
how “good” a system is.

data item 1:
required data for

application 1

data item 2:
required data for

application 1

application 1

data item 3:
required data for

application 1

task 1:
generates data for task 2

task 2:
generates data for task 4

task 4:
(a) outputs target identification

(b) generates data for task 5

task 5:
generates data for task 6

task 6:
outputs launch coordinates

task 3:
generates data for task 4



A meaningful way to combine the QoS attributes
previously discussed to capture the above is proposed in this
section. This version of FISC will be called the averaged
FISC and this method is similar in idea to the benefit
function described in [13, 20]. To allow the comparison of
one RMS, operating within one distributed system, to
another RMS, operating in a different distributed system,
the FISC measure can be normalized by a baseline, which
depends on the tasks and underlying distributed system
(Subsection 4.2). When the FISC measure is normalized by
a baseline, the resulting function is called the FISC ratio.

The averaged FISC ratio is:

[ ]























 +++
××××

<≤

×

∑
−

=

×

′′′
40

max

)(
1

0

baseline

1

ijijijij
ijijijij

j

j

Ii

p
t

j
ασδη

ασδρ

π

 (3)

Note that the value of the “ max”  never exceeds 1.
Equation 3 is only one way of representing the collective

value accrued. Another version of FISC called the
multiplied FISC (Equation 4) was introduced in earlier work
[15].

( ) 























×××××××

<≤

×

∑
−

=

×

′′′
ijijijijijijijij

j

j

Ii

p
t

j αασσδδρη

π

0
max

)(
1

0

baseline

1

 (4)

4.2. Baseline

The purpose of the baseline in the FISC ratio is to
determine how an RMS performs compared to another RMS
in a different environment. For example, if one RMS
performs well in an environment and another RMS gets
good results in another environment, then the comparison
only using the FISC measure would not make sense.
Because the environments are different, how well a RMS
performed should be how much better it performed than the
baseline for its environment. If the RMS cannot perform
much better than this baseline, then a naive algorithm for
resource assignment would perform almost as well as the
RMS. The baseline for a given environment is calculated by
using the same set of tasks with same attribute

requirements. The baseline builds upon and extends the
example given by [38].  The algorithm used to compute the
baseline uses the concept of perfect completion. A task is
said to achieve perfect completion if there exist available
resources, to which it can be assigned, that would allow it
to complete with ηij = δij = σij = αij = 100% and ρ = 1. This
means that in given situations (i.e., resource availability,
situational mode) tasks with the most preferred version, all
security services and application specific QoS are satisfied
100%, a required associate that completes, and completion
time before the soft deadline are considered.

A simple algorithm, which assumes knowledge of the
expected resources needed by a task to complete, can be
used to obtain a baseline. For the results of the obtained
baseline to be reproducible within a certain tolerance, an
ordering of the tasks is needed.

Figure 4: Baseline algorithm.

The algorithm to obtain a baseline is shown in Figure 4
and proceeds as follows. First, it assigns an ordering to the
tasks according to their priorities (highest first), deadlines
(soonest first), and expected execution times (shortest first)
where the above criteria are considered in the
aforementioned order. For the tasks with the same priority
level, the deadline would be used as a tiebreaker. If tasks
have same priority level and deadline, the expected
execution time would serve as a tiebreaker. Only if tasks
have the same priority, deadline, and expected execution
time would the ordering be random. Alternatively,
additional characteristics of the task could be used for finer
ordering. In other problem domains, other parameters could
be more appropriate for ordering the tasks.

After the ordering, the algorithm determines whether the
first task (according to the ordering) can be expected to

all given tasks are ordered by priority, deadline,
and expected execution time;
if all are equal, order is random;

for each task{
if a task can get ηij  = δij = αij = σij =

100% and ρij = 1
schedule at soonest possible time

add π(pj, m)
update status of resources

else
no value added
no resources consumed

}



achieve perfect completion using the available resources. If
so, it computes the expected availability of resources after
that task has completed, under the assumption that the task
uses the first such available resources. It also adds the
weighted priority of this task to the baseline, which was
initialized to 0.  If a task cannot achieve perfect completion,
nothing is added to the baseline and the task is not
considered again.  The same process is repeated for each
task, considering them according to the ordering.

4.3. Averaged Versus Multiplied FISC

Both versions of the FISC measure mentioned in
Subsection 4.1 can be used to calculate the collective value
of the tasks completed. The averaged FISC (Equation 3)
captures the intuition that when a service attribute is added
to the measure, the worth of the service added should not
lower the value of the task completed below the percentage
satisfied of the least satisfied attribute. For example, assume
there is a task j completed with a version that is worth 50%,
was completed before the soft deadline (100%), and π(pj) is
1. Initially the completed task’ s value would be 0.75 by the
averaged FISC and 0.5 by multiplied FISC (Equation 4).
Then assume security service was added to the task and the
overall security was 50% satisfied. If the FISC value was
calculated by the multiplied FISC measure, the task’ s value
would be 0.5 × 1 × 0.5 = 0.25. The value of the task has
decreased below the security services satisfied (50%) and
the worth (50%) of the version used. However, if the FISC
value was calculated by the averaged FISC, the task’ s value
would be (0.5 + 1 + 0.5)/3 = 0.67, which is not lower than
the security service satisfied (50%) and the worth (50%) of
version used.

In addition, if a service is included and the service is
satisfied to the fullest (100%), multiplied FISC would give
the same value as previously calculated, but the averaged
FISC would give a higher value. The intuition is that if a
task is given more services and if those are 100% satisfied,
then the overall value for that task should increase.

4.4. Resource Constraint

In addition to an optimization criterion such as the FISC
measure, constraints are required to define any optimization
problem. There is a limited amount of resources so there is
a constraint on resource availability. Therefore, in any time
instant, the total amount used of a particular resource cannot
exceed the total available resource at that time instant.
Assume that there are Ξ  number of resources in the system.
Let Rrj(∆) be the amount of resource r (0 ≤  r < Ξ) used for
task j (0 ≤   j < t) during the time interval ∆ and let Ur(∆) be
the total resource r that is available during time interval ∆.

The sum of all Rrj(∆) cannot exceed Ur(∆), as indicated in
Equation 5.

∑
−

=

1

0

t

j

Rrj(∆) ≤  Ur(∆) for resources r = 0 … Ξ −1  

(5)

4.5. FISC Ratio with Multiple Copies of Versions

It is possible that multiple versions of the same task or
multiple copies of the same version can be attempted for
fault tolerance or for maximizing the speed of the process.
Assume that Γij copies of version i of task j are considered.
Then the averaged FISC measure (Equation 3) can be
extended to include vijγ , where i is the version, j is the task,
and γ  is the copy number (0 ≤ γ  < Γij).

[ ]


























 +++
××××

<≤
<≤

×

∑
−

=

×

′′′
4

0

0
max

)(

1

0

baseline

1

γγγγ
γγγγ

ασδη
ασδρ

γ

π

ijijijij
ijijijij

j

j

ij

Ii

p

t

j

  (6)

4.6. Coefficients in FISC Measure

There can be coefficients for each attribute mentioned in
this research. The coefficients can be incorporated into the
FISC measure to indicate the relative importance of one
attribute to another.

Let cη, cδ, cσ, and cα be the coefficients of η (worth), δ
(deadline met), σ (security services satisfied), and α
(application specific QoS satisfied) factors, respectively.

If the multiplied FISC measure is used, the coefficients
used would not be able to indicate the relative importance.
Because,





































××××××

×××××

<≤

×

∑
−

= ′′

′

ijijijij

ijijijij

j

j

cc

cc

Ii

p

t

j
αασσ

δδρη

π

ασ

δη

0
max

)(

1

0

  (7)

would be equal to



( )














×××××××
<≤

×

∑
−

=

××××

′′′
ijijijijijijijij

j

j

Ii

p
t

j

cccc

αασσδδρη

π
ασδη

0
max

)(
1

0

  

  (8)

This would mean that the coefficients (cη, cδ, cσ, and cα) are
no longer the coefficients for each component but a
multiplier of the resulting overall value.

The averaged FISC measure can incorporate these
coefficients in a meaningful way. First consider:

[ ] 































×+×+××

××××

<≤

×

∑
−

=
+

′′′

γγγ

γγγ

ασδη

ασδρ

π

ασδη ijijijij

ijijijij

j

j

ccccIi

p
t

j
0

max

)(
1

0

  (9)

For the value of the “ max”  term to never exceed 1, the
measure will be divided by the sum of the coefficients
(Equation 10). This will be the averaged FISC with
coefficients.  By dividing the measure by the sum of the
coefficients, the “ max”  term of the FISC measure will be 1
when all attributes are 100 percent satisfied and less than 1
when a certain task gets degraded QoS.

[ ]








































+++
×+×+××

××××

<≤

×

∑
−

= +

′′′

ασδη

ασδη γγγγ

γγγγ

ασδη

ασδρ

π

cccc

cccc
Ii

p

t

j ijijijij

ijijijij

j

j

0
max

)(

1

0

(10)

4.7. Priority Levels within Classes

In some environments, it may be the case that all higher
priority level tasks must be attempted for execution and
completion first, before any of the lower priority level tasks
can be considered. In this scheme, a higher priority level
task is worth more than any number of lower priority level
tasks (i.e., highest priority level task is worth an infinite
number of lower priority level tasks). To represent this,
classes of priority levels will be needed.

When classes are used, each task will have a priority
level, and priority levels will have relative weightings as
before. Tasks will not have classes but the priority level that
the task was assigned will correspond to a class
predetermined by the system administrator or the policy
maker. Each class will consist of one or more priority

levels. There can be several classes. The number of priority
levels assigned to a class can vary from one class to another.

As shown in the example in Figure 5, there could be L
priority levels and C classes. Priority 1 is more important
than priority 2 and class 1 is more important than class 2.
Any number of priority levels can be in one class. To
compare two schedules, first consider only class 1 tasks.
The scheduler with the higher class 1 FISC value is
considered best. Only if there is a tie at class 1, is the FISC
value accrued by class 2 tasks considered. In general, only
when the FISC values of classes 1 to k are the same for
more than one schedule are the FISC values of class k + 1
used in the comparison.








                                                        






Figure 5: Example of priority levels within classes.

 
4.8. Generalization of FISC Ratio

The previous subsections describe a particular example
of the FISC measure. It can be generalized such that the
numerator is any function of π(pj), ηij, ρij, δij, σij, and αij (or
other factors), and each of these primary factors can be any
function of secondary factors (e.g., primary factor σij

includes an average of gij.c secondary factors in the security
context described in Subsection 3.4). Let Py be a primary
factor where there can be u number of primary factors (0 ≤
y < u) and se be a secondary factor where there can be vy

priority 1

priority 2

priority 3

priority 6

priority 4

priority 5

priority L

class 1

class 2

class 3

class C



number of secondary factors (0 ≤  e < vy). The
generalization of FISC measure can be represented as

                FISC  measure =  f(P0, P1, … , Pu−1) and       (11)

                Py  =  fy(s0, s1, … , 1−yvs ),  (12)

where each se is a secondary factor for Py. Linear or
nonlinear combinations of the factors, depending on the
importance of the factor considered in a given environment,
may be included in all the functions of primary and
secondary factors.

The baseline algorithm described is one method of
normalizing the FISC measure. Other methods for
normalizing could be incorporated to compare the
performance of different RMSs in a given environment.

5. Game Theory

5.1. Basis of Game Theory

Game theory is a tool that helps people understand the
phenomena when decision-makers interact [30]. It is used
in this research to determine what kind of characteristics the
FISC measure will have.

A game is a description of strategic interaction that
includes the constraints on the actions that the players can
take and the players’  interests, but does not specify the
actions that the players do take. A player may be interpreted
as an individual or a group of individuals making a
decision. A solution is a systematic description of the
outcomes that may emerge in the family of games. Game
theory suggests reasonable solutions for classes of games
and examines their properties [30].

In a heterogeneous environment, it may be the case that
the total demand placed on the system may exceed the total
resources available. Each request or task in the system will
then compete for the resources available at the given
interval of time to try to satisfy their QoS requirements and
this becomes a game situation. The requests or tasks will be
the players in the game theory context, where the scheduler
will then try to choose a solution according to the
preferences and other indicated requirements of the tasks.

5.2. Evaluating Various Game Theoretic
Solutions using the FISC Measure

Assume there are two tasks in the system and one
resource. Further, assume: (1) that these two tasks have the
same priority level, and the weight of that priority level is
one; (2) that the soft deadline and firm deadline for each
task is the same (referred to as just the deadline); (3) the

deadlines of these two tasks are the same; (4) each task has
only one version; (5) the system has only one QoS attribute
to satisfy (e.g., variable security); and (6) a resource unit is
the total amount of given resource available during a time
unit (given) [19]. Both tasks are assumed to finish by the
deadline. Therefore, for both tasks δij′ = 1, δij = 1, π(pj, m)
= 1, and ηij = 1. Assume that the one QoS attribute to satisfy
is one variable security attribute and that minimum security
requirement is met (σij′ = 1). For the variable security,
assume that if a task receives only 0.x of its required
resources, its value will be only 0.x.

Assume task 1 needs 30 units of resource to complete
with every requirement fully satisfied and task 2 needs 70
resource units to be satisfied in the same way. If the total
resources available correspond to 60 units, then the total
needs of task 1 and task 2 exceeds total available resource.
Because resources are limited, tasks (individuals) have to
compete or bargain for the resources. This is a game
situation. Out of many schemes of game theory, this
situation is similar to the concept of the Nash bargaining
scheme [30]. The solutions that result from the Nash
bargaining scheme will be used in the calculation of the
corresponding FISC value. The Nash bargaining solutions
are said to be feasible, optimal, and fair. In addition, the
Nash solutions that the scheme produces are said to be
consistent [30].

The bargaining scheme gives various solutions to
problems like resource division. For the example in the
previous paragraph, where there are only 60 units of
resources and task 1 needs 30 units to complete satisfying
all requirement 100% and task 2 needs 70 units to complete
in the same way. Some of the solutions are: (1) equal
division; (2) division proportional to resource requirements;
(3) division proportional to what each task would get if it
was the only task in the system; and (4) a split where the
undisputed resource is first given to the task that needs more
resource and the rest is equally divided. All these division
schemes are examples of Nash bargaining solutions. Using
the example mentioned, for the equal division solution, each
task gets 30 units of resources. For the division proportional
to resource requirements solution, the resource division will
result in a 30 to 70 split, i.e., task 1 gets 18 units and task 2
gets 42 units of resources. For the division proportional to
what each task would get if it were the only task in the
system solution, the resource division will result in a 30 to
60 split, i.e., task 1 gets 20 units and task 2 gets 40 units.
For the undisputed division solution, the undisputed amount
of resources which are 30 units (task 1 only needs 30 units
of resources) is first given to the task that needs more
resource units than the other task, the rest of the resources
are divided in half. The undisputed resource division gives
a 15 units and 45 units split.



This paragraph gives the results of FISC value
calculation using the averaged equation. For this example,
the resource requirements (70 units for task 1 and 30 units
for task 2), the resource constraint (60 units), and the
various splits are considered. When calculating the total
value accrued, the averaged FISC is used. If the resource is
equally divided, task 1 will receive a FISC value of 30/70
and task 2 will receive 30/30. The total FISC value accrued
would be (1+1+3/7)/3 + (1+1+1)/3 = 1.81. If the resource is
divided proportionally into a 30:70 split, task 1 will receive
a FISC value of (1+1+42/70)/3 and task 2 would receive
(1+1+18/30)/3. The total FISC value accrued for this type
of allocation would be 1.74. In another split (a 30:60 split of
60 units), task 1 would get a FISC value of (1+1+40/70)/3
and task 2 would get (1+1+20/30)/3. The total FISC value
accrued in this scenario is 1.75. When the resource is
divided using the last split method, then task 1 would get a
FISC value of (1+1+45/70)/3 and task 2 would get
(1+1+15/30)/3. The total FISC value accrued would be
1.71. In this context, equally dividing the resource gives the
best total FISC value achieved. All of these results are
shown in Table 1.

Table 1: Example value calculation using different
possible resource division solutions and the
averaged FISC measure.

even
split

30:70
split

30:60
split

undisputed
split

Task 1 (70) 0.81 0.87 0.86 0.88

Task 2 (30) 1 0.87 0.89 0.83

Total 1.81 1.74 1.75 1.71

Calculating the actual collective value of tasks
completed during an interval of time is more complicated
than shown here. There are more attributes to consider and
attributes may have relative importance weightings. In this
example, the same priority, arrival time, and deadline are
assumed, which will not always be valid. In addition,
resources may be reused depending on how tasks are
scheduled and completed. It may be the case that if a task
gets more resource than it needs, the task may end early
making it possible for other tasks to reuse the resource that
the task was using. Therefore, actual resource allocation is
more complicated than the example shown in this
subsection.

6. Summary

In some environments, distributed heterogeneous
computing system may be over-subscribed, where the total
demand placed on system resources by the tasks, for a given
interval of time, exceeds the resources available. In such
environments, users’  tasks are allocated resources to
simultaneously satisfy, to varying degrees, the tasks’
different, and possibly conflicting, QoS requirements. When
tasks are allocated resources, some tasks will receive
degraded QoS or no service at all. The FISC measure
provides a way to quantify the value of the performance
received by a set of applications in a distributed system.
With the FISC measure, the effectiveness of the mapping of
a collection of requests to resources done by a scheduler can
be evaluated in terms of value as perceived by the user,
policy maker, administrator, or system. In addition, the
FISC measure may be used in a simulation mode to analyze
the impact of proposed changes to the distributed system.
The kind of result that the FISC measure would give was
explored using some game theoretic solutions.

The FISC performance measure presented here will
help the distributed computing community in the
implementation of resource management systems and the
analysis and comparison of such systems. Furthermore, the
FISC measure may be used as a critical part of a scheduling
heuristic’ s objective function.

Additional issues that may be considered in future
research include: using a non-linear combination of task
values to compute the overall measure; the use of negative
fractions in the deadline function in case where catastrophic
results from a missed deadline; how to incorporate FISC
measure in a scheduling heuristic; investigating other
factors that are important in calculating the value of task
mapped to the user; and investigating variations in the
factors already considered.

Acknowledgments: The authors thank Bob Beaton, Gary
Koob, Joe Rockmore, Michael Jurczyk, I-Jeng Wang, Steve
Jones, John Kresho, Edwin K. P. Chong, Rudolf
Eigenmann, Neil Rowe, Carl Kesselman, Noah Beck, Tracy
Braun, Shoukat Ali, Surjamukhi Chatterjea, Amit Naik, and
Pranav Dharwasdkar for their valuable comments and
suggestions.

References

[1] Agile Information Control Environment Proposers
Information Package, BAA 98-26, Sep. 1998, http://web-
ext2.darpa.mil/iso/aice/aicepip. htm.



[2] L. Badger, D. F. Stern, D. L. Sherman, K. M. Walker, and
S. A. Haghighat, “ Practical domain and type enforcement
for Unix,”  1995 IEEE Symposium on Security and Privacy,
May 1995, pp. 66-77.

[3] M. Blaze, J. Feigenbaum, and J. Lacy, “ Decentralized trust
management,”  1996 IEEE Symposium on Security and
Privacy, May 1996, pp. 164-173.

[4] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M.
Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B.
Yao, D. Hensgen, and R. F. Freund, “ A comparison of
eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing, accepted
and scheduled to appear 2001.

[5] S. Chatterjee, B. Sabata, and J. Sydir, ERDoS QoS
Architecture, Technical Report, SRI, Menlo Park, CA,
ITAD-1667-TR-98-075, May 1998.

[6] M. Condell, C. Lynn, and J. Zao, “ Security policy
specification language,”  INTERNET-DRAFT, Network
Working Group, Oct. 1998, ftp://ftp.ietf.org/ internet-
drafts/draft-ietf-ipsec-spsl-00.txt.

[7] C. Coutcoubetis, G. D. Stamoulis, C. Manolakis, and F. P.
Kelly, “ An intelligent agent for optimizing QoS-for-money
in priced ABR connections,” IEEE Transactions on
Telecommunications Systems, Special Issue on Network
Economics, to appear, (preprint at http://www.ics.forth.gr
/ICS/acti/ netgroup/publications/abr_agent.html).

[8] DARPA, Battlefield Awareness and Data Dis-semination,
April 1999, www.darpa.mil/iso/ badd/.

[9] M. M. Eshaghian, ed., Heterogeneous Computing, Artech
House, Norwood, MA, 1996.

[10] D. Ferrari, ed., Computer Systems Performance
Evaluation, Prentice-Hall, Englewood Cliffs, NJ,
1978.

[11] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann, San
Francisco, CA, 1999.

[12] D. A. Hensgen, T. Kidd, D. St. John, M. C. Schnaidt, H. J.
Siegel, T. D. Braun, M. Maheswaran, S. Ali, J. Kim, C.
Irvine, T. Levin, R. F. Freund, M. Kussow, M. Godfrey A.
Duman, P. Carff, S. Kidd, V. Prasanna, P. Bhat, and A.
Alhusaini, “ An overview of MSHN: The Management
System for Heterogeneous Networks,”  8th Heterogeneous
Computing Workshop (HCW ’99), Apr. 1999, pp. 184-198.

[13] C. Irvine and T. Levin, “ Toward quality of security service
in a resource management system benefit function,”  9th
IEEE Heterogeneous Computing Workshop (HCW 2000),
May 2000, pp. 133-139.

[14] C. E. Irvine and T. Levin, “ Toward a taxonomy and costing
method for security services,”  15th Annual Computer
Security Applications Conference, Dec. 2000, pp 183-188.

[15] J.–K. Kim, D. Hensgen, T. Kidd, H. J. Siegel, D. St. John,
C. Irvine, T. Levin, N. W. Porter, V. K. Prasanna, and R. F.
Freund, “ A QoS performance measure framework for
distributed heterogeneous networks,”  8th Euromicro
Workshop on Parallel and Distributed Processing, Jan.
2000, pp. 18-27.

[16] J. H. Kim and H. S. Shin, “ Optimistic priority-based
concurrency control protocol for firm real-time database

systems,”  Information & Software Technology, Vol. 36, No.
12, Dec. 1994, pp. 707-715.

[17] J. P. Kresho, Quality Network Load Information Improves
Performance of Adaptive Applications, Thesis, Department
of Computer Science, Naval Postgraduate School, Monterey,
CA, Sep. 1997 (D. A. Hensgen, advisor), 164 pp.

[18] C. G. Lee, Y. K. Kim, S. H. Son, S. L. Min, and C. S. Kim,
“ Efficiently supporting hard/soft deadline transactions in
real-time database systems,”  3rd International Workshop on
Real-Time Computing Systems and Applications, Oct./ Nov.
1996, pp. 74-80.

[19] T. Levin and C. Irvine, Approach to Characterizing
Resource Usage in a Resource Management Benefit
Function, Technical Report, NPS-CS-99-005, Naval
Postgraduate School, Monterey, CA, June 1999, 11 pp.

[20] T. Levin and C. Irvine, Quality of Security Service in a
Resource Management System Benefit Function, Technical
Report, NPS-CS-00-02, Naval Postgraduate School,
Monterey, CA, Nov. 1999, 8 pp.

[21] C. Lee, J. Lehoczky, R. Rajkumar, and D. P. Siewiorek, “ On
quality of service optimization with discrete QoS options,”
5th IEEE Real-Time Technology and Applications
Symposium, June 1999, pp. 276-286.

[22] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J.
Hansen, “ A scalable solution to the multi-resource QoS
problem,”  20th IEEE Real-Time Systems Symposium, Dec.
1999, pp. 315-326.

[23] K. J. Liszka, J. K. Antonio, and H. J. Siegel, “ Problems with
comparing interconnection networks: Is an alligator better
than an armadillo?,” IEEE Concurrency, Vol. 5, No. 4, Oct.-
Dec. 1997, pp.18-28.

[24] J. P. Li and M. W. Mutka, “ Priority based real-time
communication for large scale wormhole networks,”  8th
International Parallel Processing Symposium, Apr. 1994,
pp. 433-438.

[25] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “ Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems,”  Journal of Parallel
and Distributed Computing, Vol. 59, No. 2, Nov. 1999,
pp.107-121.

[26] M. Maheswaran, T. D. Braun, and H. J. Siegel,
“ Heterogeneous distributed computing,”  in Encyclopedia of
Electrical and Electronics Engineering, J. G. Webster, ed.,
John Wiley, New York, NY, 1999, Vol. 8, pp. 679-690.

[27] M. Maheswaran, “ Quality of service driven resource
management algorithms for network computing,”  1999
International Conference on Parallel and Distributed
Processing Technologies and Applications (PDPTA’99),
June/July 1999, pp. 1090-1096.

[28] D. C. Marinescu, “ A protocol for multiple access
communication with real-time delivery constraints,”  IEEE
INFOCOM ’90, June 1990, pp. 1119-1126.

[29]  P. Marbach, “ Pricing priority classes in a differentiated
services network,”  37th Annual Allerton Conference on
Communication, Control, and Computing, Sep. 1999, pp.
1075-1084.

[30] M. J. Osborne and A. Rubinstein, A Course in Game
Theory, MIT Press, Cambridge, MA, 1998.



[31] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek,
“ A resource allocation model for QoS management,”  IEEE
Symposium on Real-Time Systems, Dec. 1997, pp. 289-307.

[32] A. J. Rockmore, BADD Functional Description, Internal
DARPA Memo, Feb. 1996.

[33] T. Ryutov and C. Neuman, “ Access control framework for
distributed applications,”  INTERNET-DRAFT, CAT
Working Group, November 1998, ftp://ftp.ietf.org/internet-
drafts/draft-ietf-cat-acc-cntrl-frmw-01.txt.

[34] B. Sabata, S. Chatterjee, M. Davis, J. Sydir, and T.
Lawrence, “ Taxonomy for QoS specifications,”  3rd
International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS ’97), Feb. 1997, pp. 100-107.

[35] P. A. Schneck and K. Schwan, “ Dynamic authentication for
high-performance networked applications,”  6th
International Workshop on Quality of Service (IWQoS ’98),
May 1998, pp. 127-136.

[35] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B.
Yanamula, R. Brucks, and E. Huh, “ DynBench: A dynamic
benchmark suite for distributed real-time systems,”  Parallel
and Distributed Processing: 11th IPPS/SPDP ‘99, J. Rolim
et al., eds., Springer, Berlin, Apr. 1999, pp. 1335-1349.

[36]  L. J. Siegel, H. J. Siegel, and P. H. Swain, “ Performance
measures for evaluating algorithms for SIMD machines,”
IEEE Transactions on Software Engineering, Vol. SE-8,
No. 4, July 1982, pp. 319-331.

[37] J. A. Stankovic, M. Supri, K. Ramamritham, and G. C.
Buttazzo, Deadline Scheduling for Real-Time Systems,
Kluwer Academic Publishers, Norwell MA, 1998, pp. 13-
22.

[38] M. D. Theys, M. Tan, N. B. Beck, H. J. Siegel, and M.
Jurczyk, “ A mathematical model and scheduling heuristics
for satisfying prioritized data requests in an oversubscribed
communication network,”  IEEE Transactions on Parallel
and Distributed Systems, Vol. 11, No. 9, Sep. 2000, pp. 969-
988.

[39] C. Wang and W. A. Wulf, “ A framework for security
measurement,”  The National Information Systems Security
Conference, Oct. 1997, pp. 522-533.

[40] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K.
Mackie-Mason, “ Some economics of market-based
distributed scheduling,”  18th International Conference on
Distributed Computer Systems, May 1998, pp. 612-621.

Biographies

Jong-Kook Kim is currently pursuing a Ph.D. degree from the
School of Electrical and Computer Engineering at Purdue
University, where he has been working as a research assistant
since August 1998. Mr. Kim received his B.S.E.E. from Korea
University and his M.S.E.E. degree from Purdue University. He is
a student member of the IEEE. He served in the ROK Army
working with the US military on the Theater Automated
Command and Control Information Management System and
received the US Army Commendation medal. His research
interests include heterogeneous computing, evolutionary
heuristics, computer architecture, and parallel computing.

Taylor Kidd is currently working as a Senior Software
Engineer for OpenTV, the leading middleware provider worldwide
for interactive services on digital TV receivers. Dr. Kidd’ s present
responsibilities include representing and coordinating OpenTV’ s
technical activities in US and European standards bodies. Before
joining OpenTV, Dr. Kidd was an Associate Professor of
Computer Science at the Naval Postgraduate School in Monterey,
CA. Dr. Kidd obtained his Ph.D. in Electrical Engineering from
UCSD in 1991.

Howard Jay Siegel is a Professor in the School of Electrical
and Computer Engineering at Purdue University, where he has
been on the faculty since 1976. Beginning August 2001, he will
hold the endowed chair position of Abell Distinguished Professor
of Electrical and Computer Engineering at Colorado State
University. Prof. Siegel received a B.S. degree in electrical
engineering and a B.S. degree in management from the
Massachusetts Institute of Technology (MIT), and the M.A,
M.S.E, and Ph.D. degrees from the Department of Electrical
Engineering and Computer Science at Princeton University. He is
a Fellow of the IEEE and a Fellow of the ACM. Prof. Siegel has
co-authored over 280 technical papers, has co-edited seven
volumes, and wrote the book Interconnection Networks for Large-
Scale Parallel Processing. He was a Coeditor-in-Chief of the
Journal of Parallel and Distributed Computing, and was on the
Editorial Boards of the IEEE Transactions on Parallel and
Distributed Systems and the IEEE Transactions on Computers.
Prof. Siegel’ s research interests include heterogeneous parallel and
distributed computing, communication networks, parallel
algorithms, interconnection networks, and reconfigurable parallel
computer systems. Agencies that have supported his research
include the Air Force Office of Scientific Research, Army
Research Office, Ballistic Missile Defense Agency, DARPA,
Defense Mapping Agency, IBM, NASA, Naval Ocean Systems
Center, Naval Research Laboratory, National Science Foundation,
NRaD, Office of Naval Research, and Rome Laboratory. He was
Program Chair/Co-Chair of three international conferences,
General Chair/Co-Chair of four international conferences, and
Chair/Co-Chair of four workshops. He is a member of the Eta
Kappa Nu electrical engineering honorary society and the Sigma
Xi science honorary society. He is an international keynote
speaker and tutorial lecturer, as well as a consultant for
government and industry.

Cynthia E. Irvine is an Assistant Professor at the Naval
Postgraduate School, Monterey, California, USA. She is also the
Director of the Naval Postgraduate School Center for INFOSEC
Studies and Research. She holds a B.A. from Rice University and
a Ph.D. from Case Western Reserve University. Her current
research involves the characterization of security within quality of
service frameworks, dynamic costing and parameterization of
security services in heterogeneous environments, architectural
issues for modern high assurance networked systems including the
effective use of hardware security features, enhancement of
protection mechanisms in operating systems, and tools for teaching
system security concepts. She has received several research awards
from the Naval Postgraduate School. She has served on the
organizing committee of several international meetings on
computer security and computer security education. Dr. Irvine is



a Senior Member of the IEEE and a member of the Executive
Committee of the IEEE Technical Committee on Security and
Privacy.

Timothy Levin is a Senior Research Associate at the Naval
Postgraduate School.  Mr. Levin has spent over 15 years working
in the design, development, evaluation, and verification of secure
computer systems. His current research interests include
management and quantification of security in heterogeneous
networks, development of costing frameworks and scheduling
algorithms for the dynamic selection of QoS security mechanisms,
and the application of formal methods to secure computer systems.

Debra Hensgen is a member of the Research and Evaluation
Team at OpenTV in Mountain View, California.  OpenTV
produces middleware for set-top boxes in support of interactive
television. She received her Ph.D. in the area of Distributed
Operating Systems from the University of Kentucky. Prior to
moving to private industry, as an Associate Professor in the
systems area, she worked with students and colleagues to design
and develop tools and systems for resource management, network
re-routing algorithms and systems that preserve quality of service
guarantees, and visualization tools for performance debugging of
parallel and distributed systems.  She has published numerous
papers concerning her contributions to the Concurra toolkit for
automatically generating safe, efficient concurrent code, the Graze
parallel processing performance debugger, the SAAM path
information base, and the SmartNet and MSHN Resource
Management Systems.

David St. John is technical director and head software
architect for Marak Services, an Internet-based weather service.
Previously, Mr. St. John was head of staff at the Heterogeneous
Network & Computing Laboratory at the Naval Postgraduate
School, Monterey. He has over eight years experience in object-
oriented software development primarily for process control,
sensor data collection, and Internet transaction processing systems.
He is a member of IEEE and IEEE Computer Society. He was a
recipient of the Chancellor’s Fellowship and an M.S. degree in
Engineering from the University of California, Irvine in 1994.

Viktor K. Prasanna (V. K. Prasanna Kumar) received his BS
in Electronics Engineering from the Bangalore University and his
M.S. from the School of Automation, Indian Institute of Science.
He obtained his Ph.D. in Computer Science from the Pennsylvania
State University in 1983. Currently, he is a Professor in the
Department of Electrical Engineering as well as in the Department
of Computer Science at the University of Southern California, Los
Angeles. He is also an associate member of the Center for Applied
Mathematical Sciences (CAMS) at USC. He served as the
Division Director for the Computer Engineering Division during
1994-98. His research interests include parallel computation,
computer architecture, VLSI computations, and high performance
computing for signal and image processing and vision. Dr.
Prasanna has published extensively and consulted for industries in
the above areas. He has served on the organizing committees of
several international meetings in VLSI computations, parallel
computation, and high performance computing. He is the Steering
Co-chair of the International Parallel and Distributed Processing

Symposium [merged IEEE International Parallel Processing
Symposium (IPPS) and the Symposium on Parallel and Distributed
Processing (SPDP)] and is the Steering Chair of the International
Conference on High Performance Computing (HiPC). He serves
on the editorial boards of the Journal of Parallel and Distributed
Computing, IEEE Transactions on Computers, and the IEEE
Transactions on Parallel and Distributed Systems. He was the
founding Chair of the IEEE Computer Society Technical
Committee on Parallel Processing. He is a Fellow of the IEEE.

Richard F. Freund is a founder and CEO of NOEMIX, a San
Diego based startup to commercialize distributed computing
technology. Dr. Freund is also one of the early pioneers in the field
of distributed computing, in which he has written or co-authored
a number of papers. In addition, he is a founder of the
Heterogeneous Computing Workshop, held each year in
conjunction with IPPS/SPDP. Dr. Freund won a Meritorious
Civilian Service Award during his former career as a government
scientist.


